STANDARD OPERATING PROCEDURES

for Measurement of Chl *a* and Pheophytin Using 90% Acetone Extraction and Fluorescence Detection

Prepared by EcoAnalysts, Inc. 1420 South Blaine Street, Suite 14 Moscow, ID 83843

06 September 2017

TITLE AND APPROVAL PAGE

Document Title: Standard Operating Procedures for Measurement Of Chl *a* And Pheophytin Using 90% Acetone Extraction And Fluorescence Detection

Preparer: EcoAnalysts, Inc., Moscow, Idaho

Address and Telephone Number: 1420 South Blaine Street, Suite 14, Moscow, Idaho 83843 / (208) 882-2588

Day/Month/Year: 06/September/2017

EcoAnalysts, Inc. President/CEO Gary T. Lester \06 September 2017

EcoAnalysts, Inc. Quality Assurance Manager:

Robert/Bobier / 06 September 2017

TABLE OF CONTENTS

ppe and Application	4
ibration and Quality Control using Blank and Certified Chl a Standards	4
Equipment and Laboratory Setup	4
Standard Preparation	4
LDR and IDR Determinations	5
Quality Control Checks	5
Proficiency Testing	5
alysis of Uncorrected Chlorophyll a, Pheophytin Corrected Chlorophyll a and Pheophytin a	5
Equipment and Laboratory Setup	5
Sample Handling	6
Data Analysis and Calculations	7
	ibration and Quality Control using Blank and Certified Chl a Standards Equipment and Laboratory Setup Standard Preparation LDR and IDR Determinations Quality Control Checks Proficiency Testing

1 SCOPE AND APPLICATION

This method is based on EPA Method 445.0 and is used to determine chlorophyll and pheophytin in algae by using fluorescence detection. Chlorophylls and carotenoids are foliar pigments related to photosynthetic efficiency in plants.

2 CALIBRATION AND QUALITY CONTROL USING BLANK AND CERTIFIED CHL A STANDARDS

2.1 Equipment and Laboratory Setup

- a. Volumetric flasks
- b. Micropipettes and tips
- c. Pasteur pipettes
- d. Pipet bulbs
- e. Chlorophyll standards
- f. Turner Solid Standard Reference
- g. Optically matched cuvettes
- h. Turner Trilogy Fluorimeter-Model 7200-000
- i. Yellow light
- j. 90% acetone (Acetone HPLC grade and Nanopure H20)
- k. Clay Adams Dynac II Centrifuge and tubes
- I. Tissue grinder
- m. Aluminum Foil
- n. Squirt Bottles
- o. 0.1 N HCl

2.2 Standard Preparation

Standard calibration runs will be conducted at the beginning of each sample batch run. Standard Preparation: Dissolve standard in 90% acetone to appropriate volume and dilutions to produce the following standard concentrations or similar:

Final Concentration
0.5ug/L
1 ug/L
5 ug/L
12 .5 ug/L
25 ug/L
50 ug/L
100 ug/L
250 ug/L
500 ug/L and higher if needed

2.3 LDR and IDR Determinations

- a. LDR (Linear Dynamic Range) Determination Analyze a minimum of 5 calibration standards ranging in concentration from 0.2 to 200 ug/L Chl *a*. Perform linear regression of normalized response vs concentration and obtain slope and y- intercept. Continue measurements for standards of increasing concentration until the fluorescence response indicates a concentration within 10% of known value. This is the upper limit of the instruments linear dynamic range.
- b. IDL (Instrumental Detection Limit) Determination -Measure serially diluted standards until known values are no longer determinable and changing concentrations no longer detected.
- c. EDL (Estimated Detection Limit) Determination The EDL will be calculated as the concentration of standard that is equivalent to three times the average response of the blank filters.

2.4 Quality Control Checks

For each run, provide measurements for blank and standards of known concentration for the before and after acidification process in addition to measurement of the solid reference secondary standard.

