
 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

Template_NEON.DOC.000152 Rev D 

 

 

NEON ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD): 

ECOSYSTEM STRUCTURE 

 

 

 
PREPARED BY ORGANIZATION DATE 

Tristan Goulden AOP 5/29/2019 

Victoria Scholl AOP 5/29/2019 

 

APPROVALS ORGANIZATION APPROVAL DATE 

Kate Thibault SCI 03/28/2022 

   

 

RELEASED BY ORGANIZATION RELEASE DATE 

Tanisha Waters CM 03/28/2022 

 

 

 

 

See configuration management system for approval history. 

 

 

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under c ooperative agreement by Battelle. 

Any opinions, findings, and conclusions or recommendations expressed in this material are those o f the author(s) and do not necessarily reflect the views of the 

National Science Foundation. 



 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

Template_NEON.DOC.000152 Rev D 

 

Change Record 

REVISION DATE ECO # DESCRIPTION OF CHANGE 

A 07/01/2019 ECO-06170 Initial Release 

B 03/28/2022 ECO-06794 
• Minor formatting updates 
• Added word NEON to document title 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

i 
 

TABLE OF CONTENTS 

1 DESCRIPTION ......................................................................................................................1 

1.1 Purpose .......................................................................................................................1 

1.2 Scope ..........................................................................................................................1 

2 RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE .......................................2 

2.1 Applicable Documents ...................................................................................................2 

2.2 Reference Documents ...................................................................................................2 

2.3 Acronyms ....................................................................................................................2 

3 DATA PRODUCT DESCRIPTION ..............................................................................................4 

3.1 Variables Reported........................................................................................................4 

3.2 Input Dependencies ......................................................................................................4 

3.3 Product Instances .........................................................................................................4 

3.4 Temporal Resolution and Extent......................................................................................4 

3.5 Spatial Resolution and Extent..........................................................................................5 

4 SCIENTIFIC CONTEXT............................................................................................................6 

4.1 Theory of Measurement ................................................................................................7 

4.2 Theory of Algorithm ......................................................................................................8 

5 ALGORITHM IMPLEMENTATION .......................................................................................... 13 

6 UNCERTAINTY................................................................................................................... 16 

6.1 Observed CHM uncertainty .......................................................................................... 18 

7 VALIDATION AND VERIFICATION ......................................................................................... 22 

8 FUTURE PLANS AND MODIFICATIONS .................................................................................. 25 

9 BIBLIOGRAPHY.................................................................................................................. 26 

 

LIST OF TABLES AND FIGURES 

Table 1. Data products generated by algorithms described within this ATBD........................................ 4 

 

Figure 1. CHM and RGB image of same area. ................................................................................. 7 

Figure 2. Left: CHM without algorithm applied to remove data pits, identifiable by black pixels. Right: 

CHM with algorithm applied to remove data pits. ..........................................................................11 

file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098896
file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098896


 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

ii 
 

Figure 3. Top - Khosravipour, Skidmore, Isenburg, Wang, and Hussin (2014) algorithm for creation of a 

pit-free CHM. Bottom - NEON adaptation of the Khosravipour, Skidmore, Isenburg, Wang, and Hussin 

(2014) algorithm for creation of a pit-free CHM to allow for a dynamic height ceiling and selectable 

height intervals.........................................................................................................................12 

Figure 4. Flowchart summarizing CHM creation.............................................................................14 

Figure 5. Left: coverage of BRDF flight at SOAP. Right: coverage of BRDF flight at SJER. ........................19 

Figure 6. Left: sample of uncertainty of CHM at SOAP. Right: sample of uncertainty of CHM at SJER.......20 

Figure 7.  Top: histogram of cell by cell standard deviation of the CHM at SOAP. Bottom: histogram of 

cell by cell standard deviation of the CHM at SJER. .........................................................................21 

Figure 8. Linear regression of ground measured canopy heights vs. the LiDAR derived CHM at SJER. ......23 

Figure 9. Vertical residuals of ground measured tree height vs. LiDAR derived CHM linear regression 

model at SJER. ..........................................................................................................................24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098897
file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098897
file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098897
file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098897
file:///C:/Users/tdelpriore/Desktop/eco-06794/NEON.DOC.002387.docx%23_Toc99098899


 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

Page 1 of 32 

1 DESCRIPTION 

1.1 Purpose 

This document details the algorithms used for creating the NEON Level 3 ecosystem structure data 

product (NEON.DOM.SITE.DP3.30015.001) from Level 1 data, and ancillary data (such as calibration 

data), obtained via instrumental measurements made by the Light Detection and Ranging (LiDAR) 

sensor on the Airborne Observation Platform (AOP). It includes a detailed discussion of measurement 

theory and implementation, appropriate theoretical background, data product provenance, quality 

assurance and control methods used, approximations and/or assumptions made, and a detailed 

exposition of uncertainty resulting in a cumulative reported uncertainty for this product.  

