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1 DESCRIPTION 

This document specifies the time series signal despiking algorithm that will be used as part of the 
automated Quality Control/Quality Assurance (QA/QC) plan of observed instrument data [RD 02].  
Specifically, this document outlines the automated despiking routine that will be used to create TIS L1 
DPs.  Further time series analyses and despiking routines will be run on higher level DPs. 

2 RELATED DOCUMENTS AND ACRONYMS 

2.1 Applicable Documents 

AD[01] NEON.DOC.001113 Quality Flags and Quality Metrics for TIS Data Products 

AD[02] NEON.DOC.001069 Preprocessing for TIS Level 1 Data Products 

2.2 Reference Documents 

RD[01] NEON.DOC.000008. NEON Acronym List 
RD[02] NEON.DOC.011009 FIU Data Flow QA Plan 

2.3 Acronyms 

Acronym Explanation 
ATBD Algorithm Theoretical Basis Document 
CI Cyber Infrastructure 
DP Data Product 
FIU Fundamental Instrument Unit 
L0 Level 0 
L1 Level 1 
MAD Mean Absolute Deviation 
QA/QC Quality Assurance/Quality Control 
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2.4 Variables 

 
Variable Explanation 
A Method A - Centralized observation despiking routine 
B Method B - Window wise despiking routine 
𝑏𝑛 MAD correction factor 
𝐹𝐵 Temporary place holder flag for method B 
𝐹𝑃 Temporary place holder flag 
𝑘 Scale factor for the MAD 
𝑀𝐴𝐷𝑎𝑑𝑗 Mean Absolute Deviation for n values 
𝑀𝐴𝐷 ( ) The median of the absolute values for the residuals’ in a window (𝐿1) 
𝑀𝐸𝐷( ) Median of a finite set of values 
𝑛 Number of samples 
𝑞 MAD threshold 
𝑄𝐹𝐷 Spurious spike flag 
𝑄𝐹𝐼 Insufficient number of observations in window flag 
𝑄𝐹𝑜 Physically feasible spike flag 
𝑠 Step size 
𝑇 Consecutive spike threshold 
𝑤 Window width (time period) 
𝑥 Observation in the time series 
ω Method B spike threshold  
#a Number of assessments for method B 
 

3 DATA PRODUCT OVERVIEW 

The following algorithms are intended to be applied automatically to data, as specified in related sensor-
specific ATBDs to assist in controlling the quality of Level 1 (L1) data products (DPs).  These tests will be 
used to automatically examine data over a short timescale (e.g., quasi-daily) and to determine the sanity 
of each individual observation.  The test results calculated in this document are intended to be 
referenced by algorithms in other NEON documents.   
 
For a given interval of observations statistics will be determined, defined in Section 4.2, to set thresholds 
for the despiking routine to identify outliers.  The objective of this document is to provide a framework 
for a despiking routine that will contribute to the production of L1 DPs.  Thus, sensor-specific details are 
not included; if necessary, explicit site or sensor-specific details will be defined by FIU and maintained in 
the CI data store.  An example of such details found in Section 7.  
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4 TIME SERIES QUALITY CONTROL/QUALITY ASSURANCE  

4.1 Overview of Despiking Routine 

Despiking routines are intended to flag unphysical data points within the data stream.  Spurious spikes 
can result from various problems, such as sensor malfunction or electrical spikes.  In addition, caution 
must be taken to make certain that genuine spikes (i.e. unusual but physical trends or ramps) are not 
mistakenly identified and flagged.  Often despiking involves an “eyes on” approach, in which an 
experienced person can distinguish between plausible and implausible data.  However, an “eyes on” 
approach is time consuming if not impractical for large data streams due to its high resource demand.  
Thus, in order to process data on the scale that will be generated by NEON, automation of the despiking 
algorithm is required, with a focus on utilizing robust algorithms and minimizing computational costs.  
As discussed in Section 4.2, any spike identified as spurious in an observation period will be flagged as 
such. 
 
