

TOS SITE CHARACTERIZATION REPORT: DOMAIN 016

PREPARED BY	ORGANIZATION	DATE
Rachel Krauss	SCI	03/12/2018
Courtney Meier	SCI	03/08/2018
Michael Patterson	SCI	06/03/2016
APPROVALS	ORGANIZATION	APPROVAL DATE
Kate Thibault	SCI	04/24/2018
Mike Stewart	SYS	04/23/2018
RELEASED BY	ORGANIZATION	RELEASE DATE
Judy Salazar	СМ	05/01/2018

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	NEON Doc. #: NEON.DOC.003899 Author: R.Krauss	

CHANGE RECORD

REVISION	DATE	ECO#	DESCRIPTION OF CHANGE
А	05/01/2018	ECO-05563	Initial Release

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

TABLE OF CONTENTS

1	DES	CRIPTION 1
	1.1	Purpose
	1.2	Scope
-		
2		ATED DOCUMENTS AND ACRONYMS
	2.1	Applicable Documents
	2.2	Reference Documents 1
	2.3	Acronyms
3	DON	AAIN 16 OVERVIEW: PACIFIC NORTHWEST DOMAIN 3
4	COR	E SITE- WIND RIVER EXPERIMENTAL FOREST (WREF) 4
	4.1	TOS Spatial Sampling Design
	4.2	Sampling Season Characterization: WREF
	4.3	Belowground Biomass
		4.3.1 Site-Specific Methods
		4.3.2 Results
	4.4	Plant Characterization and Phenology Species Selection
		4.4.1 Site-Specific Methods
		4.4.2 Results
	4.5	Beetles
	4.5	4.5.1 Site-Specific Methods
	4.6	Mosquitoes
	4.0	4.6.1 Site-Specific Methods
	4.7	Ticks
	ч.7	4.7.1 Site-Specific Methods
	4.8	Species Reference Lists
	4.0	
5	RELC	DCATABLE SITE 1- ABBY ROAD (ABBY)20
	5.1	TOS Spatial Sampling Design
	5.2	Sampling Season Characterization: ABBY
	5.3	Belowground Biomass
		5.3.1 Site-Specific Methods
		5.3.2 Results
	5.4	Plant Characterization and Phenology Species Selection
		5.4.1 Site-Specific Methods
		5.4.2 Results
	5.5	Beetles
		5.5.1 Site-Specific Methods
		5.5.2 Results
	5.6	Mosquitoes
	-	5.6.1 Site-Specific Methods
		5.6.2 Results
		J.O.Z INCOURS

6

7

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

	PENDIX A: DATA PRODUCT NUMBERS	30
E	FRENCES	36
5	Species Reference Lists	. 35
	5.7.1 Site-Specific Methods	. 35
5	Ticks	. 35

LIST OF TABLES AND FIGURES

Table 1	NLCD land cover classes and area within the TOS site boundary at WREF	8
Table 2	NLCD land cover classes and TOS plot numbers at WREF.	8
Table 3	Number of Distributed Base Plots per NLCD land cover class per protocol at WREF	8
Table 4	Number of Tower Plots per protocol at WREF	9
Table 5	Average MODIS-EVI greenness dates for the NEON WREF site, based on data from 2003-	
2013	(DOY, with MM/DD in parentheses)	10
Table 6	Soil Pit Information at WREF.	11
Table 7	Fine root mass per depth increment (cm) at WREF.	11
Table 8	Cumulative fine root mass as a function of depth (cm) at WREF.	12
Table 9	Fine root biomass sampling summary data at WREF.	13
Table 10	Site plant characterization and phenology species summary at WREF	14
Table 11	Per plot breakdown of species richness, diversity, and herbaceous cover at WREF	17
Table 12	NLCD land cover classes and area within the TOS site boundary at ABBY.	23
Table 13	NLCD land cover classes and TOS plot numbers at ABBY.	24
Table 14	Number of Distributed Base plots per NLCD land cover class per protocol at ABBY.	24
Table 15	Number of Tower Plots per protocol at ABBY.	26
Table 16	Average MODIS-EVI greenness dates for the NEON ABBY site, based on data from 2003-2013	
(DOY	', with MM/DD in parentheses).	27
Table 17	Soil Pit Information at ABBY.	28
Table 18	Fine root mass per depth increment (cm) at ABBY.	28
Table 19	Cumulative fine root mass as a function of depth (cm) at ABBY.	29
Table 20	Fine root biomass sampling summary data at ABBY	30
Table 21	Site plant characterization and phenology species summary at ABBY	31
Table 22	Per plot breakdown of species richness, diversity, and herbaceous cover at ABBY	34
Table 23	Beetle identification results at ABBY.	35
Table 24	Mosquito identification results at ABBY	35
Table 25	NEON data product names and descriptions.	36
Figure 1	NEON project map with Domain 16 highlighted in red	3
Figure 2	Site boundaries within Domain 16	4
Figure 3	Phenocamera image for WREF. The phenocamera is located at the top	
of th	e NEON tower and faces north. Phenocamera images are available at	
https	s://phenocam.sr.unh.edu/webcam/network/table/	5

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Figure 4	Map of TOS plot centroids within the NEON TOS sampling boundary at WREF	6
Figure 5	Map of the tower airshed and TOS plot centroids at WREF.	7
Figure 6	MODIS-EVI greenness (y-axis = EVI ratio) as a function of time (x-axis = DOY) for the years	
2003-	2013 at the NEON WREF site	10
Figure 7	Cumulative root mass by pit depth at WREF	13
Figure 8	Phenocamera image for ABBY. The phenocamera is located at the top	
of the	NEON tower and faces north. Phenocamera images are available at	
https:,	//phenocam.sr.unh.edu/webcam/network/table/	20
Figure 9	Map of TOS plot centroids within the NEON TOS sampling boundary at ABBY	22
Figure 10	Map of the tower airshed and TOS plot centroids at ABBY	23
Figure 11	MODIS-EVI greenness (y-axis = EVI ratio) as a function of time (x-axis = DOY) for the years	
2003-	2013 at the NEON ABBY site.	27
Figure 12	Cumulative root mass by pit depth at ABBY.	30

1 DESCRIPTION

1.1 Purpose

Domain and site-specific information collected and described here is used to inform the execution of protocols for the NEON Terrestrial Observation System (TOS), and complements the official NEON TOS data products generated from each site. In addition, the TOS spatial layout and plot allocation is described for each site within the domain.

1.2 Scope

This document includes any site specific characterization methods and the results of characterization efforts for each of the two sites in the Pacific Northwest domain. For more information about the sampling methods, reference the TOS Site Characterization Methods Document (RD[06]). The geographic coordinates for all TOS sampling locations can be found in the Reference Documents area of the NEON Data Portal and are provided with TOS data product downloads.

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

Applicable documents contain information that shall be applied in the current document. Examples are higher level requirements documents, standards, rules and regulations.

AD[01]	NEON.DOC.004300	EHSS Policy, Program, and Management Plan
AD[02]	NEON.DOC.050005	Field Operations Job Instruction Training Plan
AD[03]	NEON.DOC.000909	TOS Science Design for Ground Beetle Abundance and Diversity
AD[04]	NEON.DOC.000910	TOS Science Design for Mosquito Abundance, Diversity and Phenology
AD[05]	NEON.DOC.000912	TOS Science Design for Plant Diversity
AD[06]	NEON.DOC.000915	TOS Science Design for Small Mammal Abundance and Diversity
AD[07]	NEON.DOC.000914	TOS Science Design for Plant Biomass, Productivity, and Leaf Area Index
AD[08]	NEON.DOC.000001	NEON Observatory Design

2.2 Reference Documents

Reference documents contain information complementing, explaining, detailing, or otherwise supporting the information included in the current document.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

RD[01]	NEON.DOC.000008	NEON Acronym List
RD[02]	NEON.DOC.000243	NEON Glossary of Terms
RD[03]	NEON.DOC.000913	TOS Science Design for Spatial Sampling
RD[04]	NEON.DOC.011066	TIS Site Characterization Report
RD[05]	NEON.DOC.001856	AIS Site Characterization Report
RD[06]	NEON.DOC.003885	TOS Site Characterization Methods
RD[07]	NEON.DOC.000481	TOS Protocol and Procedure: Small Mammal Sampling
RD[08]	NEON.DOC.014041	TOS Protocol and Procedure: Breeding Landbird Abundance and Diversity
RD[09]	NEON.DOC.014042	TOS Protocol and Procedure: Plant Diversity Sampling
RD[10]	NEON.DOC.000987	TOS Protocol and Procedure: Measurement of Vegetation Structure
RD[11]	NEON.DOC.014040	TOS Protocol and Procedure: Plant Phenology
RD[12]	NEON.DOC.001709	TOS Protocol and Procedure: Bryophyte Productivity
RD[13]	NEON.DOC.001574	TOS Protocol and Procedure: Measurement of Herbaceous Biomass

