

**United States Department of Agriculture** 

# NEON Site-Level Plot Summary Yellowstone (YELL)

## **Document Information**

**Date** 4/18/2019

#### Author

Chris Fabian, MLRA Soil Survey Leader, Fort Collins, CO

### Site Background

The National Environmental Observation Network (NEON) Yellowstone (YELL) site consists of rugged hills and small mountains between ranges of higher mountains (Figure 1). Elevations range between 2,275 meters (7,464 feet) to the south of Mount Everts to approximately 1,735 meters (5,692 feet), where the Yellowstone River exits the site area.

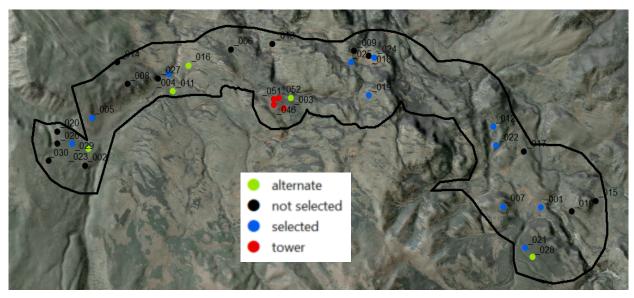
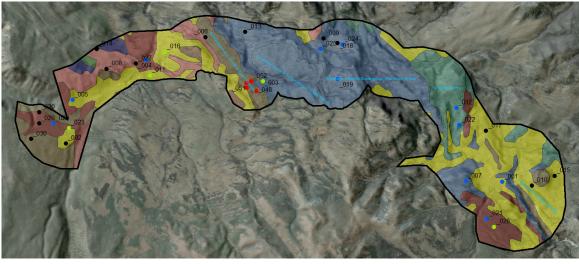


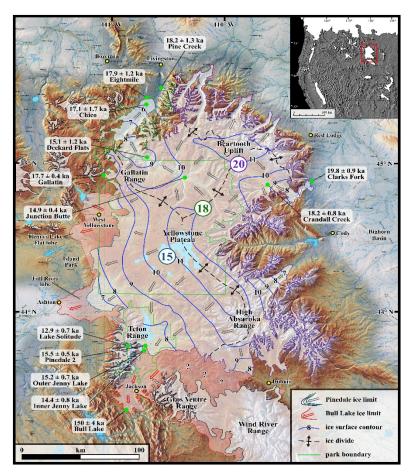

Figure 1. YELL site area (black line) and NEON plots overlaying an aerial image and hillshade. NEON plots are represented by colored dots as indicated in map legend. Colors indicate whether a plot was selected for sampling, selected as an alternate for sampling, not selected, or located within the NEON tower airshed.


# **Site Information**

#### Bedrock geology, surficial geology, landforms and parent materials

Geology of the YELL site area is principally volcanic formations (Figure 2). The largest coverage occurs within the Tertiary Age Absaroka Volcanic Super-group, Pleistocene Age basalts, rhyolites and intrusive rocks and Pleistocene Age surficial deposits. There are also small areas of Mesozoic sedimentary rocks and Precambrian granitic gneisses.

The YELL site was subject to the Bull Lake and Pinedale Glaciations (Figure 3). However, the more recent Pinedale glaciation completely covered the older Bull Lake glaciation at the YELL NEON site. The Wyoming surficial geology map (Figure 4) primarily describes the YELL sample plots as occurring on glacial deposits and glaciated bedrock areas, with smaller areas of outwash, colluvium, slope wash (slope alluvium) and landslides.


Provisional soils information (Table 1) describes most of the YELL site area landforms as moraines, with smaller areas of glacial-valley walls, glacial valley floors, outwash terraces, outwash fans, kame terraces and escarpments. Parent materials are described as mixed glacial till, till over residuum, outwash, colluvium and outwash.



- Absaroka Tertiary Volcanic
- Limestone
- Mesozoic Sedimentary
- Mesozoic Tuffaceus Sandstone
- Pleistcene Basalt/Intrusive
- Pleistocene Ryolite/Tuff/Intrusive
- Pleistocene Surficial
- Precambian Granitic Gneiss
- Tertiary Ryolite Tuff

Figure 2. YELL site area and plots overlayed with the Wyoming state-wide geology map. Some similar rock units were combined for the analysis and presentation (Love et al. 1979).