1.2 Scope 

This document describes the theoretical background and entire algorithmic process for creating  

NEON.DOM.SITE.DP3.30015.001 from input data. It does not provide computational implementation 

details, except for cases where these stem directly from algorithmic choices explained here.    
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2 RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE 

2.1 Applicable Documents 

AD[01] NEON.DOC.000001 NEON Observatory Design (NOD) Requirements  

AD[02] NEON.DOC.002652          NEON Level 1, Level 2 and Level 3 Data Products Catalog 

AD[03] NEON.DOC.002293 NEON Discrete LiDAR datum reconciliation report 

AD[04] NEON.DOC.002649 NEON configured site list 

2.2 Reference Documents 

RD[01] NEON.DOC.000008         NEON Acronym List 

RD[02] NEON.DOC.000008         NEON Glossary of Terms 

RD[03] NEON.DOC.002390          NEON elevation Algorithm (DTM and DSM) Theoretical Basis 

document 

RD[04] NEON.DOC.001984         AOP flight plan boundaries design 

RD[05] NEON.DOC.005011         NEON Coordinate Systems Specification 

RD[06] NEON.DOC.001292         NEON L0-to-L1 discrete return lidar algorithm theoretical basis          

RD[07] NEON.DOC.002890         NEON AOP Level 0 quality checks 

RD[08] NEON.DOC.003791         NEON Elevation (Slope and Aspect) Algorithm Theoretical Basis  

Document                  

RD[09] NEON.DOC.00987            TOS Protocol and Procedure: Measurement of Vegetation Structure 

RD[10] NEON.DOC.002186         AOP determination peak greenness plan 

2.3 Acronyms 

Acronym Explanation 

DTM Digital Terrain model 

DSM Digital Surface model 

DEM Digital Elevation Model 

ITRF00 International Terrestrial Reference Frame 2000 

UTM Universal Transverse Mercator 

TIFF Tagged Image File Format 

AOP Airborne Observation Platform 

FBO Fixed Base Operator 

PPM pulses per square meter 

CHM Canopy Height Model 

HDF Hierarchical data format 

AGC Above Ground Carbon 

AGB Above Ground Biomass 



 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Ecosystem Structure Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.002387 Author:  T. Goulden and V. Scholl Revision:  B 

 

Page 3 of 32 

SOAP Soaproot Saddle 

SJER San Joaquin Experimental Range 

ASPRS American Society of Photogrammetry and Remote Sensing 
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3 DATA PRODUCT DESCRIPTION 

3.1 Variables Reported 

The product supplied through NEON.DOM.SIT.DP3.30025.001 includes a canopy height model (CHM) in 

raster data for- mat. The CHM is derived from the lidar point cloud, a level 1 product (see RD[06]). 

Rasters for the CHM are reported with horizontal reference to the ITRF00 datum, projected to the 

Universal Transverse Mercator (UTM) Cartesian coordinate system in accordance with RD[06]. The 

CHM is a normalized by ground height, indicating all ground elevations are set to zero and canopy 

height is the height of vegetation above the ground in meters. The CHM rasters are divided into a set of 

1 km by 1 km tiles, which have corners spatially referenced to an even kilometer. The product is stored 

in a GeoTIFF format in accordance with the GeoTIFF specification (Ritter et al., 2000).  

3.2 Input Dependencies 

The creation of the canopy height model rasters requires tiled LiDAR point clouds in LAS format as 

input. Procedures for creating the L1 point cloud, including tiling, can be found in RD[06] and 

procedures for pre-processing of the point cloud in RD[03]. 

3.3 Product Instances 

The NEON data products produced directly from these algorithms are summarized in Table 1. 

Table 1. Data products generated by algorithms described within this ATBD. 

Data product identification Data product name 

NEON.DOM.SITE.DP3.30015.001 Canopy height model 

3.4 Temporal Resolution and Extent 

The canopy height model product will include data collected during acquisition of a single core, re-

locatable or aquatic site by the AOP. Depending on external variables such as weather, transit time to 

the site FBO, and total area of the priority 1 flight box (see RD[04]), the temporal resolution of a single 

acquisition of L0 LiDAR information could range from a single flight (4 hrs.) to several flights acquired 

over multiple days. Generally, given AOP intends to acquire data from each site during a period of peak 

greenness (RD[12]) annually, the total potential time to acquire a site will have a limit which defines the 

largest temporal resolution for a single acquisition. Details defining the total amount of potential time 

dedicated to a single site acquisition are provided in RD[04]. As the NEON AOP payload is scheduled to 

repeat each NEON site on an annual basis, the temporal resolution of multiple acquisitions will be one 

year. 
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3.5 Spatial Resolution and Extent 

The canopy height models will be created at 1 m spatial resolution and be spatially coincident with the 

DTM, DSM (RD[08]), slope and aspect maps (RD[10]). The planned spatial extent of the canopy height 

model will relate to the definition of the AOP flight box (RD[04]) for each individual site (RD[04]). I t is 

intended that a minimum of 80% of the priority 1 flight box and 95% of the tower airshed will be 

acquired each year (RD[07]). As discussed in Section 3.4, the actual acquired area could vary depending 

on external conditions encountered during the flight. Ultimately, the flight schedule as defined in 

RD[04] shall supersede the percent coverage requirement. Therefore, the actual acquired spatial extent 

may vary annually. 
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4 SCIENTIFIC CONTEXT 

Recent global initiatives aimed at reducing greenhouse gas emissions have generated interest in 

quantification and monitoring of forest inventories. Forests store and sequester a considerable 

proportion of the terrestrial global carbon budget; therefore, policy actions which incentivize new 

growth can reduce current available atmospheric carbon introduced by anthropogenic greenhouse gas 

emissions. Conversely, carbon can also be released into the atmosphere thorough activities such as 

deforestation, forest degradation or burning which can undermine the effectiveness of policy aimed at 

reducing the quantity of atmospheric carbon. Climate change legislation as early as the Kyoto Protocol 

recognized the utility of accounting for carbon sinks associated with vegetation growth as a viable 

method to quantify an offset in carbon emissions (Rosenqvist et al., 2003), and to monitor the global 

carbon budget. Contemporary international efforts aimed at carbon accounting such as REDD+ 

(Reducing Emissions from Deforestation and forest Degradation) target monitoring carbon emissions 

from land-use change due to deforestation. 