2.3 Acronyms

Acronym	Definition
BOLD	Barcode of Life Datasystems
NLCD	National Land Cover Database

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

3 DOMAIN 16 OVERVIEW: PACIFIC NORTHWEST DOMAIN

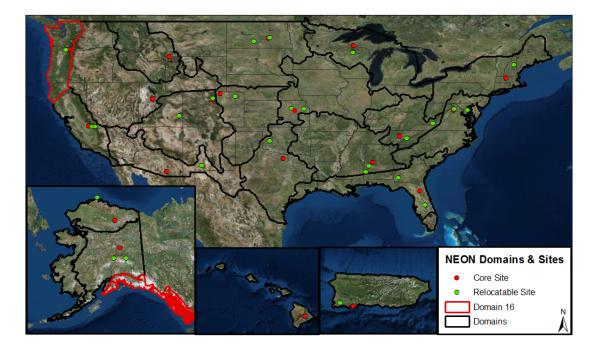


Figure 1: NEON project map with Domain 16 highlighted in red.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

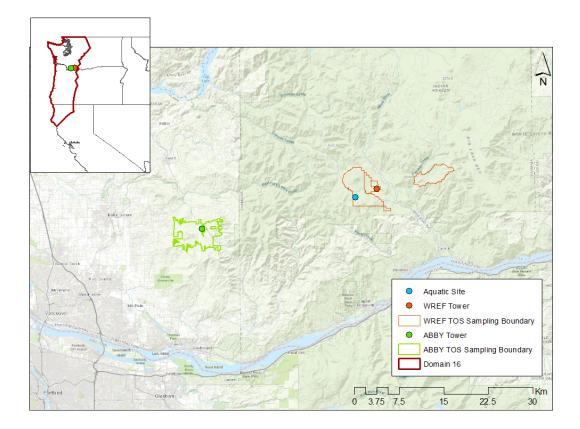


Figure 2: Site boundaries within Domain 16.

The Northwest Domain is a patchwork of forest stands in a dynamic system driven by forest management and wildfires. The two NEON terrestrial sites are located north of the Columbia River Gorge where average precipitation can exceed 2,500 mm annually. Winters tend to be cool and wet while summers are generally warm and dry.

- States included in the domain: Washington, Oregon, California, Alaska
- Core site: Wind River Experimental Forest
- Relocatable 1: ABBY Road
- Science themes: Forest Management

4 CORE SITE- WIND RIVER EXPERIMENTAL FOREST (WREF)

Located 60 km northeast of Vancouver, WA, the Wind River Experimental Forest is within the south central area of the Gifford Pinchot National Forest. While best known for its old growth Douglas fir (*Pseudotsuga menziesii*) and western hemlock (*Tsuga heterophylla*) stands, the forest is a mosaic of tree ages due to management practices and wildfire history. Also known as the cradle of forestry in the Pacific Northwest, the Wind River Experimental Forest has a long history of ecology and silviculture studies.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

NEON.D16.WREF.DP1.00033 - NetCam SC IR - Sat Mar 10 2018 22:15:06 UTC Camera Temperature: 37.0 Exposure: 48

Figure 3: Phenocamera image for WREF. The phenocamera is located at the top of the NEON tower and faces north. Phenocamera images are available at https://phenocam.sr.unh.edu/webcam/network/table/.

Key Characteristics:

- Site host: U.S. Forest Service
- Located in: Skamania County, Washington
- Area: 41.93 km²
- Elevation: 290- 1010m
- Dominant vegetation type: Often more than 450 years old, older stands in Wind River Experimental Forest are dominated by Douglas fir (*Pseudotsuga menziesii*), western hemlock (*Tsuga heterophylla*), and Pacific silver fir (*Abies amabilis*). Canopy species throughout the rest of forest include grand fir (*A.grandis*), noble fir (*A. procera*), Pacific dogwood (*Cornus nuttallii*), Western Red Cedar (*Thuja plicata*), and red alder (*Alnus rubra*). The understory includes vine maple (*Acer circinatum*), salal (*Gaultheria shallon*), and Oregon grape (*Mahonia aquifolium*) (Wind River Experimental Forest, 2016).
- General management: Formally established in 1932, the Wind River Experimental Forest's research history began in the early 1900s and the forest has become the central area for studying Douglas fir forest dynamics (Wind River Experimental Forest, 2016). In particular, the Wind River Research Natural Area (RNA) and the Wind River Canopy crane support long term ecological and silvicultural studies within the old growth forest. The U.S. Forest Service also manages the land for recreational and logging activities.

- The NEON aquatic site Martha Creek is located in adjacent U.S. Forest service property. See the AIS site characterization report for more details (RD[05]).
- Plot Selection: NEON TOS Plots were allocated across the site following NEON standard criteria and avoiding existing research. Due to increased hiking times at this site, plot allocation was constrained to areas near roads and hiking trails.

4.1 TOS Spatial Sampling Design

TOS Distributed Plots were allocated at WREF according to a spatially balanced and stratified-random design (RD[3]). The 2006 National Land Cover Database (NLCD) was selected for stratification because of the consistent and comparable data availability across the United States. TOS Tower Plots were allocated according to a spatially balanced design in and around the NEON tower airshed (RD[03]). The maps below depict the plot locations for the first year of NEON sampling. Some plot locations may change over time due to logistics, safety, and science requirements. Please visit the NEON website (http://www.neonscience.org) for updated plot locations at each site.

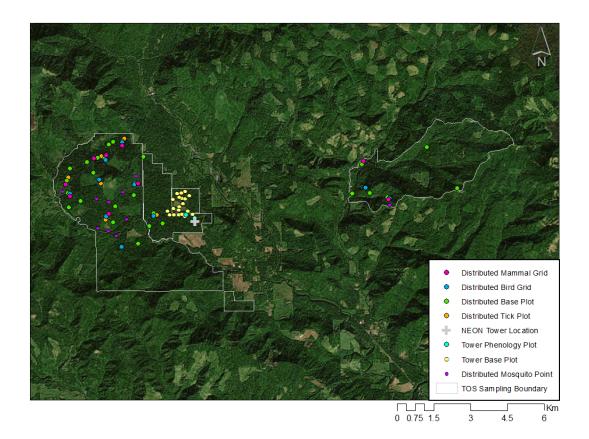


Figure 4: Map of TOS plot centroids within the NEON TOS sampling boundary at WREF.

Note: The boundary lines indicate different management units within Gifford Pinchot National Forest. For a list of

[Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
	NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

protocols associated with each plot see tables below; for additional spatial design information see RD[03].

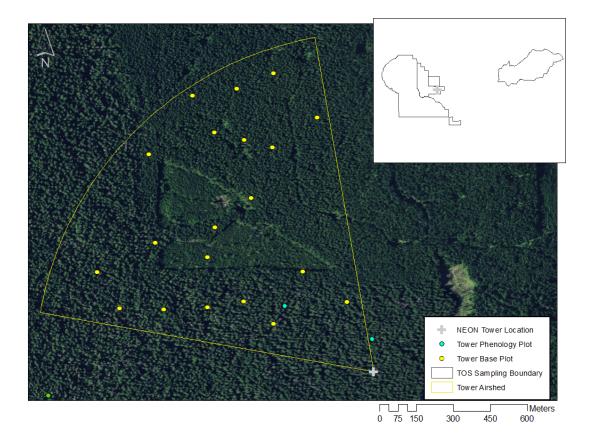


Figure 5: Map of the tower airshed and TOS plot centroids at WREF.

More information about the tower airshed can be found in the FIU site characterization report (RD[04]).

Table 1: NLCD land cover classes and area within the TOS site boundary at W	RFF.
able 1. HEOD fand cover classes and area within the root site boundary at th	

NLCD Class	Site Area (km ²)	Percent (%)
Evergreen Forest	38.01	93.17
Developed Open Space	1.09	2.67
Shrub Scrub	0.86	2.12
Developed Low Intensity	0.6	1.48
Woody Wetlands	0.1	0.23
Mixed Forest	0.07	0.17
Grassland Herbaceous	0.03	0.08
Deciduous Forest	0.02	0.05
Emergent Herbaceous Wetlands	0.01	0.03

Note: Any NLCD land cover classes less than 5% will not be sampled. Additionally, no sampling will take place in Water, Developed, or Barren Land NLCD classes.