Figure 3. Extent of the Bull Lake and Pinedale glaciations of the Greater Yellowstone Glacial System (GYGS). NEON site is to the west and northwest of Junction Butte. Surface contours on the maximum extent of Pinedale ice are in thousands of feet. Pinedale ice margin line colors correspond with estimates for maximum ages around the periphery of the GYGS: purple – early Pinedale  $(\sim 22-18 \text{ ka})$ ; green – middle Pinedale (~18–16 ka); blue – late Pinedale ( $\sim$ 16–13 ka). Circles enclosing ages in ka schematically depict southwest migration of the center of ice mass through time. Dashed lines indicate uncertain or approximate ice limits (source: Licciardi and Pierce, 2018).



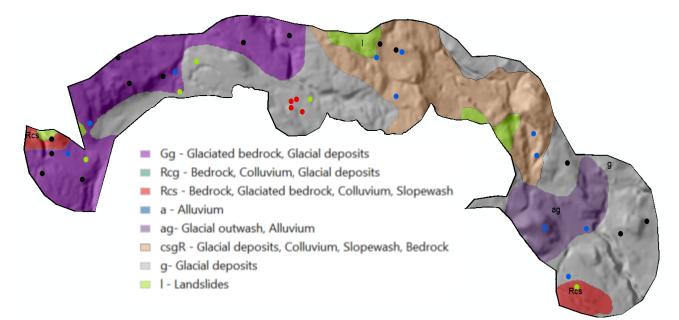



Figure 4. The eight surficial geology units found on the YELL NEON site (Case et. al 1998). Colored dots as in Figure 1.

| MU   | Component              | Classe    | 1                                                | Dominant Slope<br>Shape | Deve et Madaviala                                                       |
|------|------------------------|-----------|--------------------------------------------------|-------------------------|-------------------------------------------------------------------------|
| SYM  | Name                   | Slope     | Landforms                                        | (horizontal/vertical)   | Parent Materials                                                        |
| 522  | Hobacker               |           | escarpments, glacial-valley walls, moraines      | linear/linear           | colluvium and/or till                                                   |
| 522  | Rock outcrop           |           | _                                                | _/_                     | _                                                                       |
| 522  | Rubble land<br>(talus) |           | _                                                | —/—                     | _                                                                       |
| 1324 | Como                   | 2-25      | moraines on plateaus,<br>moraines                | convex/linear           | till derived from rhyolite and/or rhyolitic tuff                        |
| 1324 | Como (mod.<br>deep)    | 2-25      | moraines on plateaus,<br>moraines                | convex/linear           | till derived from rhyolite and/or rhyolitic tuff                        |
| 1324 | McCort                 | 2-25      | moraines on plateaus,<br>moraines                | convex/linear           | till derived from rhyolite and/or<br>rhyolitic tuff                     |
| 2213 | Greyback               | 2-35      | moraines                                         | convex/linear           | till                                                                    |
| 2213 | Hobacker               | 2-35      | moraines                                         | convex/linear           | till                                                                    |
| 2213 | Shadow                 | 2-35      | moraines                                         | convex/linear           | till                                                                    |
| 2246 | Leavittville           | 2-35      | moraines                                         | _/_                     | till derived from andesite                                              |
| 2246 | Lionhead               | 2-35      | Moraines                                         | _/_                     | till derived from andesite                                              |
| 2246 | Midfork                | 2-35      | moraines                                         | _/_                     | till derived from andesite                                              |
| 2543 | Arrowpeak              | 2-40      | moraines                                         | convex/linear           | till over residuum weathered from gneiss and/or schist                  |
| 2543 | Midfork                | 2-40      | moraines                                         | convex/linear           | till derived from gneiss and/or schist                                  |
| 2543 | Rock outcrop           |           | _                                                | _/_                     | _                                                                       |
| 2546 | Arrowpeak              | 10-<br>55 | glacial-valley floors,<br>moraines               | convex/linear           | colluvium or till over residuum<br>weathered from andesite or limestone |
| 2546 | Hobacker               | 10-<br>55 | glacial-valley floors,<br>moraines               | linear/linear           | colluvium and/or till derived from<br>andesite and/or limestone         |
| 2546 | Rock outcrop           |           | _                                                | —/—                     | _                                                                       |
| 2546 | Rubble land<br>(talus) |           | _                                                | -/-                     | _                                                                       |
| 2924 | Greyback               | 5-25      | moraines                                         | convex/linear           | till                                                                    |
| 2924 | Hobacker               | 5-25      | moraines                                         | convex/linear           | till                                                                    |
| 2924 | Libeg                  | 5-25      | moraines                                         | convex/linear           | till                                                                    |
| 2996 | Badwater               | 1-18      | outwash terraces, outwash<br>fans, kame terraces | linear/linear           | outwash derived from andesite and/or<br>sedimentary rock                |
| 2996 | Passcreek              | 1-18      | outwash terraces, outwash<br>fans, kame terraces | linear/linear           | outwash derived from andesite and/or sedimentary rock                   |
| 2996 | Shook                  | 1-18      | outwash terraces, outwash<br>fans, kame terraces | linear/linear           | outwash derived from andesite and/or sedimentary rock                   |