Remote sensing has been identified as one of the primary tools which will enable global monitoring of 

forest stocks to support carbon monitoring through changes in land-use (i.e. deforestation) (Rosenqvist 

et al., 2003; Goetz & Dubayah, 2011). In particular, LiDAR remote sensing has gained recent interest as 

a tool for predicting above ground biomass (AGB), a primary indicator of carbon storage potential, and 

a proxy to estimate carbon contributions of ground litter and below-ground biomass (Goetz & 

Dubayah, 2011). LiDAR sensors have shown higher success over optical sensors in areas of high density 

biomass and LAI, where optical sensors tend to lose accuracy and sensitivity (Lefsky et al., 2002; Turner 

et al., 1999; Carlson & Ripley, 1997), and do not directly measure three dimensional forest structure.  

Forest canopy metrics are directly measurable with LiDAR sensors because laser pulses will be reflected 

from the uppermost canopy layers and remaining energy will penetrate to, and reflect from, under-

story and the ground surface. The near simultaneous direct measurement of ground and canopy 

elevation allows the canopy height to be estimated through straightforward differencing. A CHM is then 

generated by creating a continuous surface of canopy height estimates across the entire spatial domain 

of the LiDAR survey. 

Goetz and Dubayah (2011) state that canopy height is one of the most desirable and common metrics 

used for ecosystem studies. To support carbon accounting initiatives, above ground carbon (AGC) is 

typically estimated from estimates of AGB, which can be determined with the support of a CHM. Prior 

to the availability of LiDAR, AGB was traditionally inferred from allometric relationships derived from 

field sampling of individual trees in spatially distributed plots across the forest of interest. Field 

sampling of forest plots is expensive and time consuming, and can result in a lack of adequate sampling 

in distinct forest biomes, which will bias the extrapolation of results across a diverse forest ecosystem. 

The combination of strategically placed field plots along with the increased spatial coverage of LiDAR 

aerial surveys is the subject of on-going research for estimating AGB on the scale of an entire forest 

system (e.g. Asner et al. (2010)). It has been shown that the combination of both the highly detailed 

field plot data and large spatial coverage of LiDAR data allows statistical regression or machine -learning 
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techniques to accurately spatially extrapolate information outside of forest plots. Several studies have 

demonstrated the use of LiDAR-derived CHM metrics for prediction of AGB. For example, Asner et al. 

(2010) utilized canopy height as one of several canopy metrics metrics derived from LiDAR to estimate 

the AGB over a 4.3 million ha area of the Peruvian Amazon, demonstrating the efficiency in leveraging 

LiDAR in combination with field plots for large area mapping of AGC. Asner et al. (2011) also utilized a 

similar methodology to map AGB on the million Ha Island of Hawaii. Lefsky et al.   (2002) analyzed three 

distinct temperate forest biomes (two temperate, one boreal) and found a statistically significant 

relationship (p < 0.001) between the mean canopy height and field measured above ground biomass in 

all sites. The demonstrated utility of LiDAR derived CHMs for assessing AGB indicate the utility in 

supporting the scientific objectives of the NEON observatory.  

4.1 Theory of Measurement 

The CHM is derived directly from the LiDAR point cloud. RD[06] describes in detail the theory of 

measurement and observation of the LiDAR point cloud. To summarize, the LiDAR point cloud is 

produced from LiDAR return signals from both surface features and the true-ground as LiDAR pulses will 

be reflected from the uppermost layers of the canopy, as well as the underlying ground surface. To 

produce the CHM, the point cloud is separated into classes representing the ground and vegetation 

returns. The ground classified points allow calculation of a height normalized point cloud to provide a 

relative estimate of vegetation elevation. A surface is then generated using the height normalized 

vegetation points to produce the CHM (Figure 1). 

 

Figure 1. CHM and RGB image of same area. 
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4.2 Theory of Algorithm 

Fundamentally, a CHM can be considered a surface of normalized vegetation heights. In the simplest 

sense, the CHM can be calculated as a difference between the DSM and the DTM (see RD[08] for 

background on DSM and DTM creation): 

 𝐶𝐻𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀 (1) 

Directly subtracting the DTM from the DSM to determine a CHM can introduce artifacts into the CHM 

known as data pits. Data pits manifest as abnormally low elevation pixels within a tree crown and 

underestimate the true canopy height, and are a commonly observed problem in CHMs derived from 

LiDAR (Khosravipour et al., 2014; Ben-Arie et al., 2009; Liu & Dong, 2014). As the CHM results are 

dependent on non-linear interactions between LiDAR acquisition parameters and post-processing 

routines, the causes of data pits has not been conclusively proven within existing literature (see 

Khosravipour et al. (2014) for a summary of documented causes). Regardless of the cause, it is well 

known that airborne LiDAR inherently underestimates canopy height (see Section 6), and the presence 

of data pits will cause further underestimation of height metrics derived from a CHM. Bias in height 

metrics derived from the CHM will lead to errors in estimates of AGB, carbon sequestration potential 

(Ben-Arie et al., 2009), or structural forest metrics such as basal area and stand volume (Shamsoddini et 

al., 2013; Zhao et al., 2013). Attempts at morphological filtering such as mean, median or Gaussian have 

been successful in removing pits; however, filtering techniques will also undesirably modify the 

remaining pixels, and potentially reduce CHM accuracy (Ben-Arie et al., 2009; Khosravipour et al., 2014). 