Plot Type	Plot Subtype	NLCD Class	Number of Plots Established
Distributed	Base Plot	Evergreen Forest	30
Distributed	Bird Grid	Evergreen Forest	10
Distributed	Mammal Grid	Evergreen Forest	8
Distributed	Mosquito Point	Evergreen Forest	10
Distributed	Tick Plot	Evergreen Forest	6
Tower	Base Plot	NA	20
Tower	Phenology Plot	NA	2

Table 2: NLCD land cover classes and TOS plot numbers at WREF.

Note: NLCD land cover classes are not used to stratify Tower Plots which are located in and around the NEON tower airshed. The dominant NLCD land cover type within the airshed is evergreen forest.

Table 3: Number of Distributed Base Plots per NLCD land cover class per protocol at WREF.

Plot Type	Plot Subtype	NLCD Class	Protocols	Number of Plots
Distributed	Base Plot	Evergreen Forest	Beetles	10
Distributed	Base Plot	Evergreen Forest	Canopy Foliage Chemistry	10
Distributed	Base Plot	Evergreen Forest	Coarse Downed Wood	20
Distributed	Base Plot	Evergreen Forest	Digital Hemispherical	20
			Photos for Leaf Area Index	

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018	
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A	

Plot Type	Plot Subtype	NLCD Class	Protocols	Number of Plots
Distributed	Base Plot	Evergreen Forest	Herbaceous Biomass	20
Distributed	Base Plot	Evergreen Forest	Plant Diversity	30
Distributed	Base Plot	Evergreen Forest	Soil Biogeochemistry	6
Distributed	Base Plot	Evergreen Forest	Soil Microbes	6
Distributed	Base Plot	Evergreen Forest	Vegetation Structure	20

Note: Distributed Base Plots typically support more than one TOS protocol; 'Number of Plots' cannot be added to get total TOS Distributed Base Plot number.

Plot Type	Plot Subtype	Protocols	Number of Plots
Tower	Base Plot	Below Ground Biomass Coring	20
Tower	Base Plot	Canopy Foliage Chemistry	4
Tower	Base Plot	Coarse Downed Wood	20
Tower	Base Plot	Digital Hemispherical Photos for Leaf Area Index	3
Tower	Base Plot	Herbaceous Biomass	20
Tower	Base Plot	Litterfall and Fine Woody Debris	20
Tower	Base Plot	Plant Diversity	3
Tower	Base Plot	Soil Biogeochemistry	4
Tower	Base Plot	Soil Microbes	4
Tower	Base Plot	Vegetation Structure	20
Tower	Phenology	Plant Phenology	2

Table 4: Number of Tower Plots per protocol at WREF.

Note: Tower Base Plots typically support more than one TOS protocol; 'Number of Plots' cannot be added to get the total TOS Tower Base Plot number.

4.2 Sampling Season Characterization: WREF

For numerous TOS protocols, the length of the sampling season, the number of bouts, and when those bouts occur is dictated by the seasonal status of the plant community. By monitoring 'greenness' on a 16 day interval, the MODIS/Terra EVI phenology product provides consistent, reliable insight into plant community phenology and intensity at the continental scale. For those protocols for which timing is standardized by greenness transitions and/or peak green status, NEON has utilized these data as the primary means of guiding temporal aspects of TOS sampling at each site.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

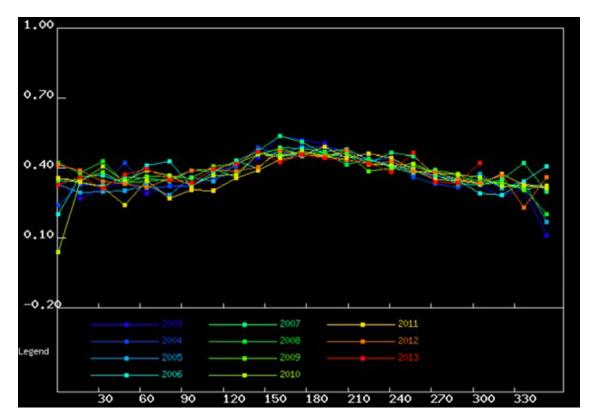


Figure 6: MODIS-EVI greenness (y-axis = EVI ratio) as a function of time (x-axis = DOY) for the years 2003-2013 at the NEON WREF site.

Table 5: Average MODIS-EVI greenness dates for the NEON WREF site, based on data from 2003-2013 (DOY, with MM/DD in parentheses).

Average Increase	Average Maximum	Average Decrease	Average Minimum
115	165	210	290
(04/26)	(06/15)	(07/30)	(10/18)

MODIS Product Details

- Product: MODIS-EVI phenology product, 16 day interval, 250 m grid, data included from all pixels with acceptable quality within user-defined square that roughly overlaps the TOS site boundary.
- Date range: 2003-2013
- User selected area: 28.25 km x 28.25 km box, centroid lat: 45.820946,, centroid long: -121.95253 (WGS84 datum)

4.3 Belowground Biomass

4.3.1 Site-Specific Methods

Belowground biomass characterization data were collected down to a depth of 200 cm by NEON staff in September 2017. Since the NEON protocol for long-term, operational sampling of belowground biomass only collects data to a depth of 30 cm, the belowground biomass site characterization data are critical for scaling belowground biomass measurements to greater depths; see the TOS Science Design for Plant Biomass, Productivity, and Leaf Area Index (AD[7]) for more information. Samples were collected following the standard methods outlined in TOS Site Characterization Methods (RD[6]). Roots were sorted to two diameter size categories ($\leq 2 \text{ mm}$ and 2-30 mm) and by root status (live or dead). The tables below summarize all the belowground biomass less than or equal to 30 mm diameter; size class data and more information can be found by searching the NEON data portal for the data product numbers in Appendix A.

4.3.2 Results

Table 6: Soil Pit Information at WREF.

Latitude	Longitude	Soil Family	Soil Order
45.81637	-121.95838	Medial - amorphic - mesic Typic Hapludands	Andisol

Soil Profile was described by Natural Resource Conservation Service (NRCS).

Upper Depth	Lower Depth	Mean (mg per cm^3)	Std Dev
0	10	41.8	40.69
10	20	6.37	3.63
20	30	2.41	1.88
30	40	1.77	1.58
40	50	2.67	1.93
50	60	6.54	3.91
60	70	1.64	0.34
70	80	4.98	1.85
80	90	2.13	1.14
90	100	1.47	1.8
100	120	0.77	0.6
120	140	0.9	1.45
140	160	0.58	0.69

Table 7: Fine root mass per depth increment (cm) at WREF.

Upper Depth	Lower Depth	Mean (mg per cm^3)	Std Dev
160	180	0.43	0.63
180	200	0.07	0.07

Table 8: Cumulative fine root mass as a function of depth (cm) at WREF.

Upper Depth	Lower Depth	Mean Cumulative (g per m 2)	Cumulative Std Dev
0	10	4179.8	4068.71
10	20	4817.03	3883.49
20	30	5058.3	4062.39
30	40	5235.73	4202.83
40	50	5502.3	4062.88
50	60	6155.9	3924.57
60	70	6319.57	3893.97
70	80	6817.43	3731.44
80	90	7030.77	3763.24
90	100	7178.07	3943.09
100	120	7331.53	3858.81
120	140	7511.43	3738.05
140	160	7626.93	3653.26
160	180	7712.67	3610.09
180	200	7726.67	3603.03

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

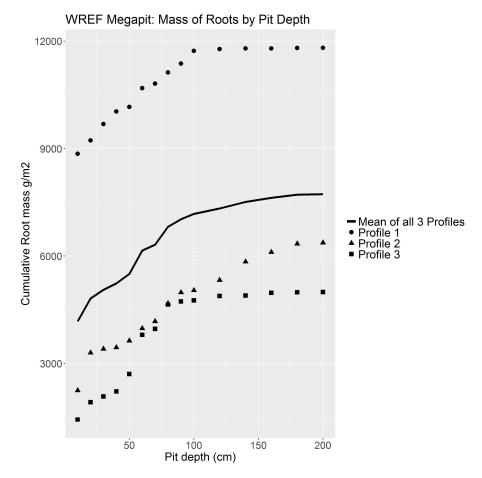


Figure 7: Cumulative root mass by pit depth at WREF.

Table 9: Fine root biomass sampling summary data at WREF.