Table 1. Slope gradients, landforms, slope shapes and parent materials for each component of soil maps containing YELL plots (Soil Survey Staff, NASIS. Accessed 2018 & 19).

#### Climate

Precipitation was estimated by the Parameter-elevation Regressions on Independent Slopes (PRISM) Model (Prism Climate Group). Precipitation ranges from 325 mm along the northcentral part of the YELL NEON site area up to approximately 625 mm along the southern and western edges of the site (Figure 5). Some northerly aspects, concave slope shapes and lower slope positions may provide conditions where effective precipitation is higher than actual precipitation. Conversely, southerly aspects, convex slope shapes and relatively higher slope positions result in lower effective precipitation. Effective precipitation often explains differences in vegetation and soils in the same precipitation zone, when for example, different vegetation and soil properties are observed on a south-facing slope compared to a nearby north-facing slope.

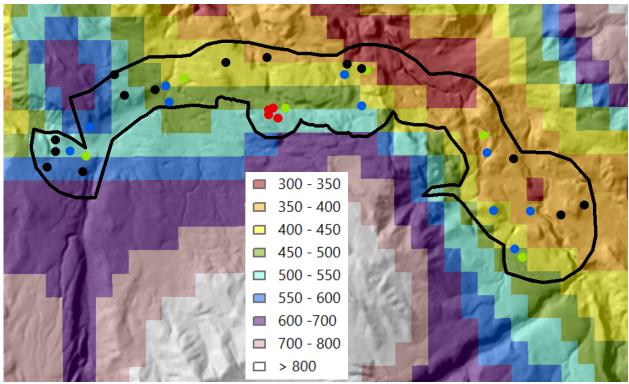



Figure 5. PRISM estimated precipitation (yrs. 1980-2010) for the YELL site. Plots are represented by colored dots, as in Figure 1 (Prism Climate Group, accessed 7/8/2018).

#### Soils

The soils of Yellowstone National Park (WY665 survey area) have been inventoried but are not available to the public as published or provisional data. However, draft tabular soils data is available in NASIS (Soil Survey Staff, NASIS. Accessed 2018 & 2019) and as a digital spatial layer (Figure 6).

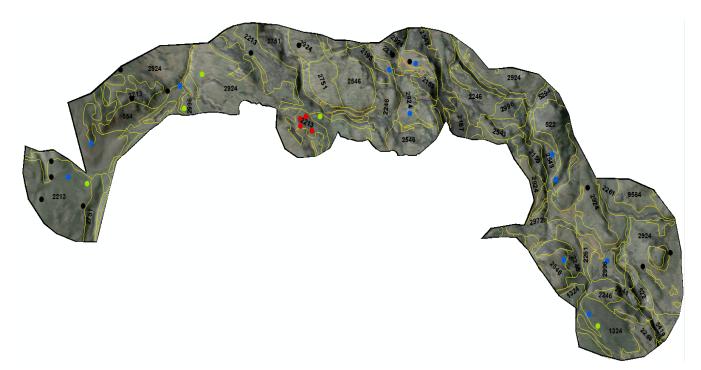



Figure 6. YELL site area soil map units from the draft soil inventory of Yellowstone National Park.

NEON sample plots occur across eight soil map units (Table 2). The most common soil series found in the inventory (in order of frequency) were Hobacker, Greyback, Libeg, Midfork, Arrowwood, Shook, Como, Shadow, Leavittville, Lionhead, Badwater, Passcreek and McCort. The soil inventory estimated Hobacker components (found in several map units) to be approximately 50% of the Yellowstone NEON site area and approximately 65% of those map units that contain NEON plots.