Therefore, an algorithm which provides a methodology for removing data pits while maintaining the 

fidelity of the original CHM is desirable.  

The algorithm implemented by NEON for determining a CHM is detailed in Khosravipour et al. (2014, 

2013) and was designed with the specific intention of removing ’data pits’ in CHMs. The algorithm 

generates a standard CHM (sCHM) by creating a surface through triangulation of all normalized first 

returns, as well as a series of partial CHMs (pCHMs) by triangulating all first returns above a set of 

increasing elevation thresholds. Background into the triangulation algorithm can be found in RD[08]. 

The maximum value for any given x-y location (pixel) in the pCHMs and sCHM is used to produce the 

final pit-free CHM (Figure 3).The underlying assumption is that as the elevation threshold is increased, 

only returns from a unique tree crown are included in pCHM generation (Khosravipour et al., 2014). If 

data pits exist in the standard CHM, the interpolation inherent in the TIN algorithm will result in filled 

pits in the pCHMs. The maximum length allowed for any given triangular edge in the TIN algorithm is a 

critical parameter, as it controls the size of data pits that will be filled, but also allows legitimate gaps in 

the canopy or empty space between adjacent tree crowns to be filled. Khosravipour et al. (2014) 

suggest that the maximum length of triangular edges, referred to as the rasterization threshold, is larger 

than the average point spacing between LiDAR observations, yet below the space between individual 

trees. For the typical point spacing of NEON LiDAR acquisitions it was determined that a rasterization 

threshold of 3 m was reasonable. Values tested below a rasterization threshold of 3 m resulted in a 
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large number of remaining data-pits. As the optimum value for the rasterization threshold is likely 

related to the vegetation structure, additional testing is on-going to develop a method to determine a 

dynamic rasterization threshold based on both the LiDAR acquisition parameters and the vegetation 

structure. 

In the example case study presented in Khosravipour et al. (2014), a static maximum height ceiling 

threshold of 20 m was implemented when calculating the pCHMs. The 20 m limit was selected because 

only 5% of trees within their study area were taller than 20 m. Due to the differences in vegetation 

species and growing conditions across NEON sites, considerable variation exists among the maximum 

tree height. To apply the Khosravipour et al. (2014) algorithm to the diverse cross-section of vegetation 

conditions at NEON sites, the maximum height ceiling threshold (H) is dynamically selected from the 

sCHM (Figure 3). Several values of potential candidates for the ceiling height threshold from the sCHM 

were tested, 1) the maximum height value, 2) the 99th percentile of height and 3) the 95th percentile of 

height. It was determined that the maximum height within the sCHM is often associated with a non-

vegetative surface feature (despite data filtering in the point cloud pre-processing), such as a noise 

point above the canopy, or a manufactured structure such as a communications tower. Therefore, the 

maximum height from the sCHM is not an efficient choice for the ceiling height threshold because 

several levels of pCHMs will be created unnecessarily. Testing of the 99th and 95th percentile of heights 

revealed that the 99th percentile was typically associated with legitimate vegetation, and was often 

several height bins above the 95th percentile. Therefore, the 99th percentile of height from the sCHM is 

currently used to determine the height ceiling threshold. 

The implementation of the algorithm in Khosravipour et al. (2014) also had statically selected height 

bins of 2, 5, 10, 15 and 20 m above which each pCHM was created. The NEON algorithm 

implementation also uses 2 m as the lowest level, but allows a variable increment value (i) for each 

subsequent increase to the height bin. Testing has shown that 5m was a reasonable value for i, however 

ongoing tests will be conducted to determine if i can be optimized for different forest environments. 

The thresholds on the height bins will proceed in the same pattern as those in Khosravipour et al. 

(2014), but increase up to the first even interval of above H (see Figure 3) according to the following 

equation: 

 ℎ =  [2,𝑖, 2𝑖, …, 𝑛𝑖]  (2) 

where h is the vector of height bin thresholds used for each pCHM, n is the total number of required 

bins determined as 

 𝑛 = [𝐻
𝑖⁄ ] (3) 

4.2.1    Pre-Processing 

Prior to creation of the CHM, each point within the LiDAR point cloud must be assigned to a class 

(Figure 4). Processing steps implemented up to and including the point classification can be found in 
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RD[06] and RD[08]. The LAStools soft- ware suite (http://www.cs.unc.edu/~isenburg/lastools/) is used 

for determining the point classification, and separates points into five potential classes including:  1) 

unclassified, 2) noise, 3) ground, 4) high vegetation, and 5) building. The classes of each point are 

saved as an integer identifier according to ASPRS (2009) and provided in tiled point clouds in 

compressed LAS (LAZ) format. As described in RD[08], internal testing revealed that a large number of 

points classified as ’unclassified’ belong to the vegetation class. Therefore, all point data labeled as 

’high vegetation’ and ’unclassified’ are used for creating the sCHM and pCHMs. Only points associated 

with the ’ground’ class are used for normalization of the elevations in the ’high vegetation’ and 

’unclassified’ points. 