Total Pit Depth (cm)	200
Total Mean Cumulative Mass at 30cm (g per m^2)	5058.3
Total Mean Cumulative Mass at 100cm (g per m ²)	7178.07
Total Mean Cumulative Mass (g per m ²)	7726.67

4.4 Plant Characterization and Phenology Species Selection

4.4.1 Site-Specific Methods

Plant characterization data were collected by NEON staff. Plant diversity data were collected in July of 2016 and vegetation structure data were collected in October of 2017. Plant characterization data inform sampling procedures for plant phenology and plant productivity protocols.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	NEON Doc. #: NEON.DOC.003899 Author: R.Krauss	

The overall ranking ("Rank" in the table below) was calculated based on three separate measurements. Overall ranking weights are influenced by the number of species within each grouping.

- 1. Mean percent cover values were calculated based on species specific cover estimation for all plant species under 3m tall in eight 1m by 1m subplots per plot; see the TOS Protocol and Procedure: Plant Diversity Sampling (RD[09]) for more information.
- 2. Mean canopy area values were calculated based on all species specific shrub canopy diameter measurements within the entire plot or subplot; see the TOS Protocol and Procedure: Measurement of Vegetation Structure (RD[10]) for more information.
- 3. Mean ABH (area at breast height) measurements were calculated based on diameter at breast height measurements for all woody vegetation with a diameter greater than 1cm at 130cm height within the entire plot or subplot; see the TOS Protocol and Procedure: Measurement of Vegetation Structure (RD[10]) for more information.

The standard field methods and ranking calculations are further outlined in TOS Site Characterization Methods (RD[6]). For more information on this protocol and data product numbers see Appendix A.

4.4.2 Results

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
GASH	Gaultheria shallon Pursh	1	<1	0.02	<1
PSMEM	Pseudotsuga menziesii (Mirb.) Franco var. menziesii	3	<1	<1	<1
TSHE	Tsuga heterophylla (Raf.) Sarg.	4	<1	<1	<1
MANE2	<i>Mahonia nervosa</i> (Pursh) Nutt.	5	<1	<1	<1
VAPA	Vaccinium parvifolium Sm.	6	<1	0.01	<1
ACTR	Achlys triphylla (Sm.) DC.	7	<1	<1	<1
PTAQ	Pteridium aquilinum (L.) Kuhn	8	<1	<1	<1
ABAM	Abies amabilis (Douglas ex Loudon) Douglas ex Forbes	9	<1	<1	<1
сосос	<i>Corylus cornuta</i> Marshall var. <i>californica</i> (A. DC.) Sharp	10	<1	<1	<1

Table 10: Site plant characterization and phenology species summary at WREF.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
THPL	<i>Thuja plicata</i> Donn ex D. Don	11	<1	<1	<1
ACCI	Acer circinatum Pursh	12	<1	<1	<1
LIBOL2	<i>Linnaea borealis</i> L. ssp. <i>longiflora</i> (Torr.) Hultén	13	<1	<1	<1
TABR2	Taxus brevifolia Nutt.	14	<1	<1	<1
VAOV	Vaccinium ovalifolium Sm.	15	<1	<1	<1
CLUN2	<i>Clintonia uniflora</i> (Menzies ex Schult. & Schult. f.) Kunth	16	<1	<1	<1
ABGR	Abies grandis (Douglas ex D. Don) Lindl.	17	<1	<1	<1
GAHU	Gaultheria humifusa (Graham) Rydb.	18	<1	<1	<1
ARCO3	Arctostaphylos columbiana Piper	19	<1	<1	<1
RUUR	Rubus ursinus Cham. & Schltdl.	20	<1	<1	<1
SYAL	Symphoricarpos albus (L.) S.F. Blake	21	<1	<1	<1
VIOLA	<i>Viola</i> sp.	22	<1	<1	<1
TRBOL	<i>Trientalis borealis</i> Raf. ssp. <i>latifolia</i> (Hook.) Hultén	23	<1	<1	<1
ANEMO	Anemone sp.	24	<1	<1	<1
VAME	Vaccinium membranaceum Douglas ex Torr.	25	<1	<1	<1
TROV2	Trillium ovatum Pursh	26	<1	<1	<1
VAHE	<i>Vancouveria hexandra</i> (Hook.) C. Morren & Decne.	27	<1	<1	<1
POMU	Polystichum munitum (Kaulf.) C. Presl	28	<1	<1	<1
BLSP	Blechnum spicant (L.) Sm.	29	<1	<1	<1
MAST4	Maianthemum stellatum (L.) Link	30	<1	<1	<1
ROGY	Rosa gymnocarpa Nutt.	31	<1	<1	<1

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
PIMO3	Pinus monticola Douglas ex D. Don	32	<1	<1	<1
CASC7	Campanula scouleri Hook. ex A. DC.	33	<1	<1	<1
FRVE	Fragaria vesca L.	34	<1	<1	<1
HISC2	Hieracium scouleri Hook.	34	<1	<1	<1
ADBI	Adenocaulon bicolor Hook.	36	<1	<1	<1
APAN2	Apocynum androsaemifolium L.	37	<1	<1	<1
HIAL2	Hieracium albiflorum Hook.	38	<1	<1	<1
XETE	<i>Xerophyllum tenax</i> (Pursh) Nutt.	38	<1	<1	<1
CHME	<i>Chimaphila menziesii</i> (R. Br. ex D. Don) Spreng.	40	<1	<1	<1
CONU4	<i>Cornus nuttallii</i> Audubon ex Torr. & A. Gray	41	<1	<1	<1
FRPU7	Frangula purshiana (DC.) A. Gray	42	<1	<1	<1
AMAL2	Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem.	43	<1	<1	<1
TITRU	<i>Tiarella trifoliata</i> L. var. <i>unifoliata</i> (Hook.) Kurtz	43	<1	<1	<1
2PLANT	Unknown plant	45	<1	<1	<1
CHUM	<i>Chimaphila umbellata</i> (L.) W.P.C. Barton	45	<1	<1	<1
ACMA3	Acer macrophyllum Pursh	47	<1	<1	<1
CLSI2	Claytonia sibirica L.	47	<1	<1	<1
COMA25	Corallorhiza maculata (Raf.) Raf.	47	<1	<1	<1
POACEA	Poaceae sp.	47	<1	<1	<1
STREP3	Streptopus sp.	47	<1	<1	<1
COST19	Corallorhiza striata Lindl.	52	<1	<1	<1
FEOC	Festuca occidentalis Hook.	52	<1	<1	<1

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm 2 per m 2)
GATR2	Galium trifidum L.	52	<1	<1	<1
GLST	<i>Glyceria striata</i> (Lam.) Hitchc.	52	<1	<1	<1
GOOB2	Goodyera oblongifolia Raf.	52	<1	<1	<1
PRHO2	Prosartes hookeri Torr.	52	<1	<1	<1
PINACE	Pinaceae sp.	59	<1	<1	<1

Note:Taxon IDs and scientific names are based on the USDA Plants database (plants.usda.gov). Rank 2 was omitted because it is a non-qualifying record. GASH (*Gaultheria shallon*) and MANE2 (*Mahonia nervosa*) to a lesser degree, are most likely over-represented in the dataset due clonal architecture and the difficultly of determining single individuals without destructive sampling (Huffman, 1994). STREP3 is most likely *Streptopus amplexifolius* (STAM2) but could also include *S. lanceolatus* var. *curvipes* (STLAC) which occurs in the area but often at higher elevations.

Plot ID	Species Richness	Shannon Diversity Index	Percent Total Herbaceous Cover	Bryophyte Percent Cover
WREF_070	20	2.14	98	32.06
WREF_071	21	1.74	94	47.44
WREF_073	13	1.95	57	14.75
WREF_074	19	2.09	93	32.88
WREF_075	15	2.03	50	6.69
WREF_076	15	1.71	78	41.25
WREF_077	14	1.61	123	45.44
WREF_078	23	1.86	197	44.62
WREF_079	11	1.61	83	35.62
WREF_080	25	2.34	193	1.25
WREF_081	12	1.5	45	25.62
WREF_082	21	2.24	168	34.5
WREF_083	15	1.41	87	56.12
WREF_084	22	2.43	98	2.89
WREF_085	19	1.84	136	30.38
WREF_086	16	1.9	74	23.25
WREF_087	12	1.34	56	32.25

Table 11: Per plot breakdown of species richness, diversity, and herbaceous cover at WREF.

Plot ID	Species Richness	Shannon Diversity Index	Percent Total Herbaceous Cover	Bryophyte Percent Cover
WREF_088	18	2.19	53	12.25
WREF_089	12	1.84	53	17.25
Bryophyte Mean				28.24

Note: Percent herbaceous cover was measured by species and then added together to calculate the percent total herbaceous cover for each plot. At WREF annual growth in moss species is easily identified and will be clipped as part of the TOS Protocol and Procedure: Measurement of Herbaceous Biomass (RD[13]).

4.5 Beetles

4.5.1 Site-Specific Methods

No beetle site characterization sampling was conducted at WREF. For more information on this protocol and data product numbers see Appendix A.