Note that these soil series are mapped only at the family level, which implies similarity to the taxonomy of the named series, but some deviation from the characteristics of the official soil series descriptions (OSD). The use of series family components is common for soils surveys of less-intensively used federal land such as national parks, forest service land and BLM holdings (order-3 and order-4). This summary will at times distinguish between "series family" described as components in the NASIS database and the OSD of the soil series.

| Map<br>unit<br>Symbol | Map unit Name                                                                    | Sum<br>of<br>acres | % of<br>YELL<br>site | Total<br>NEON<br>base plots | #<br>Tower<br>base<br>plots | # Plots<br>chosen | #<br>Alternate<br>plots<br>chosen |
|-----------------------|----------------------------------------------------------------------------------|--------------------|----------------------|-----------------------------|-----------------------------|-------------------|-----------------------------------|
| 513                   | Rock outcrop-Rubble land-Como family, complex                                    | 100                | 0.6%                 | 0                           | 0                           | 0                 |                                   |
| 522                   | Rock outcrop-Rubble land-Hobacker family, complex                                | 785                | 4.4%                 | 1                           | 0                           | 1                 |                                   |
| 554                   | Rock outcrop-Rubble land-Arrowpeak family, complex                               | 252                | 1.4%                 | 0                           | 0                           | 0                 |                                   |
| 1324                  | Como-Como, moderately deep-McCort families, complex                              | 619                | 3.4%                 | 2                           | 0                           | 1                 | 1                                 |
| 1358                  | Kegsprings-Targhee families-Rock outcrop, complex                                | 159                | 0.9%                 | 0                           | 0                           | 0                 |                                   |
| 1532                  | Kegsprings family-Rock outcrop-Sig family, complex                               | 92                 | 0.5%                 | 0                           | 0                           | 0                 |                                   |
| 1795                  | Kegsprings-Agneston-Quietus families, complex                                    | 18                 | 0.1%                 | 0                           | 0                           | 0                 |                                   |
| 2159                  | Midfork-Storm families-Rock outcrop, complex                                     | 284                | 1.6%                 | 0                           | 0                           | 0                 |                                   |
| 2167                  | Hobacker-Kegsprings families-Typic Cryaquolls, complex                           | 234                | 1.3%                 | 0                           | 0                           | 0                 |                                   |
| 2195                  | Midfork-Storm-Quazar families, complex                                           | 179                | 1.0%                 | 0                           | 0                           | 0                 |                                   |
| 2213                  | Hobacker-Greyback-Shadow families, complex                                       | 2282               | 12.7%                | 14                          | 4                           | 2                 | 1                                 |
| 2246                  | Midfork-Leavittville-Lionhead families, complex                                  | 1418               | 7.9%                 | 1                           | 0                           | 1                 |                                   |
| 2261                  | Gallatin, Ledgefork families and Typic Cryaquolls, soils                         | 390                | 2.2%                 | 0                           | 0                           | 0                 |                                   |
| 2541                  | Midfork-Arrowpeak families-Rock outcrop, complex                                 | 351                | 2.0%                 | 0                           | 0                           | 0                 |                                   |
| 2543                  | Midfork-Arrowpeak families-Rock outcrop, complex                                 | 535                | 3.0%                 | 1                           | 0                           | 1                 |                                   |
| 2546                  | Hobacker-Arrowpeak families-Rock outcrop,<br>complex                             | 1533               | 8.5%                 | 2                           | 0                           | 1                 | 1                                 |
| 2662                  | Gallatin, Grayslake families and Typic Cryaquolls, soils                         | 534                | 3.0%                 | 0                           | 0                           | 0                 |                                   |
| 2751                  | Midfork, Telcher families, soil and -Rock outcrop                                | 930                | 5.2%                 | 0                           | 0                           | 0                 |                                   |
| 2915                  | Hobacker-Elkpeak-Kegsrprings families, complex                                   | 40                 | 0.2%                 | 0                           | 0                           | 0                 |                                   |
| 2924                  | Hobacker-Libeg-Greyback families, complex                                        | 5158               | 28.7%                | 10                          | 0                           | 2                 | 1                                 |
| 2961                  | Shook-Quietus families-Typic Cryaquolls, complex                                 | 2                  | 0.0%                 | 0                           | 0                           | 0                 |                                   |
| 2972                  | Midfork-Frisco-Stubbs families, complex                                          | 285                | 1.6%                 | 0                           | 0                           | 0                 |                                   |
| 2975                  | Hobacker-Cratermo-Pineisle families, complex                                     | 63                 | 0.4%                 | 0                           | 0                           | 0                 |                                   |
| 2996                  | Shook-Badwater-Passcreek families, complex                                       | 897                | 5.0%                 | 3                           | 0                           | 2                 | 1                                 |
| 5294                  | Rock outcrop-Rubble land-Badwater family, complex                                | 200                | 1.1%                 | 0                           | 0                           | 0                 |                                   |
| 5419                  | Rock outcrop-Rubble land-Silvercliff family, complex                             | 257                | 1.4%                 | 0                           | 0                           | 0                 |                                   |
| 8125                  | Vitrandic Humicrypets-Kismetpeak family, complex                                 | 44                 | 0.2%                 | 0                           | 0                           | 0                 |                                   |
| 9564                  | Quietus-family-Rock outcrop-Typic Cryaquolls,<br>complex                         | 210                | 1.2%                 | 0                           | 0                           | 0                 |                                   |
| 358Z                  | Hanks family, Typic Dystrudepts, hydrothermal, soils and Rock outcrop            | 49                 | 0.3%                 | 0                           | 0                           | 0                 |                                   |
| 853Z                  | Leighcan family, Lithic Cryorthents and Typic<br>Udorthents, hydrothermal, soils | 27                 | 0.2%                 | 0                           | 0                           | 0                 |                                   |
| W                     | Water                                                                            | 28                 | 0.2%                 | 0                           | 0                           | 0                 |                                   |
| Totals                | Comparison of Soil Man Units and NEON a                                          | 17955              | 100%                 | 34                          | 4                           | 11                | 5                                 |