QA Check	Frequency	Acceptance Criteria	Procedure if Corrective Action Fails		
Blank	At least 1 per batch, rerun after 30 samples	Observed value within 5 % of known value	Maintenance and/or recalibration until value meets acceptance criteria	Analyze samples, report data with quality flag	
QC Reference or Standard	At least 1 per batch, rerun after 30 samples	Observed value within 5 % of known value	Maintenance and/or recalibration until value meets acceptance criteria	Analyze samples, report data with quality flag	

2.5 **Proficiency Testing**

Proficiency Testing for Chlorophyll Pigment Analysis will be completed using Sigma-Aldrich PT Services for any individual analyst performing project pigment analysis.

3 ANALYSIS OF UNCORRECTED CHLOROPHYLL *A*, PHEOPHYTIN CORRECTED CHLOROPHYLL *A* AND PHEOPHYTIN *A*

3.1 Equipment and Laboratory Setup

- a. Volumetric flasks
- b. Micropipettes and tips
- c. Pasteur pipettes
- d. Pipet bulbs
- e. Chlorophyll standards

- f. Turner Solid Standard Reference
- g. Optically matched cuvettes
- h. Turner Trilogy Fluorimeter-Model 7200-000
- i. Yellow light
- j. 90% acetone (Acetone HPLC grade and Nanopure H20)
- k. Clay Adams Dynac II Centrifuge and tubes
- I. Tissue grinder
- m. Aluminum Foil
- n. Squirt Bottles
- o. 0.1 N HCl

3.2 Sample Handling

- a. Sample analysis will be completed within the 14 day holding period.
- b. All samples will be maintained on ice and/or handled in dark or under yellow light at all times for all of the following steps.
- c. Each sample filter will be placed in glass grinding tube and pushed to bottom with glass rod.
- d. Add 4 mL 90% acetone.
- e. Grind to slurry and then grind for about 1 minute at 500 rpm taking care not to overheat the sample.
- f. Pour slurry into a 15 mL screw-cap centrifuge tube taking care to rinse pestle and grinding tube with no more than 6 mLs 90% acetone.
- g. Add this rinse to centrifuge tube containing filter slurry.
- h. Cap the tube and shake vigorously.
- i. Place in dark before proceeding to next filter extraction.
- j. Clean the pestle, grinding tube and glass rod with dH20 and final rinse of 90% acetone between samples.
- k. Repeat steps c. through j. for each sample.
- I. Last filter to be extracted should be a blank.
- m. Shake each tube vigorously again before placing in dark at 4C.
- n. Steep for 2-24 h. Steeping is complete when green pigmentation is no longer observed in intact materials upon observation of solution in the extraction centrifuge tube. If unsure, random samples can be measured for Rb at selected time intervals within the 24 time period to determine if Rb's are stable or increasing over time. Once stable, extraction is considered complete.
- o. After steeping is complete, centrifuge samples for 5 min at 1000g.
- p. Pour 3 mls supernatant of extracted sample into sample cuvette.
- q. Record the fluorescence measurement (Rb (i.e., fluorescence before acidification)).
- r. Dilution with 90% acetone will be used if needed to maintain sample fluorescence readings within the range of the standard curve.
- s. Pheophytin step: Remove the cuvette from the fluorometer and acidify the extract to a final concentration of 0.003 N HCl using the 0.1 N HCl solution (i.e., 0.09 mL of 0.1 N HCl should be used to acidity 3 mL extract). Mix with pipette while keeping below surface of liquid to prevent aerating the sample.
- t. Wait 90 seconds.
- u. Remeasure fluorescence (Ra, i.e., fluorescence after acidification).

3.3 Data Analysis and Calculations

Raw Fluorescence Mode: obtain the fluorescence value of a sample in Raw Fluorescence Units (R). Use a standard curve to determine the concentration of the analyte in the samples. A blank sample should be run to determine background fluorescence or scatter. A solid secondary standard may be used to verify instrument stability and function. Standard concentration samples will be used to generate the standard curve and calculation of Favg for each sample batch. Conversion of R's to uncorrected Chl*a* values will be based on regression analysis and results in addition to equations using F provided in EPA Method 445.