4.6 Mosquitoes

4.6.1 Site-Specific Methods

No mosquito site characterization sampling was conducted at WREF. For more information on this protocol and data product numbers see Appendix A.

4.7 Ticks

4.7.1 Site-Specific Methods

No tick site characterization sampling was conducted at WREF. For more information on this protocol and data product numbers see Appendix A.

4.8 Species Reference Lists

A review of the literature for taxonomic lists of interest for each site was conducted prior to field work. In the case of vertebrates that NEON may capture (e.g., reptiles, amphibians, small mammals), these lists were often required to secure permits. Key references identified in this effort are listed below. Species lists and associated references for small mammals and breeding landbirds can be found in the appendices of the respective protocols (RD[07], RD[08]).

- Bousquet, Y. 2012. Catalogue of Geadephaga (Coleoptera, Adephaga) of America, north of Mexico. ZooKeys, (245), 1-1722.
- Bury, R.B. and Corn, P.S., 1988. Douglas-fir forests in the Oregon and Washington Cascades: relation of the herpetofauna to stand age and moisture (No. General Technical Report RM-166, pp. 11-22). US Department of Agriculture, Forest Service.
- Centers for Disease Control and Prevention. (2015). *Geographic distribution of ticks that bite humans*. Retrieved from http://www.cdc.gov/ticks/geographic_distribution.html
- Darsie Jr., R. F., and R. A. Ward. 2005. Identification and geographical distribution of the mosquitoes of North America, North of Mexico. University Press of Florida, Gainesville.
- Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C. and Bible, K., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155(1), pp.399-423.
- Lattin, J.D., 1993. Arthropod diversity and conservation in old-growth northwest forests. American Zoologist, 33(6), pp.578-587.
- Washington State Species of Concern Lists. n.d. Washington Department of Fish and Wildlife. Retrieved from: http://wdfw.wa.gov/conservation/endangered/All/.
- Shaw, D.C., Franklin, J.F., Bible, K., Klopatek, J., Freeman, E., Greene, S. and Parker, G.G., 2004. Ecological setting of the Wind River old-growth forest. Ecosystems, 7(5), pp.427-439.
- Washington State Species of Concern Lists. n.d. Washington Department of Fish and Wildlife. Retrived from: http: //wdfw.wa.gov/conservation/endangered/All/.
- Wind River Experimental Forest, 2016. US Forest Service Pacific Northwest Research Station. Retrived from:https: //www.fs.fed.us/pnw/exforests/wind-river/index.shtml

5 RELOCATABLE SITE 1- ABBY ROAD (ABBY)

Located approximately 30 kilometers northeast of Vancouver, WA the TOS sampling site is a conglomerate of parcels managed by the Washington Department of Natural Resources (WDNR) and is typical of WDNR land in the area. Different parcels have logging years that range from 1940-2016 allowing for the opportunity to collect NEON data on a dynamically managed forest landscape.

Figure 8: Phenocamera image for ABBY. The phenocamera is located at the top of the NEON tower and faces north. Phenocamera images are available at https://phenocam.sr.unh.edu/webcam/network/table/.

Key Characteristics:

- Site host: Washington Department of Natural Resources
- Located in: Clark County, Washington
- Area: 29.86 km²
- Elevation: 285- 715m
- Dominant vegetation type: Douglas fir (*Pseudotsuga menziesii*) and western hemlock (*Tsuga heterophylla*) dominate the upper canopy in older stands, with pockets of red alder (*Alnus rubra*) in mixed forest zones. In recently logged areas, western red cedar (*Thuja plicata*) grows between the planted Douglas fir. The understory varies with succession, short stature vine maple (*Acer cercinatum*) is often found in recently

logged parcels while salmonberry (*Rubus spectabilis*) is more common in shrubby habitats. Salal (*Gaulthe-ria shallon*) and Cascara buckthorn (*Frangula purshiana*) are found throughout ABBY.

- General management: The NEON TOS ABBY site is within the Pacific Cascade region of the WDNR. This regional office manages over 480,000 acres (2000 km²) of state forest for timber production and recreational activities (DNR Regions and Districts, 2017).
- Plot Selection: NEON TOS Plots were allocated across the site following NEON standard criteria and avoiding existing research. Areas where active logging was scheduled during plot establishment were avoided for safety and logistical concerns (roughly 15% of the site).

5.1 TOS Spatial Sampling Design

TOS Distributed Plots were allocated at ABBY according to a spatially balanced and stratified-random design (RD[3]). The 2011 National Land Cover Database (NLCD) was selected for stratification because of the consistent and comparable data availability across the United States. Due to active logging and seeding that takes place within the NEON TOS sampling boundary a combination of NLCD map and logging years were used to create a vegetation map for stratification. For older stands (1940-2000) the 2011 NLCD map was used to determine NLCD classification, in particular to distinguish areas of evergreen forest, mixed forest, and deciduous forest. For parcels that had been logged after 2000 a combination of logging year and field validation was used to assign a NLCD classification. TOS Tower Plots were allocated according to a spatially balanced design in and around the NEON tower airshed (RD[03]). The maps below depict the plot locations for the first year of NEON sampling. Some plot locations may change over time due to logistics, safety, and science requirements. Please visit the NEON website (http://www.neonscience.org) for updated plot locations at each site.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

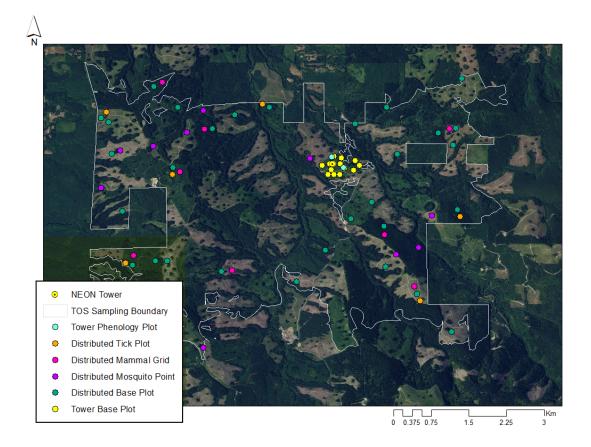


Figure 9: Map of TOS plot centroids within the NEON TOS sampling boundary at ABBY.

For a list of protocols associated with each plot see tables below; for additional spatial design information see RD[03].

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

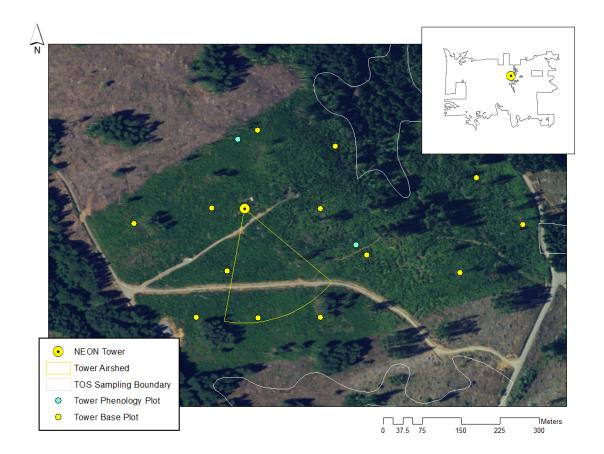


Figure 10: Map of the tower airshed and TOS plot centroids at ABBY.

More information about the tower airshed can be found in the FIU site characterization report (RD[04]).

NLCD Class	Site Area (km 2)	Percent (%)
Evergreen Forest	15.17	50.5
Grassland Herbaceous	5.99	19.93
Shrub Scrub	5.74	19.11
Mixed Forest	2.03	6.76
Woody Wetlands	0.95	3.16
Deciduous Forest	0.15	0.49
Emergent Herbaceuous Wetlands	0.01	0.04

Table 12: NLCD land cover classes and area within the TOS site boundary at ABBY.