Table 2. Comparison of Soil Map Units and NEON plot status. Map Units in bold were sampled for the NEON project.

All the major soil components mapped at the YELL NEON site are Mollisols with dark surfaces, relatively high organic carbon (OC) contents and high base saturation except for the Como and Shadow series (Table 3). Many of these series, including Hobacker, have a mollic epipedon greater than 40 cm thick (pachic). Loamy-skeletal particle size families (loamy soils with greater than 35% by volume rock fragments) are most dominant in the survey, but smaller amounts of sandy-skeletal, coarse-loamy and fine-loamy particle size families were also identified.

All soils at the YELL NEON site were classified as cryic soil temperature regimes by the provisional soil mapping. Approximately 80% of the map units covering the NEON sample plots have ustic moisture regimes, and 20% have udic moisture regimes. Ustic moisture regimes are typically associated with grassland shrub habitat types, and udic moisture regimes are more commonly associated with forested habitats.

The Hobacker, Greyback, Midfork, Leavittville, Lionhead and Passcreek series families are described in the provisional WY665 soil database as having subsoils that are moderately alkaline with CaCO<sub>3</sub> accumulations. The Libeg, Arrowpeak, Shook and McCort series families lack CaCO<sub>3</sub> accumulations and have lower pH's that range from neutral to slightly acidic. Como and Shadow soils are moderately acid. Note that these "series families" used in WY665, often have pH and CaCO<sub>3</sub> differences from the OSD's.

#### Vegetation

Grassland and shrubland habitat types are dominant in the YELL site, with species such as big sage (*Artemisia tridentata*), Idaho fescue (*Festuca idahoensis*), common snowberry, *Geranium viscosissimum*, *Poa sandbergi* and silver sagebrush (*Artemisia cana*), reported in the NASIS (National Soil Information System) database (Table 4).

Forest habitat types in this area are characterized by Douglas-fir with pinegrass, and common juniper and white spirea in the understory for the drier forest types. With increasing precipitation, subalpine fir, whitebark pine and grouse whortleberry species become more common. Lodgepole pine is also common on forested sites in the area. Ecological site descriptions have not yet been developed for this area. In addition to precipitation and temperature, factors such as soil properties, soil parent materials (especially the presence/absence of rhyolite) and fire history influence plant species.