It is common for spike detection methods use the average and standard deviation of a time series to 
define thresholds for spike detection (EddyPro, 2011; Mauder, 2011; Vickers, 1997; Hojstrup, 1993).  
However, due to the effects outliers can have on Gaussian metrics, iteration through the selected data is 
typically required.  This can substantially increase computational costs as many routines rely on setting a 
threshold based on the standard deviation of the time series, multiplied by an empirical adjustment 
factor. With each iteration, the multiplication factor increases by a defined value until no additional 
spikes are found.  Iteration can be avoided and computational time can be greatly reduced by relying on 
more robust statistics, specifically the Median Absolute Deviation (MAD) (Mauder et al., 2013; Metzger 
et al., 2012; Papale et al., 2006).  In addition to reducing computational time, the MAD offers a more 
robust test statistic than relying on the mean and standard deviation.  While the mean is an ideal 
estimator for the location of a normal distribution, it is problematic for distributions that even slightly 
deviate from normal.  The median is known to be “resistant to gross errors” whereas the mean is not; 
thus the MAD provides greater confidence, which is crucial in spike identification (Venables and Ripley, 
2002).  
 

4.1.1 Overview of Quality Flags 

A summary of the flags (F) and quality flags (QF) that are generated during the despiking routine are 
displayed in Table 1.  Each QF can be set to one of three states, 1, 0, or -1 (i.e., high, low, and NA [not 
able to be run due to a lack of ancillary data]).  A brief description of their purpose is also presented.  
Criteria for how flags are defined can be found below in Section 4.4.  Information regarding the 
calculation of quality metrics from quality flags for one- and thirty-minute averages can be found in 
AD[01]. 
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Flags Purpose Values 
FB Spike place holder flag for method B despiking analysis  1 or 0 or -1 
FP Place holder flag so that physically feasible spikes can be identified 1 or 0 or -1 
QFI Insufficient reliable data available  1 or 0 or -1 
QFO Identifies a physically feasible spike 1 or 0 or -1 
QFD Identifies a spurious spike 1 or 0 or -1 

Table 1: Quality flags generated from the time series despiking routine. 

4.2 Automated Despiking Algorithm 

The despiking routine will be applied to the preprocessed data stream for a particular sensor.  
Preprocessing will occur according to AD[02].  Observations will be assessed within a sliding window of 
width, 𝑤, which will be sensor specific.  The window width, defined as a number of observations, 
includes both actual and missing, i.e., NA, observations.  Window width is directly related to variation 
dampening among observations.  Thus, large window sizes will result in a greater degree of dampening.  
Alternatively, smaller windows are better suited to retain of variation among observations, i.e., 
measurements that are highly variable.  Therefore, window size will be subjective to each specific sensor 
measurement.  The despiking window will step through the time series by a given number of points, 
which will also be sensor-specific parameter.  All sensor specific test parameters will be defined by FIU 
and maintained in the CI data store and unless explicitly stated calculated values will be rounded down 
to the nearest integer.  An example of how window and step size are defined can be found in Figure 1. 
 

 
Figure 1: How windows step though a time series of observations.  Here the window, w, is defined as 15 
observations and the step size, s, is 1. 
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Before calculating the MAD for a window, we define 𝑀𝐸𝐷( ) as the function for calculating the median.  
The median for a finite set of values can be defined by the two following steps: 1) Order observations 
values from smallest to largest. 2) Take the middle value from the set of ordered observations. In the 
event an even number of observations exist, the arithmetic average of the two middle values is taken.  
Next, for a window, 𝑤, of observations, 𝑥𝑖, where 𝑖 = (0,𝑛), the MAD will be computed, defined as a 
function by 𝑀𝐴𝐷( ).  The MAD is computed for a window with 𝑛 observations by computing the median 
of the residuals’ absolute values accordingly: 
 
𝑀𝐴𝐷 = 𝑀𝐸𝐷(|𝑥𝑖 − 𝑀𝐸𝐷(𝑤)|) (1) 
 
Next, to use the MAD as a consistent estimation of the standard deviation we define 𝑘 as a constant 
scale factor.  The constant 𝑘 is defined as follows: 
 

𝑘 =
1

Φ−1(3 4⁄ ) ≈ 1.4826 (2) 

 
where 𝑘 is equal to the reciprocal of the quantile function (i.e., inverse of the cumulative distribution 
function for a normal distribution),  Φ−1, evaluated at a probability of (3/4).  Thus, it is expected that 𝑘 
times the MAD for a set of samples with a Gaussian distribution is approximately equal to the 
population standard deviation (Ruppert, 2010).  
 
Lastly, following the work of Croux and Rousseeuw (1992), we define a correction factor for the MAD to 
reduce bias induced by varying window sizes.  For windows with more than nine points, we define the 
correction factor, 𝑏𝑛, as: 
 

𝑏𝑛 =
𝑛

𝑛 − 0.8
 (3) 

 
where 𝑛 is the number of actual observations, i.e. non-NA observations, within the window. 
 