Prior to creation of the normalized vegetation heights, the data points are thinned to include only the 

maximum return height within a pre-defined area (Figure 4). Thinning the points follows the 

recommendation given in Isenburg (2014). LiDAR generated CHMs are known to systematically under-

estimate the true tree canopy (see Section 6), therefore thinning and retaining only the maximum 

height reduces the opportunity for CHM underestimation. Point thinning is implemented by 

superimposing a grid with 0.5 m spatial resolution over the point cloud, and selecting only the 

maximum height within each grid cell. As NEON LiDAR acquisition parameters generally result in ~4 

pts /m2 (~1 pt/ 0.5 m2), the thinning at this resolution will not remove a large percentage of the 

acquired points. Overlap regions of adjacent flight lines where the point density is higher than 4 pts 

/m2 will be more severely altered from the original point cloud due to the thinning procedure.  

 

http://www.cs.unc.edu/~isenburg/lastools/
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Figure 2. Left: CHM without algorithm applied to remove data pits, identifiable by black pixels. Right: CHM with 
algorithm applied to remove data pits. 
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Figure 3. Top - Khosravipour, Skidmore, Isenburg, Wang, and Hussin (2014) algorithm for creation of a pit-free CHM. 
Bottom - NEON adaptation of the Khosravipour, Skidmore, Isenburg, Wang, and Hussin (2014) algorithm for creation of 
a pit-free CHM to allow for a dynamic height ceiling and selectable height intervals. 
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5 ALGORITHM IMPLEMENTATION 

The processing of the point cloud into the CHM product is achieved through the steps outlined in this 

section (Figure 4). The algorithm for CHM creation is outlined through multiple interconnected LAStools 

(http://www.cs.unc.edu/~isenburg/lastools/) and in-house Matlab 

(http://www.mathworks.com/products/matlab/) functions which automate the algorithm in a cygwin 

(https://www.cygwin.com/) environment. The process is dependent on the existence of a point cloud 

which has been tiled, noise filtered, and classified into ground and non-ground points (see RD[08]). 

Step 1: 

Classify the LAS data into ground and non-ground points (see Section 4.2.1). 

Input: 

1.  Ground / non-ground classified point cloud, 1 km by 1 km tiles (with buffer) in LAZ 

format (see RD[08]), 

2.  Flag which identifies the search mode (set to extra fine), 

3.  Flag which indicates the size of a search area for identification of original ground 

points (set to 10), 

4.  Planer flag (set to 0.1 m). 

Output: Tiled LAS files with ground points classified according to ASPRS classification scheme 

(ASPRS, 2009). 

Functions used: lasground (lastools). 

Step 2: 

Determine point cloud heights normalized to the ground surface.  

Input: Classified point cloud, 1 km by 1 km tiles (with buffer) in LAZ format.  

Output: Height normalized point cloud, 1 km by 1 km tiles (with buffer) in LAZ format.  

Functions used: lasheight (lastools). 

Step 3: 

Thin the point cloud (see Section 4.2.1) 

Input: 

1.  Height normalized point cloud, 1 km by 1 km tiles (with buffer) in LAZ format,  

2.  Step size flag to indicate grid cell size (set to 0.5 m),  

3.  ’Highest’ flag to indicate to keep the point with maximum elevation in each grid cell.  

Output: Height normalized and thinned point cloud, 1 km by 1 km tiles (with buffer) in LAZ 

format. 

Functions used: lasthin (lastools). 

Step 4: 

Calculate height thresholds for each pCHM 

Input: CHM rasters, 1 km by 1 km tiles in gtif format. 

Output: Height thresholds, ascii file. 

Functions used: extract_height_from_chm.m (Matlab) 

http://www.cs.unc.edu/~isenburg/lastools/
http://www.cs.unc.edu/~isenburg/lastools/
http://www.mathworks.com/products/matlab/
https://www.cygwin.com/
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Figure 4. Flowchart summarizing CHM creation. 
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Step 5: 

Calculate pCHMs for each height interval. This step is repeated for each elevation threshold in 

the ASCII output from Step 4 

Input: 

1.  CHM rasters, 1 km by 1 km tiles in gtif format 

2.  Step size flag to indicate spatial resolution (set to 1 m),  

3.  Elevation threshold calculated from Step 4, 

4.  Elevation flag to indicate the height normalized elevation is the variable used to 

create the TIN, 

5.  Kill triangles flag to indicate the maximum size of a triangular edge to be maintained 

(set to 3 m), 

6.  Keep class flag to indicate which point classifications to use (unclassified, ground 

and vegetation points). 

Output: pCHM rasters for each height threshold, 1 km by 1 km tiles, gtiff format.  

Functions used: las2dem (lastools). 

Step 6: 

Combine pCHMs by choosing maximum height for each cell 

Input: pCHM rasters, 1 km by 1 km tiles in gtif format from Step 5. 

Output: Pit-free CHM, 1 km by 1 km tiles in gtiff format. 