| Map<br>unit | Component<br>Name | Comp<br>% | SL<br>Range | Low<br>MAP | RV<br>MAP | High<br>MAP | Taxonomic<br>Subgroup  | Particle Size  | Moisture<br>regime | Subsoil<br>pH    |
|-------------|-------------------|-----------|-------------|------------|-----------|-------------|------------------------|----------------|--------------------|------------------|
| 1324        | Como              | 45        | 2-25        | 575        | 825       | 1400        | typic<br>haplocryepts  | sandy-skeletal | Typic Udic         | mod.<br>acidic   |
| 1324        | Como              | 25        | 2-25        | 575        | 825       | 1400        | typic<br>haplocryepts  | sandy-skeletal | Typic Udic         | mod.<br>acidic   |
| 1324        | McCort            | 20        | 2-25        | 575        | 825       | 1400        | ustic<br>haplocryolls  | loamy-skeletal | Typic Udic         | neutral          |
| 2213        | Hobacker          | 40        | 2-35        | 500        | 625       | 775         | pachic<br>haplocryolls | loamy-skeletal | Typic Ustic        | mod.<br>alkaline |
| 2213        | Greyback          | 25        | 2-35        | 500        | 625       | 775         | ustic<br>haplocryolls  | loamy-skeletal | Typic Ustic        | mod.<br>alkaline |
| 2213        | Shadow            | 15        | 2-35        | 500        | 625       | 775         | ustic<br>haplocryepts  | loamy-skeletal | Typic Ustic        | mod.<br>acidic   |
| 2246        | Midfork           | 40        | 5-35        | 500        | 800       | 1125        | typic<br>haplocryolls  | loamy-skeletal | Typic Udic         | mod.<br>alkaline |
| 2246        | Leavittville      | 30        | 5-35        | 500        | 800       | 1125        | pachic<br>haplocryolls | fine-loamy     | Typic Udic         | mod.<br>alkaline |
| 2246        | Lionhead          | 15        | 5-35        | 500        | 800       | 1125        | pachic<br>haplocryolls | loamy-skeletal | Typic Udic         | mod.<br>alkaline |
| 2543        | Midfork           | 55        | 5-40        | 500        | 800       | 900         | typic<br>haplocryolls  | loamy-skeletal | Typic Udic         | mod.<br>alkaline |
| 2543        | Arrowpeak         | 15        | 5-40        | 500        | 800       | 900         | lithic<br>haplocryolls | loamy-skeletal | Typic Udic         | sli.<br>acidic   |
| 2543        | Rock outcrop      | 15        |             | 500        | 800       | 900         |                        |                |                    |                  |
| 2546        | Hobacker          | 40        | 10-55       | 500        | 850       | 1125        | pachic<br>haplocryolls | loamy-skeletal | Typic Udic         | mod.<br>alkaline |
| 2546        | Arrowpeak         | 25        | 10-55       | 500        | 850       | 1125        | lithic<br>haplocryolls | loamy-skeletal | Typic Udic         | sli.<br>acidic   |
| 2546        | Rock outcrop      | 10        |             | 500        | 850       | 1125        |                        |                |                    |                  |
| 2546        | Rubble land       | 10        |             | 500        | 850       | 1125        |                        |                |                    |                  |
| 2924        | Hobacker          | 30        | 5-25        | 450        | 575       | 775         | pachic<br>haplocryolls | loamy-skeletal | Typic Ustic        | mod.<br>alkaline |
| 2924        | Greyback          | 25        | 5-25        | 450        | 575       | 775         | ustic<br>haplocryolls  | loamy-skeletal | Typic Ustic        | mod.<br>alkaline |
| 2924        | Libeg             | 30        | 5-25        | 450        | 575       | 775         | ustic<br>argicryolls   | Loamy-skeletal | Typic Ustic        | sli.<br>acidic   |
| 2996        | Shook             | 40        | 1-18        | 500        | 600       | 950         | pachic<br>haplocryolls | coarse-loamy   | Typic Ustic        | neutral          |
| 2996        | Badwater          | 30        | 1-18        | 500        | 600       | 950         | pachic<br>argicryolls  | loamy-skeletal | Typic Ustic        | neutral          |
| 2996        | Passcreek         | 15        | 1-18        | 500        | 600       | 950         | ustic<br>argicryolls   | fine-loamy     | Typic Ustic        | mod.<br>alkaline |
| 522         | Rock outcrop      | 35        |             | 475        | 675       | 875         |                        |                |                    |                  |
| 522         | Rubble land       | 35        |             | 475        | 675       | 875         |                        |                |                    |                  |
| 522         | Hobacker          | 25        | 35-75       | 475        | 675       | 875         | pachic<br>haplocryolls | loamy-skeletal | Typic Ustic        | mod.<br>alkaline |