If possible, windows should always have more than nine points.  If the number of points within a widow 
is < 10, Table 2 displays the correction factor values that will be used (Croux and Rousseeuw, 1992).  
Additionally, Rousseeuw and Verboven (2002) states that when 𝑛 < 4, it is no longer possible to 
estimate scale robustly.  Therefore, if there are less than four points in a window, the despiking routine 
will not be run and the quality flags QFD, QFO, and QFI will be set to NA, i.e., -1, to reflect results from the 
tests are not available. 
 

𝑛 4 5 6 7 8 9 
𝑏𝑛 1.363 1.206 1.200 1.140 1.129 1.107 

Table 2: Correction factor values for windows with less than 10 samples. 
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Lastly in order to identify outlier observations we define, 𝑞,  as the MAD threshold value, which will be 
sensor-specific.  Combining these steps, we calculate the adjusted MAD, i.e. 𝑀𝐴𝐷𝑎𝑑𝑗 for a window 
accordingly: 
 
𝑀𝐴𝐷𝑎𝑑𝑗 = 𝑏𝑛 ∗ 𝑞 ∗ 𝑘 ∗ 𝑀𝐴𝐷. (4) 

 
Once 𝑀𝐴𝐷𝑎𝑑𝑗 has been obtained for a window, an observation, 𝑥𝑖, within the window is flagged as a 
spike if it is outside the following range: 
 
𝑀𝐸𝐷(𝑤) −𝑀𝐴𝐷𝑎𝑑𝑗 ≤ 𝑥𝑖 ≤ 𝑀𝐸𝐷(𝑤) + 𝑀𝐴𝐷𝑎𝑑𝑗  (5) 

 

4.3 Despiking Routine Implementation 

The despiking routine will identify spikes using one of two procedures, defined below and maintained in 
the CI data store.  The basic difference between the two methods is that method Aassesses only the 
central most observation of the window before it steps to the next observation.  Alternatively, method B 
assesses all observations within a window before it steps to the next window.    

4.3.1 Despiking Methods 

Method A 

The first procedure, A- the default, is to assess only the central most observation for a window using Eq. 
(6).  For example, if a window contains 13 observations, the central observation will be assessed using 
the six observations on both sides of the observation, i.e. the six preceding and succeeding observations.  
The window would then step through the time series where the next central point in the window would 
be assessed.  For this option, the step size will always be one and the window set for an odd number of 
observations to be present, which includes both actual and NA observations. 
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Figure 2: Representation of how method A assesses a time series. Dashed and dotted lines represent the MAD 
range, Eq. (6) for the two different windows, wi and w(i+1). 

Method B 

The despiking routine is designed to encompass wide array of measurements.  Therefore, in addition to 
method A, we define a second method, B, as an option for identifying spikes.  Due to the variability 
among sensor measurements, in some situations method B may be more capable of not falsely 
identifying certain types of natural environmental phenomenon, e.g., ramps, as spikes.  This is attributed 
to method B identifying spikes based on a collection of assessments for each observation and in contrast 
to method A where an observation is assessed based on the statistics of one window.   
 
Functionally, method B is very similar to method A shown in Figure 2.  The difference is that instead of 
only assessing the central most point in the window, method B assesses all observations within a 
window according to Eq. (6).  If an observation is identified as a spike, a temporary placeholder flag, 𝐹𝐵, 
will be set high.  With a step size of one, the number of times that an observation is assessed by the 
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This will allow for the number of assessments, #a, for each observation to be equal to one another.  The 
number of assessments for an observation will be equal to: 
 

#𝑎 =
𝑤
𝑠

 (6) 

where, #𝑎 is the number of assessments for an observation, which is always rounded up to the nearest 
integer. 
 
Since the statistics for a window will likely change as it moves through the time series, a point could be 
identified as a spike in one window and not the next.  Therefore, we define a threshold value, ω, as a 
percent.  If the number of times an observation has been identified as a spike is < ω, that observation 
will not be identified as a spike.  Likewise, if the number of times an observation has been identified by a 
spike is ≥ ω, then it will be identified as a spike.  The specific value for ω will be defined by FIU and 
maintained in the CI data store.  However, by default, the value for ω will be 10 %, i.e., the number of 
times an observation was identified as a spike must be an order of magnitude less than the number of 
its assessments.  Additionally, values obtained from ω will always be rounded down to the nearest 
integer.  Figure 3 provides a visual representation of how spikes are determined using method B; the use 
of Fp to identify spikes is defined in Section 4.4.2.  
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Figure 3: Criteria for spike detection using method B with a window size of 15 and a step size of 1. 
 