Calculations (See Examples Below)

Response Factor (F)

The Turner Trilogy fluorimeter does not have a sensitivity setting. F = C/R will be determined for each standard in a calibration curve, the average taken to represent 'Favg' for each particular sample batch. R = fluorescence reading C=concentration for chlorophyll a

C_uncorrected (Uncorrected Chl <i>a</i>)	response factor for multiple standards in a standard run; Rb=fluorescence before acidification; Rblank_avg=average fluorescence of blanks
C_corrected (Corrected Chla)	C_corrected=Favg*(r/(r-1))*(Rb-Rblank_avg)-(Ra-Rblank_avg) where: C=Chla concentration; r=(Rb-Rblank_avg)/(Ra-Rblank_avg); Favg=average response factor for multiple standards in a standard run; Rb=fluorescence before acidification; Ra=fluorescence after acidification; Rblank_avg=average fluorescence of blanks
Pheophytin <i>a</i>	Pheophytin a=Favg*(r/(r-1))*(r(Ra-Rblank_avg)-(Rb-Rblank_avg)) where: C=Chla concentration; r=(Rb-Rblank_avg)/(Ra-Rblank_avg); Favg=average response factor for multiple standards in a standard run; Rb=fluorescence before acidification; Ra=fluorescence after acidification; Rblank_avg=average fluorescence of blanks

C uncorrected-(Rh-Rhlank avg)*Favg where: C-Chla concentration: Favg-average

Chla Concentration A ug/L (C) (Blanks and Standar	a from Spinach	Analysis Date	F (Response Factor)=C/(Rb- Rblank) Regression Line E	Chla using Favg: C=(Rb- Rblank)*Favg	Calculated Chla using Regression Line Equation of Standard Curve (for quality			
Chlorophyll a Blank Blank Blank	a from Spinach		Regression Line		comparison)			
Chlorophyll a Blank Blank Blank	a from Spinach				65879317801807*Rb-0.956519247348062 Note:			
Blank Blank Blank	-	Blanks and Standards Using Pure		use of Favg is used for calculation of pheophytin - regression analysis i the standard curve and Rb relationship to C.				
Blank Blank	Chlorophyll a from Spinach Blank 927.35 20170831			931.55				
Blank	927.33	20170831	Rblank_avg:	951.55				
	914.74 941.86	20170831						
	941.80	20170831						
Blank	900.72	20170831						
0.5	3163.24	20170831	0.000224	0.73	0.20			
0.5	3147.05	20170831	0.000224	0.73	0.20			
0.5	3935.63	20170831	0.000220	0.98	0.19			
1	3836.79	20170831	0.000333	0.95	0.45			
5	15531.75	20170831	0.000342	4.78	4.73			
5					4.75			
12.5	15493.73 44976.84	20170831 20170831	0.000343 0.000284	4.77 14.42	4.71 15.50			
12.5	38179.9	20170831	0.000336	12.20	13.00			
12.5	38132.41	20170831	0.000336	12.18	13.00			
25	71849.52	20170831	0.000353	23.22	25.33			
25	71506.62	20170831	0.000354	23.11	25.21			
50	143934.81	20170831	0.000350	46.83	51.71			
50	143154.39	20170831	0.000352	46.57	51.42			
100	273030.68	20170831	0.000368	89.10	98.94			
100	272378.15	20170831	0.000368	88.89	98.70			
		Favg:	0.000327					
				Regression Line Equation C=0.000546235676556346*Rb- 0.536409761824721				
Blank	521.92	20170901	Rblank_avg:	520.18				
Blank	518.43	20170901		0_0110				
0.5	2090.45	20170901	0.000318	0.74	0.61			
1	3544.67	20170901	0.000331	1.43	1.40			
5	10500.57	20170901	0.000501	4.73	5.20			