Functions used: combine_CHM_gtif.m (Matlab) 
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6 UNCERTAINTY 

It has been generally observed that canopy height is underestimated by airborne laser scanning 

observations (see Gaveau and Hill (2003), Maltamo et al., (2004), Suárez et al., (2005), Chasmer et al., 

(2006)). Hyyppä et al. (2009) identify several sources of uncertainty in the creation of canopy height 

models which can lead to a systematic underestimation in canopy height; however these sources can 

also introduce random errors which can cause variable levels of uncertainty: 

1.  density / coverage of the the LiDAR points (affected by flying altitude, flying speed, laser scan 

rate, pulse repe- tition frequency (PRF)), 

2.  laser beam parameters such as beam divergence, 

3.  algorithm used to classify ground points and create the DTM, 

4.  sensitivity of the return signal detection hardware processing techniques, 

5.  the structure of the vegetation. 

 
Analysis of source 1, the density / coverage of LiDAR points, has found that a decrease in point density 

results in a systematic reduction in canopy height. The reduction in canopy height due to a decrease in 

point density is primarily attributed to a diminished opportunity for the energy from any given pulse to 

intercept with an individual tree crown apex (Lefsky et al., 2002). Following this logic, increasing the 

beam divergence of the laser pulse will enlarge the sampled area and increase the likelihood the pulse 

will intercept maximum points on the canopy. NEON selects the widest available beam divergence 

setting on the Optech Gemini system to increase the spatial coverage of the intercepted are, ensure 

eye-safe conditions, and increase the likelihood of making contact with tree crown apexes. However, in 

well-controlled experiment that varied flight acquisition parameters, Hopkinson, 2007 determined that 

it was the peak pulse power concentration (driven by flight altitude, beam divergence, and PRF) that 

was the dominant control on systematic variation in laser pulse return distribution within vegetation 

(related to source 2 and source 4). A pulse with lower peak power concentration will tend to penetrate 

deeper into the foliage before sufficient energy is returned to overcome a minimum threshold required 

in the receiving hardware to trigger a return signal. Similar results were also observed by Andersen et 

al. (2006), who determined the wide beam divergence setting resulted in a larger underestimation of 

tree height. Given that the NEON LiDAR system is operated at one of the higher PRF rates for the 

Optech Gemini instrument (100 kHz) and in wide beam divergence mode, the peak power 

concentration of individual pulses will be low compared to alternative available LiDAR acquisition 

parameters and the canopy height will may be more severely underestimated.  

Other studies have noted that some LiDAR acquisition parameters play a minor or negligible role in the 

determination of canopy height. For example, Næsset (2004) noted very little difference on mean tree 

height with changing flying altitudes and beam divergence.  However, the study was conducted with 

only 300 m of height difference (540 vs 840 m) and with a system only capable of a 10 kHz PRF (ALTM 

1210). Therefore, the differences in peak power concentration due to changes in altitude at a 10 kHz 

PRF may have been insufficient to create a notable change in pulse penetration. Næsset (2009) also 
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noted a slight increase in the canopy height with increasing platform altitude (1100 m vs 2000 m) using 

the same model LiDAR sensor as Hopkinson, 2007 (ALTM 3100), which contradicted results from 

Hopkinson, 2007. Similar conclusions were also found in Goodwin, Coops, and Culvenor (2006), who 

found that canopy height values increased slightly as the platform increased in elevation (1000 m vs 

3000 m). In response to the seemingly conflicting results found in the literature, Næsset (2009) 

identifies the importance of the coupling of effects of the different LiDAR parameters, i.e changes in 

pulse density and beam envelope size (therefore peak power concentration) change with altitude and 

PRF. As a result, it is difficult to design a controlled experiment which conclusively isolates each of the 

confounding factors. Without knowledge of the return pulse triggering algorithm and details of 

hardware in the receiving electronic circuits (typically proprietary information), it is difficult to draw 

sound conclusions from purely empirical experimentation. Including the potential issues associated 

with source 5, the structure of the vegetation, additional research is required to fully describe how 

uncertainty due to LiDAR acquisition parameters will contribute to uncertainty in canopy height.  

The algorithm used to create the DTM (source 3) affects the CHM because the vegetation heights are 

normalized to the DTM surface. Large errors can occur in the DTM if pulses are unable to penetrate to 

the ground and large areas must be interpolated in order to create a continuous DTM surface.  This is 

particularly problematic in areas with a dense vegetation where it is unlikely that sufficient pulse 

energy will transmit through the canopy and allow a ground return. Topographic features such as 

valleys, which commonly exist in riparian areas with dense vegetation, could be interpolated and filled, 

creating a systematically raised ground surface and underestimation of the canopy height. Although 

higher PRFs result in lower peak pulse power concentrations, Hopkinson (2007) and Chasmer et al., 

(2006) found that higher PRFs result in a denser sample of the ground surface at their study sites, 

reducing the opportunity for uncertainty to be introduced through interpolation to a DTM. Returns 

from low vegetation may be erroneously classified as ground points (Lefsky et al., 2002). This will lead 

to the canopy height being determined between the upper levels of the understory and the canopy top 

and introduce a systematic underestimation. This effect will be particularly problematic in understory 

vegetation which is below 2 m in height as this is the minimum detection threshold distance between 

targets. Therefore, if a return signal from understory which is below 2 m in height is detected, it is not 

possible for the sensor to also detect the ground surface and the low vegetation will appear as the 

ground surface. 