4.3.2 Spike Identification and Threshold Classification 

Per recommendation of Vickers (1997), in the event that consecutive spikes are identified, a threshold 
(𝑇) should be set to ensure that unusual yet genuine physical trends in the data are not mistakenly 
classified and flagged.  The threshold value for a specific sensor will depend on the characteristics of the 
measurement as well as the sampling frequency.  Therefore, the threshold value will be sensor specific, 
provided by FIU, and maintained in the CI data store.  While some despiking routines use a default 
threshold value of four, it is somewhat arbitrary as this setting simply prompts these samples, especially 
in spike laden records, to be visually inspected.  For NEON’s purposes, a quality flag, 𝑄𝐹𝑂, will be set 
high in the event that consecutive spikes greater than the threshold value are identified.  How this 
procedure is incorporated into the spike detection process is discussed below. 
 
As a window passes though the time series, points that are identified as spikes within a window will 
have a temporary placeholder flag, 𝐹𝑃, applied.  The placeholder flag, 𝐹𝑃, will be set high in the event 

Observation Times
W

in
do

w
 R

es
ul

ts
 F

ro
m

 E
ac

h 
St

ep
 (

If the quantity *100 then Fp = 1, otherwise Fp = 0. 



 

Page 10 of 12 

that a spike is detected and low otherwise.  As the window steps through the time series and once it has 
stepped past a point by more than the threshold (T) value, the placeholder flag for that point will be 
assessed.  If the number of consecutive points with a place holder flag, 𝐹𝑃, set high, is greater than the 
threshold value, then those points will have an associated quality flag, 𝑄𝐹𝑂, set high.  A quality flag, 
𝑄𝐹𝑂, set high indicates that a spike was identified within the L0 data stream, but the spike appears to be 
physically feasible.  Points identified as a spike, 𝐹𝑃 set high and not included in series of consecutive 
spikes greater than the spike threshold value, 𝑇, will have a spurious spike quality flag, 𝑄𝐹𝐷, flag set 
high.     

4.3.3 Additional Considerations 

When missing points or gaps exist within the time series, it may not be possible to determine an 
accurate MAD for a window.  Therefore, we define a threshold value stating that the amount of missing 
data within a window, i.e., observations assigned an NA, must be an order of magnitude less than the 
number of observations within the window.  That is, no more than 10% of the expected observations 
within a window can be missing.   
 

𝑄𝐹𝐼 =      1 𝑖𝑓 
∑ 𝑁𝐴𝑤

𝑤
≤ 0.1 ∗ 𝑤

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (7) 

 
For example, if a Platinum Resistance Thermometer is sampled at 1 Hz and the window is defined as 
600, i.e., 10-minutes worth of samples, the number of acceptable missing observations must be less 
than or equal to 60 observations.  If the number of missing observations for a window exceeds this 
threshold, the observation or observations despiked by that window will be given a quality flag, 𝑄𝐹𝐼.  
This quality flag, 𝑄𝐹𝐼, indicates that an insufficient number of observations were present for that 
window.   

Accompanying every L1 DP, will be the quality metrics listed in Table 2, which will be included in the 
QA/QC summary (i.e., Qsum).  In addition, despiking flags specific to a L0 DP will be retained and reported 
in the QA/QC quality report (i.e., Qrpt), that accompanies every L1 DP.  Once the despiking procedure has 
been completed for all DPs within an averaging period (i.e. 1- or 30-min), those DPs will continue to the 
next phase of the algorithm implementation, presented in the sensor specific ATBD. 
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6 APPENDIX 

DATA STORE EXAMPLE 

Using single aspirated air temperature and barometric pressure as examples, Table 2 displays the 
sensor-specific information for the despiking routine that will be provided by FIU and maintained in the 
CI data store.  These values should not be taken as absolute; they are purely intended to illustrate what 
information FIU will provide to CI.  
 

DP 
Despiking 
Method 

ω (%) 𝒘 (𝒏) 𝒔 (𝒏) 𝒒 𝑻 (𝒏) 

NEON.DXX.XXX.DP1.00002. A NA 180 1 7 4 
NEON.DXX.XXX.DP1.00004. A NA 300 1 7 4 

Table 3: Sensor-specific information needed to run the despiking routine. 
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