Note: Any NLCD land cover classes less than 5% will not be sampled. See the "TOS Spatial Sampling Design" section for more information about how the NLCD map was used at ABBY.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Table 13: NLCD land cover classes and TOS plot numbers at ABE	3Y.
Tuble 15. NEED fund cover clusses and 105 plot numbers at Abl	

Plot Type	Plot Subtype	NLCD Class	Number of Plots Established
Distributed	Base Plot	Evergreen Forest	11
Distributed	Base Plot	Grassland Herbaceous	7
Distributed	Base Plot	Mixed Forest	5
Distributed	Base Plot	Shrub Scrub	7
Distributed	Mammal Grid	Evergreen Forest	3
Distributed	Mammal Grid	Grassland Herbaceous	1
Distributed	Mammal Grid	Mixed Forest	1
Distributed	Mammal Grid	Shrub Scrub	1
Distributed	Mosquito Point	Evergreen Forest	5
Distributed	Mosquito Point	Grassland Herbaceous	2
Distributed	Mosquito Point	Mixed Forest	1
Distributed	Mosquito Point	Shrub Scrub	2
Distributed	Tick Plot	Evergreen Forest	3
Distributed	Tick Plot	Grassland Herbaceous	1
Distributed	Tick Plot	Mixed Forest	1
Distributed	Tick Plot	Shrub Scrub	1
Tower	Base Plot	NA	13
Tower	Phenology Plot	NA	2

Note: NLCD land cover classes are not used to stratify Tower Plots which are located in and around the NEON tower airshed. The dominant NLCD land cover types within the airshed include: evergreen forest, grassland herbaceous, and shrub scrub. The logging year for the NEON tower parcel was 2006.

Table 14: Number of Distributed Base plots per NLCD land cover class per protocol at ABBY.

Plot Type	Plot Subtype	NLCD Class	Protocols	Number of Plots
Distributed	Base Plot	Evergreen Forest	Beetles	5
Distributed	Base Plot	Grassland Herbaceous	Beetles	2
Distributed	Base Plot	Mixed Forest	Beetles	1
Distributed	Base Plot	Shrub Scrub	Beetles	2
Distributed	Base Plot	Evergreen Forest	Birds	11
Distributed	Base Plot	Grassland Herbaceous	Birds	4
Distributed	Base Plot	Mixed Forest	Birds	1
Distributed	Base Plot	Shrub Scrub	Birds	4

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018	
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A	

Plot Type	Plot Subtype	NLCD Class	Protocols	Number of Plots
Distributed	Base Plot	Evergreen Forest	Canopy Foliage Chemistry	5
Distributed	Base Plot	Grassland Herbaceous	Canopy Foliage Chemistry	2
Distributed	Base Plot	Mixed Forest	Canopy Foliage Chemistry	1
Distributed	Base Plot	Shrub Scrub	Canopy Foliage Chemistry	2
Distributed	Base Plot	Evergreen Forest	Coarse Downed Wood	10
Distributed	Base Plot	Grassland Herbaceous	Coarse Downed Wood	4
Distributed	Base Plot	Mixed Forest	Coarse Downed Wood	2
Distributed	Base Plot	Shrub Scrub	Coarse Downed Wood	4
Distributed	Base Plot	Evergreen Forest	Digital Hemispherical Photos for Leaf Area Index	10
Distributed	Base Plot	Grassland Herbaceous	Digital Hemispherical Photos for Leaf Area Index	4
Distributed	Base Plot	Mixed Forest	Digital Hemispherical Photos for Leaf Area Index	2
Distributed	Base Plot	Shrub Scrub	Digital Hemispherical Photos for Leaf Area Index	4
Distributed	Base Plot	Evergreen Forest	Herbaceous Biomass	10
Distributed	Base Plot	Grassland Herbaceous	Herbaceous Biomass	4
Distributed	Base Plot	Mixed Forest	Herbaceous Biomass	2
Distributed	Base Plot	Shrub Scrub	Herbaceous Biomass	4
Distributed	Base Plot	Evergreen Forest	Plant Diversity	11
Distributed	Base Plot	Grassland Herbaceous	Plant Diversity	7
Distributed	Base Plot	Mixed Forest	Plant Diversity	5
Distributed	Base Plot	Shrub Scrub	Plant Diversity	7
Distributed	Base Plot	Evergreen Forest	Soil Biogeochemistry	3
Distributed	Base Plot	Grassland Herbaceous	Soil Biogeochemistry	1
Distributed	Base Plot	Mixed Forest	Soil Biogeochemistry	1
Distributed	Base Plot	Shrub Scrub	Soil Biogeochemistry	1
Distributed	Base Plot	Evergreen Forest	Soil Microbes	3
Distributed	Base Plot	Grassland Herbaceous	Soil Microbes	1
Distributed	Base Plot	Mixed Forest	Soil Microbes	1
Distributed	Base Plot	Shrub Scrub	Soil Microbes	1
Distributed	Base Plot	Evergreen Forest	Vegetation Structure	10
Distributed	Base Plot	Grassland Herbaceous	Vegetation Structure	4
Distributed	Base Plot	Mixed Forest	Vegetation Structure	2

Plot Type	Plot Subtype	NLCD Class	Protocols	Number of Plots
Distributed	Base Plot	Shrub Scrub	Vegetation Structure	4

Note: Distributed Base Plots typically support more than one TOS protocol; 'Number of Plots' cannot be added to get total TOS Distributed Base Plot number.

Plot Type	Plot Subtype	Protocols	Number of Plots
Tower	Base Plot	Below Ground Biomass Coring	13
Tower	Base Plot	Canopy Foliage Chemistry	4
Tower	Base Plot	Coarse Downed Wood	13
Tower	Base Plot	Digital Hemispherical Photos for Leaf Area Index	3
Tower	Base Plot	Herbaceous Biomass	13
Tower	Base Plot	Litterfall and Fine Woody Debris	13
Tower	Base Plot	Plant Diversity	3
Tower	Base Plot	Soil Biogeochemistry	4
Tower	Base Plot	Soil Microbes	4
Tower	Base Plot	Vegetation Structure	13
Tower	Phenology	Plant Phenology	2

Table 15: Number of Tower Plots per protocol at ABBY.

Note: Tower Base Plots typically support more than one TOS protocol; 'Number of Plots' cannot be added to get total TOS Tower Base Plot number.

5.2 Sampling Season Characterization: ABBY

For numerous TOS protocols, the length of the sampling season, the number of bouts, and when those bouts occur is dictated by the seasonal status of the plant community. By monitoring 'greenness' on a 16 day interval, the MODIS/Terra EVI phenology product provides consistent, reliable insight into plant community phenology and intensity at the continental scale. For those protocols for which timing is standardized by greenness transitions and/or peak green status, NEON has utilized these data as the primary means of guiding temporal aspects of TOS sampling at each site.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

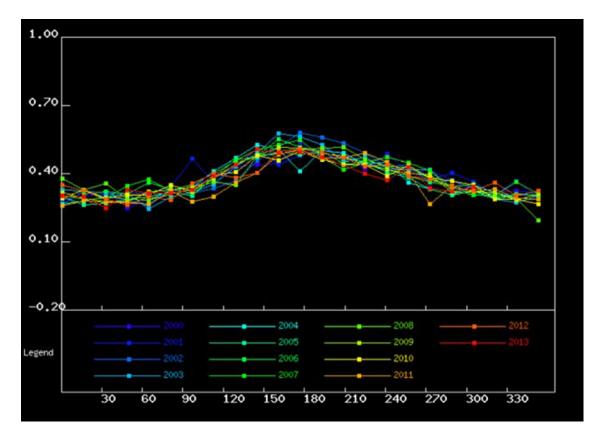


Figure 11: MODIS-EVI greenness (y-axis = EVI ratio) as a function of time (x-axis = DOY) for the years 2003-2013 at the NEON ABBY site.

Table 16: Average MODIS-EVI greenness dates for the NEON ABBY site, based on data from 2003-2013 (DOY, with MM/DD in parentheses).

Average Increase	Average Maximum	Average Decrease	Average Minimum
110	165	205	300
(04/21)	(06/15)	(07/25)	(10/28)

MODIS Product Details

- Product: MODIS-EVI phenology product, 16 day interval, 250 m grid, data included from all pixels with acceptable quality within user-defined square that roughly overlaps the TOS site boundary.
- Date range: 2003-2013
- User selected area: 16.25 km x 16.25 km box, centroid lat: 45.762662, centroid long: -122.33057 (WGS84 datum)

5.3 Belowground Biomass

5.3.1 Site-Specific Methods

Belowground biomass characterization data were collected down to a depth of 200 cm by NEON staff in June 2015. Since the NEON protocol for long-term, operational sampling of belowground biomass only collects data to a depth of 30 cm, the belowground biomass site characterization data are critical for scaling belowground biomass measurements to greater depths; see the TOS Science Design for Plant Biomass, Productivity, and Leaf Area Index (AD[7]) for more information. Samples were collected following the standard methods outlined in TOS Site Characterization Methods (RD[6]). Roots were sorted to two diameter size categories (≤ 4 mm and 4-30 mm) and by root status (live or dead). The tables below summarize all the belowground biomass less than or equal to 30 mm diameter; size class data and more information can be found by searching the NEON data portal for the data product numbers in Appendix A.