EXAMPLE CALCULATIONS FOR CHLOROPHYLL a (CORRECTED AND UNCORRECTED) AND PHEOPHYTIN

12.5 25 50 100	23587.84 46934.32 92983.49 183772.76	20170901 20170901 20170901 20170901 Favg: Equations:	0.000542 0.000539 0.000541 0.000546 0.000474	10.93 21.99 43.81 86.84	12.35 25.10 50.25 99.85
C_uncorrected (Uncorrected Chl <i>a</i>)				where: C=Chla concent un; Rb=fluorescence be	ration; Favg=average response factor fore acidification
C_corrected (Corrected Chla)		Favg=average r		ultiple standards in a sta	e: C=Chla concentration; r=Rb/Ra; ndard run; Rb=fluorescence before
Pheophytin <i>a</i>		Favg=average r		ultiple standards in a sta	here: C=Chla concentration; r=Rb/Ra; ndard run; Rb=fluorescence before

				Rblank_avg:	931.55		
Analysis Date	C Standard Concentration ug/L (Pure Chla Spinach Standard)		F (Response Factor)=C/Rb	Rb		Ra	r (subtraction of blank taken into account)
20170831	100		0.000367137	272378.15		189658.06	1.44
20170831	50		0.000349273	143154.39		99759.04	1.44
20170831	25		0.000349618	71506.62		46430.79	1.55
20170831	12.5		0.000327805	38132.41		25295.4	1.53
20170831	5		0.000322711	15493.73		9276.45	1.75
20170831	1		0.000260635	3836.79		2940.15	1.45
20170831	0.5	Favg:	0.000158879 0.000305151	3147.05		2339.86	1.57

		C_uncorrected C_corrected	Pheophytin a
20170831	100	82.83 82.832	0.000
20170831	50	43.40 43.399	0.000
20170831	25	21.54 21.536	0.000
20170831	12.5	11.35 11.352	0.000
20170831	5	4.44 4.444	0.000
20170831	1	0.89 0.887	0.000
20170831	0.5	0.68 0.676	0.000

Regression Analysis Results for Standard Concentrations Calibration Series for Dates Presented (Standard chl concentration vs fluorescence):

Analysis Date: 20170831								
			Regression	Equation				
SUMMARY OUTPUT			Y=0.00036	587931780	1807X-0.95	651924734	8062	
Regression Statis	tics		V	Jariah	la 1 Lir	ne Fit		
Multiple R	0.999461		Λ	valiau		IE FIL		
R Square	0.998922		200 ¬					
Adjusted R Square	0.998862		≻ 0 •			♦ Y		
Standard Error	1.059552		-200 e	200	0000	Predicte	ad V	
Observations	20			X Variabl	e 1			
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	1	18731.03	18731.03	16684.64	3.64E-28			
Residual	18	20.20772	1.122651					
Total	19	18751.24						
	Coefficients	tandard Err	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.95652	0.287259	-3.32982	0.003728	-1.56003	-0.35301	-1.5600274	-0.35301109
X Variable 1	0.000366	2.83E-06	129.169	3.64E-28	0.00036	0.000372	0.00035993	0.00037183

Analysis Date: 2017090	01		Regressio	n equatio	n				
SUMMARY OUTPUT			y=0.000546235676556346x-0.536409761824721						
Regression Stat	tistics		X Vari	iable 1	Line F	it Plot			
Multiple R	0.99997265								
R Square	0.99994529	2	00 _						
Adjusted R Square	0.99993845	_				◆ Y			
Standard Error	0.25547366	► →	0		450000000				
Observations	10	-200 50000 100000 150000 200000 Predicted Y					edicted Y		
				X Variable	1				
ANOVA									
	df	SS	MS	F	ignificance	F			
Regression	1	9543.377866	9543.378	146221	2.45E-18				
Residual	8	0.52213431	0.065267						
Total	9	9543.9							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	-0.5364098			0.000523		••			
X Variable 1	0.00054624			2.45E-18					