Within the literature, different levels of uncertainty / error have also been reported across various tree 

species (source 5). Due to the numerous uncontrolled variables across experiments including flight 

parameters and LiDAR systems, it is difficult to synthesize a universal conclusion about the effect of 

tree species on canopy height model uncertainty. It has been suggested that both the structure of the 

canopy and the reflectivity of the foliage at the given laser wavelength play a role in the returned 

energy signature (Lefsky et al., 2002; Hopkinson, 2007), and in canopy height uncertainty. For example, 

Yu et al., (2004) found that the birch trees were less sensitive to changes in altitude than coniferous 

trees. In a study of a mixed forest with heterogeneous stands, Maltamo et al., 2004 found different 

levels of underestimation of canopy height by tree species. Plot data was available for Norway spruce, 
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Scots pine and birch, and mean height was underestimated by 0.80, 1.20, and 0.91 meters for each 

species respectively. In a study of varying LiDAR acquisition parameters, Hopkinson (2007) noted 

systematically varied levels of foliage pulse penetration between vegetation using an Optech ALTM 

3100 system at a high PRF (100 kHz). He concluding that the vegetation type (birch, mixed pine, mixed 

spruce) exerted some control over the level of pulse penetration into the canopy. Given the NEON 

project is designed to collect data across a range of representative tree species within the continental 

U.S., it should not be expected that the level of uncertainty in the CHM will be constant despite 

consistent collection protocols with identical acquisition parameters. Additional ground data is required 

to begin assessing variations in uncertainty across the various forest types being acquired in the NEON 

project to understand the role of different tree species. 

6.1 Observed CHM uncertainty 

An opportunity to provide an estimate of the uncertainty in CHMs derived from the flight acquisition 

parameters and processing techniques utilized at NEON in an applied context was provided through 

engineering surveys acquired for SJER (San Joaquin Experimental Range) and SOAP (Soaproot Saddle), 

both in NEON’s Domain 17 (D17, http://www. neonscience.org/science-design/spatiotemporal-design). 

Specifically, the engineering surveys at these sites included acquisitions intended to analyze BRDF (bi-

directional reflectance effects) of the data acquired by the imaging spectrometer. The BRDF flight plan 

collects a portion of the site multiple times with different view geometries through several sets of 

offset parallel lines acquired in varied directions. Information about the specifics of the BRDF flight plan 

can be found in RD[09]. The repeated coverage allows multiple CHMs to be created on the same spatial 

grid, one from each overlapping flight line. The uncertainty in the CHM can then be determined by 

analyzing the variability of each individual overlapping grid cell. The area with the highest amount of 

overlap in each of the BRDF flights resulted in 18 and 20 samples for the SJER and SOAP BRDF flights 

respectively (Figure 5). CHMs were created from each individual flight line using the NEON algorithm 

(Figure 4). A rectangular clip area which contained the majority of overlap between the lines was 

created and used to clip each flight line. It was noted in processing that interpolation was occurring 

along the irregularly shaped line edges. Interpolated areas along the line edges will bias estimates of 

the CHM variability because these areas will appear to be ground points, but are truly areas with no 

legitimate data. To eliminate this issue, the edge of each flight line was decreased by 5 m, eliminating 

all interpolated areas. The standard deviation was then determined for each cell as an estimate of the 

uncertainty (Figure 6).       

http://www.neonscience.org/science-design/spatiotemporal-design
http://www.neonscience.org/science-design/spatiotemporal-design
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At SOAP, 95% of cells resulted in a standard deviation which was below ±10.5 m, and at SJER 95% of cells 

were below ±3.2 m (Figure 7). As the flight acquisition parameters were constant between the two BRDF 

flights, differences in uncertainty are likely due to the differences in vegetation structure / density and 

reflectance at each site. SJER is dominated by blue oaks, while SOAP is dominated by ponderosa pine 

and oak. The canopy height is generally higher at SOAP with 99% of the CHM cells below ~43 m, while at 

SJER 99% of the CHM cells are below ~18 m. The highest levels of uncertainty occur in SJER at the edge 

of tree crowns, while the uncertainty is generally lower within tree crowns (Figure 7). Uncertainty at 

crown edges could be a result of a mis-registration in the individual CHM rasters. However, the 

planimetric accuracy of the overlapping lines were checked and did not reveal identifiable horizontal 

shifts. The uncertainty at the crown edges is likely a consequence of the wide beam divergence mode, 

which can allow a return to be triggered from anywhere within the beam envelope (Goulden & 

Hopkinson, 2010). Some of the BRDF lines would result in beams that initiated first contact at the edge 

of the canopy with the outermost portion of the beam, systematically shifting the crown outward to the 

location of the beam center. If on a subsequent line the beam made first contact with the tree crown 

with the beam center within the tree crown, the crown would not be extended outward, and the 

adjacent cell would be considered a ground pixel. Therefore, edge of canopy pixels could result in 

ground cells in one line, while being canopy cells in subsequent lines, resulting in a large standard 

deviation at crown edges. Cells on the interior of the tree will rarely be considered ground cells due to 

the pit-filling algorithm, which eliminates this issue.  As the canopy is relatively open at SJER compared 

to SOAP, the edge effect is regularly observed and the majority of cells with a high standard deviation (> 

1.35 m) were observed at crown edges (Figure 7). At SOAP, the uncertainty appears to be highest on 

trees which are isolated within stands of several shorter trees. The high uncertainty in these regions of 

Figure 5. Left: coverage of BRDF flight at SOAP. Right: coverage of BRDF flight at SJER. 
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SOAP could be related to the different view geometries of the BRDF lines. If the scanner makes contact 

with the tall isolated tree at the higher angle of incidence, it is possible that the pulses intercept lower 

portions of the canopy and trigger a first return well below the apex, a phenomenon identified in 

Næsset et al. (2004). This appears plausible given the shape of Ponderosa pine, which have narrow 

conical crowns. This small experiment displays the levels and patterns of spatial uncertainty that can 

exist between two sites given the NEON acquisition parameters and processing techniques. Additional 

research is required to further characterize uncertainty at other NEON sites.  