5.3.2 Results

Table 17: Soil Pit Information at ABBY.	
---	--

Latitude	Longitude	Soil Family	Soil Order
45.7623783	-122.3296716	Fine-lomay - isotic - mesic - Andic Humudepts	Inceptisol

Soil Profile was described by Natural Resource Conservation Service (NRCS).

Upper Depth	Lower Depth	Mean (mg per cm^3)	Std Dev
0	10	12.66	6.29
10	20	4.69	1.15
20	30	5.54	2.8
30	40	4.95	2.97
40	50	1.38	0.68
50	60	2.8	2.28
60	70	1.34	0.19
70	80	0.56	0.27
80	90	0.45	0.22
90	100	0.4	0.15
100	120	0.22	0.05
120	140	0.12	0.05
140	160	0.01	0.01

Table 18: Fine root mass per depth increment (cm) at ABBY.

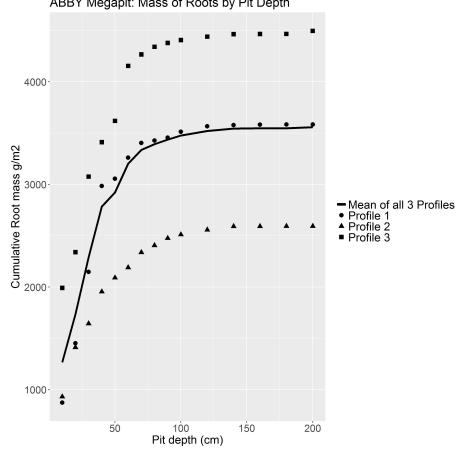

Upper Depth	Lower Depth	Mean (mg per cm^3)	Std Dev
160	180	0	0
180	200	0.05	0.09

Table 19: Cumulative fine root mass as a function of depth (cm) at ABBY.

Upper Depth	Lower Depth	Mean Cumulative (g per m 2)	Cumulative Std Dev
0	10	1265.76	628.7
10	20	1734.9	524.03
20	30	2289.15	726.09
30	40	2783.96	748.95
40	50	2921.68	773.03
50	60	3202.17	983.51
60	70	3336.09	966.25
70	80	3391.66	967.86
80	90	3436.79	951.21
90	100	3477.06	948.24
100	120	3521.18	941.88
120	140	3544.7	936.69
140	160	3546.93	937.32
160	180	3547.88	937.06
180	200	3557.78	951.66

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

ABBY Megapit: Mass of Roots by Pit Depth

Figure 12: Cumulative root mass by pit depth at ABBY.

Table 20: Fine root biomass sampling summary data at ABBY.

Total Pit Depth (cm)	200
Total Mean Cumulative Mass at 30cm (g per m^2)	2289.15
Total Mean Cumulative Mass at 100cm (g per m ²)	3477.06
Total Mean Cumulative Mass (g per m ²)	3557.78

Plant Characterization and Phenology Species Selection 5.4

5.4.1 Site-Specific Methods

Plant characterization data were collected by NEON staff during July of 2015. Plant characterization data inform sampling procedures for plant phenology and plant productivity protocols.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

The overall ranking ("Rank" in the table below) was calculated based on three separate measurements. Overall ranking weights are influenced by the number of species within each grouping.

- Mean percent cover values were calculated based on species specific cover estimation for all plant species under 3m tall in eight 1m by 1m subplots per plot; see the TOS Protocol and Procedure: Plant Diversity Sampling (RD[09]) for more information.
- 2. Mean canopy area values were calculated based on all species specific shrub canopy diameter measurements within the entire plot or subplot; see the TOS Protocol and Procedure: Measurement of Vegetation Structure (RD[10]) for more information.
- 3. Mean ABH (area at breast height) measurements were calculated based on diameter at breast height measurements for all woody vegetation with a diameter greater than 1cm at 130cm height within the entire plot or subplot; see the TOS Protocol and Procedure: Measurement of Vegetation Structure (RD[10]) for more information.

The standard field methods and ranking calculations are further outlined in TOS Site Characterization Methods (RD[6]). For more information on this protocol and data product numbers see Appendix A. .

5.4.2 Results

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
GASH	Gaultheris shallon Pursh.	1	19	0.09	NA
PSMEM	Pseudotsuga menziesii (Mirb.) Franco var. menziesii	2	2	0.02	4.55
PTAQ	<i>Pteridium aquilinum</i> (L.) Kuhn	3	26	NA	NA
COCOC	<i>Corylus cornuta</i> Marshall var. <i>californica</i> (A. DC.) Sharp	4	<1	0.02	<1
ACCI	Acer circinatum Pursh	5	<1	0.02	<1
RUUR	Rubus ursinus Cham. & Schltdl.	6	4	NA	NA
FRPU7	Frangula purshiana (DC.) A. Gray	7	<1	0.01	0.01
POMU	Polystichum munitum (Kaulf.) C. Presl	8	2	NA	NA
THMO6	Thermopsis montana Nutt.	9	1	NA	NA

Table 21: Site plant characterization and phenology species summary at ABBY.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018	
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A	

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
HODI	Holodiscus discolor (Pursh) Maxim.	10	<1	<1	NA
LOAB	<i>Lotus aboriginus Jeps.</i> Lotus aboriginus Jeps.	11	<1	NA	NA
RUSP	Rubus spectabilis Pursh	12	<1	<1	NA
CHAN9	Chamerion angustifolium (L.) Holub	13	<1	NA	NA
ALRU2	Alnus rubra Bong.	14	<1	<1	0.01
HYRA3	Hypochaeris radicata L.	15	<1	NA	NA
SARA2	Sambucus racemosa L. Sambucus racemosa L.	16	<1	<1	NA
VAPA	Vaccinium parvifolium Sm.	17	<1	<1	NA
IRTE	<i>Iris tenax Douglas</i> ex Lindl.	18	<1	NA	NA
HIERA	Hieracium sp.	19	<1	NA	NA
POACEA	Poaceae sp.	20	<1	NA	NA
VEOF2	<i>Veronica officinalis L.</i> Veronica officinalis L.	21	<1	NA	NA
MYMU	<i>Mycelis muralis</i> (L.) Dumort.	22	<1	NA	NA
ANMA	Anaphalis margaritacea (L.) Benth.	23	<1	NA	NA
GATR3	Galium aparine L.	24	<1	NA	NA
НҮРЕ	Hypericum perforatum L. Hypericum perforatum L.	25	<1	NA	NA
THPL	<i>Thuja plicata</i> Donn ex D. Don	26	<1	<1	<1
LEVU	Leucanthemum vulgare Lam.	27	<1	NA	NA
DIPU	Digitalis purpurea L.	28	<1	NA	NA
POACEA	Poaceae sp.	29	<1	NA	NA
CAREX	Carex sp.	30	<1	NA	NA
LUZUL	<i>Luzula</i> sp.	31	<1	NA	NA
MANE2	<i>Mahonia nervosa</i> (Pursh) Nutt.	32	<1	<1	NA

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018	
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A	

Taxon ID	Scientific Name	Rank	Mean Percent Cover	Mean Canopy Area (m ² per m ²)	Mean ABH (cm ² per m ²)
SPDOD	Spiraea douglasii Hook. var. douglasii	33	NA	<1	NA
CIVU	Cirsium vulgare (Savi) Ten.	34	<1	NA	NA
TRBO2	<i>Trientalis borealis Raf.</i> Trientalis borealis Raf.	34	<1	NA	NA
VIOLA	<i>Viola</i> sp.	34	<1	NA	NA
CASC7	Campanula scouleri Hook. ex A. DC.	37	<1	NA	NA
2PLANT	Unknown plant	38	<1	NA	NA
EPCI	Epilobium ciliatum Raf.	38	<1	NA	NA
STCA	Stellaria calycantha (Ledeb.) Bong.	38	<1	NA	NA
PREM	Prunus emarginata (Douglas ex Hook.) D. Dietr.	42	<1	NA	<1
RUPA	Rubus parviflorus Nutt.	43	NA	<1	NA
TROV2	<i>Trillium ovatum Pursh</i> Trillium ovatum Pursh	44	<1	NA	NA
TSHE	Tsuga heterophylla (Raf.) Sarg.	44	<1	NA	NA
CLSI2	<i>Claytonia sibirica L.</i> Claytonia sibirica L.	46	<1	NA	NA
FRVI	<i>Fragaria virginiana</i> Duchesne	46	<1	NA	NA
BLSP	Blechnum spicant (L.) Sm.	48	<1	NA	NA
CIVU	Cirsium vulgare (Savi) Ten.	48	<1	NA	NA
DIFO	Dicentra formosa (Haw.) Walp.	48	<1	NA	NA
RULE	<i>Rubus leucodermis</i> Douglas ex Torr. & A. Gray	51	NA	<1	NA
CIAR4	Cirsium arvense (L.) Scop.	52	<1	NA	NA
EPMI	<i>Epilobium minutum</i> Lindl. ex Lehm.	52	<1	NA	NA
LILIU	Lilium sp.	52	<1	NA	NA
RULA	Rubus laciniatus Willd.	52	<1	NA	NA
SENEC	Senecio sp.	52	<1	NA	NA

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Note: Taxon IDs and scientific names are based on the USDA Plants database (plants.usda.gov). HEIRA is likely *Hieracium albiflorum* or *H. scouleri*. SPDO is likely *Spiraea douglasii* Hook. var. *douglasii*. SENEC is likely *Senecio sylvaticus* or *S. jacobaea*. GASH (*Gaultheria shallon*) and MANE2 (*Mahonia nervosa*) to a lesser degree, are most likely over-represented in the dataset due clonal architecture and the difficultly of determining single individuals without destructive sampling (Huffman, 1994).