 

 

Figure 6. Left: sample of uncertainty of CHM at SOAP. Right: sample of uncertainty of CHM at SJER. 
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Figure 7.  Top: histogram of cell by cell standard deviation of the CHM at SOAP. Bottom: histogram of cell by cell 
standard deviation of the CHM at SJER. 
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7 VALIDATION AND VERIFICATION 

To validate the CHM product ground truth measurements are required in the form of measured tree 

heights. NEON will measure tree heights at selected plots for the cross-section of vegetation types at 

each site (RD[11]). Ground-truth tree height measurements are obtained with an inclinometer for all 

trees within pre-defined plot limits. The position of the trees are obtained from compass bearings and 

measured distances referenced to a plot center location established with differential GPS. At the time 

of writing, only the SJER and SOAP (D17) sites had ground height data available for comparison. 

Unfortunately, the accuracy of the GPS positions of the plot center locations at SOAP was poor due to 

the density and height of the surrounding vegetation which blocked the GPS signals. Therefore, a direct 

comparison of ground truth measurements against the CHM was not possible. Therefore, the 

verification of the CHM will be performed with only data from SJER. As additional data becomes 

available in the future, validation and verification of the CHM product will be expanded. 

Ground truth canopy height measurements were available from 17 plots at SJER, and comprised 362 

ground height measurements. Several of the measurements were obtained from dead trees or snags, 

which were removed from the analysis. As the analysis proceeded, it was found that a large number of 

the results showed LiDAR heights which were much larger than the measured heights. Investigation 

revealed that these often existed in areas where smaller trees existed beneath the canopy of larger 

trees. As the CHM provides a representation of only the top layer of the canopy, it is unable to 

represent these cases. The ground truth height data also included measurements of tree crown 

diameter, which allowed the validation data to be assessed for measurements of trees that fell within 

the canopy radius of nearby trees, and were shorter. Any measured trees determined to be below the 

upper canopy layer were removed from the analysis. The GPS measurements of the plot center 

locations were known to have an uncertainty of approximately 2 -3 m. Given that the maximum point 

for any given tree was measured on the ground, ground measured heights were compared against the 

maximum height from the CHM within a 3 m radius surrounding each measured tree location. The 

comparison resulted in two outlying points, both of which were traced to smaller trees located on the 

edge of the crown of a large nearby tree. It is believed that either the crown diameter of the taller 

nearby tree wasn’t accurately measured,  preventing earlier removal based on the crown diameter, or 

the 3 m search radius instituted due to the GPS uncertainty included part of the taller tree crown. As a 

result, the two outlying points were removed for generation of final results.  

Theoretically, the relationship between the ground measured heights should produce a linear 

regression with slope equal to 1 and intercept equal to zero since the same quantities (tree height) are 

being measured by different instruments. After the appropriate points had been removed as explained 

above, 46 remained for determining a least- squares linear regression. The resulting regression 

produced a line with a slope of 1.013 and an intercept of -0.493 (Figure 8), with no obvious trend 

evident in the residuals (Figure 9), and an RMSE of 0.69 m. The high correspondence between the slope 

of the least-squares regression and the theoretical ideal model (1.013 vs. 1) indicates that the CHM 

model derived from the LiDAR has a high relative accuracy. The 95% confidence interval of the slope 
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parameter is ±0.045, indicating that the theoretical value of 1 is also within the confidence limit. The 

intercept of the regression is slightly low at -0.493 indicting that the LiDAR derived canopy height model 

is below the ideal value of zero, and the CHM is generally underestimated. The observed 

underestimation is consistent with existing reported validation efforts of LiDAR derived tree height 

(discussed in Section 6). The correspondence of the NEON results with previous results indicates the 

CHMs produced are reasonable approximations given the technological constraints of the airborne 

LiDAR sensor and processing techniques. 

 

Figure 8. Linear regression of ground measured canopy heights vs. the LiDAR derived CHM at SJER. 
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Figure 9. Vertical residuals of ground measured tree height vs. LiDAR derived CHM linear regression model at SJER. 
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8 FUTURE PLANS AND MODIFICATIONS 

Currently, the primary focus of future modifications will be on improving the selection of the 

rasterization threshold during the canopy height model creation. As discussed in Section 4.2, this is 

currently set to 3 m, and was based on the current average point density and testing on a limited 

number of sites. Testing will be on-going to assess if it is possible to dynamically select this value to 

minimize interpolation over legitimate canopy gaps while also adequately filling unwanted data pits. 

Additionally, the CHM product is currently distributed in only geoTIFF format and future versions may 

also be provided in a NEON-specific HDF5 (Hierarchical Data Format v5) format. In addition to the 

changes to the algorithm and product format, validation and verification will be on-going as field data 

from the NEON sites become available. Once results from additional validation and verification studies 

are available, changes in processing will be undertaken if it is revealed there are opportunities to 

improve accuracy. 
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