Plot ID	Species Richness	Shannon Diversity Index	Percent Total Herbaceous Cover
ABBY_061	13	1.25	64
ABBY_062	36	2.77	112
ABBY_063	32	2.09	127
ABBY_064	33	2.71	107
ABBY_065	24	2.05	102
ABBY_066	21	1.89	76
ABBY_067	22	1.64	98
ABBY_068	25	2.06	76
ABBY_069	25	2.19	158
ABBY_070	26	2.13	135

Table 22: Per plot breakdown of species richness, diversity, and herbaceous cover at ABBY.

Note: Percent herbaceous cover was measured by species and then added together to calculate the percent total herbaceous cover for each plot.

Site characterization measurements are used to determine which sites will implement the Bryophyte Productivity Protocol. The protocol will occur at sites where bryophyte cover, for which annual growth is not distinguishable, is 20% or greater averaged across all sampled plots. See TOS Protocol and Procedure: Bryophyte Productivity (RD[12]) for more information. There was no bryophyte cover to record at ABBY.

5.5 Beetles

5.5.1 Site-Specific Methods

Beetle site characterization was conducted in August 2014 by NEON staff following the standard methods outlined in TOS Site Characterization Methods (RD[6]). Beetle site characterization data were collected to start site level teaching collections. For more information on this protocol and data product numbers see Appendix A.

5.5.2 Results

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Table 23: Beetle identification results at ABBY.

Sample ID	Scientific Name	Sex
NEON8263	Nebria brevicollis	Female

5.6 Mosquitoes

5.6.1 Site-Specific Methods

Mosquito site characterization was conducted in August 2014 by NEON staff following the standard methods outlined in TOS Site Characterization Methods (RD[6]) to test protocol methods and start site level species lists. No pathogen testing was performed. Samples were pooled before identification. For more information on this protocol and data product numbers see Appendix A.

5.6.2 Results

Table 24: Mosquito identification results at ABBY.

Sample ID	Scientific Name	Sex	Count
ABBY.27August2014.SC.1	Culex pipiens	Female	8
ABBY.27August2014.SC.1	Culex tarsalis	Female	1
ABBY.27August2014.SC.1	Culiseta incidens	Female	1

5.7 Ticks

5.7.1 Site-Specific Methods

Tick drags were conducted at ABBY in August of 2012 to test protocol methods and calculate capture rates. No ticks were collected during site characterization sampling. For more information on this protocol and data product numbers see Appendix A.

5.8 Species Reference Lists

A review of the literature for taxonomic lists of interest for each site was conducted prior to field work. In the case of vertebrates that NEON may capture (e.g., reptiles, amphibians, small mammals), these lists were often required to secure permits. Key references identified in this effort are listed below. Species lists and associated references for small mammals and breeding landbirds can be found in the appendices of the respective protocols (RD[07], RD[08]). For statewide references see the WREF Species Reference List section.

Bousquet, Y. 2012. Catalogue of Geadephaga (Coleoptera, Adephaga) of America, north of Mexico. ZooKeys, (245), 1-1722.

- Centers for Disease Control and Prevention. (2015). *Geographic distribution of ticks that bite humans*. Retrieved from http://www.cdc.gov/ticks/geographic_distribution.html
- Darsie Jr., R. F., and R. A. Ward. 2005. Identification and geographical distribution of the mosquitoes of North America, North of Mexico. University Press of Florida, Gainesville.
- DNR Regions and Districts. 2017. Washington State Department of Natural Resources. Retrieved from: https://www.dnr.wa.gov/about/dnr-regions-and-districts

6 **REFERENCES**

- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J., 2011. Completion of the 2006 National Land Cover Database for the Conterminous United States, *PE&RS*, Vol. 77(9):858-864.
- Huffman, D. W., Tappeiner, J.C, and Zasada, J. 1994. Regeneration of salal (*Gaultheria shallon*) in the central Coast Range forests of Oregon.Canadian Journal of Botany. 72:39-51. https://doi.org/10.1139/b94-006
- USDA, NRCS. 2016. The PLANTS Database (http://plants.usda.gov, 1 August 2016). National Plant Data Team, Greensboro, NC 27401-4901 USA.

7 APPENDIX A: DATA PRODUCT NUMBERS

For more information on the sampling protocols and the latest observatory data visit http://data.neonscience. org/data-product-catalog and search by name or code number.

Name	Description	Identification Code
Root sampling (megapit)	Fine root biomass in 10cm increments (first 1m depth) and 20cm increments (from 1m to 2m depth) from soil pit sampling	NEON.DOM.SITE.DP1.10066
Soil physical properties (Megapit)	Soil taxonomy, horizon names, horizon depths, as well as soil bulk density, porosity, texture (sand, silt, and clay content) in the <= 2 mm soil fraction for each soil horizon. Data were derived from a sampling location expected to be representative of the area where the Instrumented Soil Plots per site are located and were collected once during site construction. Also see distributed soil data products.	NEON.DOM.SITE.DP1.00096

Table 25: NEON data product names and descriptions.

Title: TOS Site Characterization Report: Domain 016		Date: 05/01/2018
NEON Doc. #: NEON.DOC.003899	Author: R.Krauss	Revision: A

Name	Description	Identification Code
Soil chemical properties (Megapit)	Total content of a range of chemical elements, pH, and electrical conductivity in the <= 2 mm soil fraction for each soil horizon. Data were derived from a sampling location expected to be representative of the area where the Instrumented Soil Plots per site are located and were collected once during site construction. Also see distributed soil data products.	NEON.DOM.SITE.DP1.00097
Woody plant vegetation structure	Structure measurements, including height, canopy diameter, and stem diameter, as well as mapped position of individual woody plants	NEON.DOM.SITE.DP1.10098
Plant presence and percent cover	Plant species presence as observed in multi-scale plots: species and associated percent cover at 1-m2 and plant species presence at 10-m2, 100-m2 and 400-m2	NEON.DOM.SITE.DP1.10058
Plant phenology observations	Phenophase status and intensity of tagged plants	NEON.DOM.SITE.DP1.10055
Plant foliar stable isotopes	Field collection metadata describing the sampling of sun-lit canopy foliar tissues for stable isotope compositions. Also includes raw data returned from the laboratory.	NEON.DOM.SITE.DP1.10053
Plant foliar physical and chemical properties	Plant sun-lit canopy foliar physical (e.g., leaf mass per area) and chemical properties reported at the level of the individual.	NEON.DOM.SITE.DP1.10026
Non-herbaceous perennial vegetation structure	Field measurements of individual non-herbaceous perennial plants (e.g. cacti, ferns)	NEON.DOM.SITE.DP1.10045
Ground beetles sampled from pitfall traps	Taxonomically identified ground beetles and the plots and times from which they were collected.	NEON.DOM.SITE.DP1.10022
Ground beetle sequences DNA barcode	CO1 DNA sequences from select ground beetles	NEON.DOM.SITE.DP1.10020
Mosquitoes sampled from CO2traps	Taxonomically identified mosquitoes and the plots and times from which they were collected	NEON.DOM.SITE.DP1.10043
Mosquito-borne pathogen status	Presence/absence of a pathogen in a single mosquito sample (pool)	NEON.DOM.SITE.DP1.10041
Mosquito sequences DNA barcode	CO1 DNA sequences from select mosquitoes	NEON.DOM.SITE.DP1.10038
Ticks sampled using drag cloths	Abundance and density of ticks collected by drag and/or flag sampling (by species and/or lifestage)	NEON.DOM.SITE.DP1.10093
Tick-borne pathogen status	Presence/absence of a pathogen in each single tick sample	NEON.DOM.SITE.DP1.10092