Table 3. Soil map unit components, component %, slope range, mean annual precipitation range (MAP), taxonomic subgroups, particle sizes, moisture regimes and subsoil pH for all the major soil components which contain YELL plots. Note that the precipitation ranges below are for the entire Yellowstone National Park soil survey area for each map unit. Source: Soil Survey Staff, NASIS. Accessed 2018 & 2019.

| Map<br>unit<br>Symbol | Map unit<br>Name                   | Comp.<br>Name             | Comp.<br>% | Vegetation<br>Class ID | Vegetation Class<br>Name                                                   | Moisture<br>Regime | Classification                               |  |
|-----------------------|------------------------------------|---------------------------|------------|------------------------|----------------------------------------------------------------------------|--------------------|----------------------------------------------|--|
| 522                   | Rock outcrop-<br>Rubble land-      | Hobacker                  | 25         | PK320                  | Douglas-fir/pinegrass                                                      | Ustic              | Loamy-skeletal, mixed,<br>superactive Pachic |  |
|                       | Hobacker family,<br>complex        |                           |            | PK310                  | Douglas-fir/snowberry                                                      |                    | Haplocryolls                                 |  |
|                       | Como-Como,<br>moderately deep-     |                           |            | SC734                  | subalpine fir/grouse<br>whortleberry                                       |                    | Loamy-skeletal, mixed,                       |  |
| 1324                  | McCort families,<br>complex        | <u>McCort</u>             | 20         | SC732                  | subalpine fir/grouse<br>whortleberry-grouse<br>whortleberry phase          | Udic               | superactive Ustic<br>Haplocryolls            |  |
| 1324                  | Como-Como,<br>moderately deep-     | Como                      | 45         | SC732                  | subalpine fir/grouse<br>whortleberry-grouse<br>whortleberry phase          | Udie               | Sandy-skeletal, mixed                        |  |
|                       | McCort families,<br>complex        |                           |            | SC734                  | subalpine fir/grouse<br>whortleberry-whitebark pine<br>phase               | Cuit               | Typic Haplocryepts                           |  |
| 1324                  | Como-Como,<br>moderately deep-     | <u>Como</u> -<br>moderate | 45         | SC732                  | subalpine fir/grouse<br>whortleberry-grouse<br>whortleberry phase          | Udic               | Sandy-skeletal, mixed                        |  |
| 1521                  | McCort families,<br>complex        | ly deep                   | 15         | SC734                  | subalpine fir/grouse<br>whortleberry-whitebark pine<br>phase               | Cuit               | Typic Haplocryepts                           |  |
| 2213                  | Hobacker-<br>Grevback- Shadow      | ow Shadow                 | 15         | SC310                  | Douglas-fir/common<br>snowberry                                            | Ustic              | Loamy-skeletal, mixed,<br>superactive Ustic  |  |
|                       | families, complex                  | Shudow                    | 15         | SC320                  | Douglas-fir/pinegrass                                                      | Ostie              | Haplocryepts                                 |  |
| 2213                  | Hobacker-<br>Greyback- Shadow      | Greyback                  | 25         | SC320                  | Douglas-fir/pinegrass                                                      | Ustic              | Loamy-skeletal, mixed,<br>superactive Ustic  |  |
| 2215                  | families, complex                  | Cheyback                  | 25         | SC310                  | Douglas-fir/common<br>snowberry                                            | Ostie              | Haplocryolls                                 |  |
| 2213                  | Hobacker-<br>Grevback- Shadow      | Hobacker                  | 40         | SC320                  | Douglas-fir/pinegrass                                                      | Ustic              | Loamy-skeletal, mixed,<br>superactive Pachic |  |
| 2215                  | families, complex                  | HOUDEREL                  | 40         | SC310                  | Douglas-fir/common<br>snowberry                                            | Ostie              | Haplocryolls                                 |  |
|                       | Midfork-<br>Leavittville-          | Lionhead                  |            | MS0703                 | artemisia<br>tridentata/festuca                                            |                    | Loamy-skeletal, mixed,                       |  |
| 2246                  | 2246 Lionhead families,<br>complex |                           | 15         | MS0405                 | festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase | Udic               | superactive Pachic<br>Haplocryolls           |  |
| 2246                  | Midfork-<br>Leavittville-          | Leavittvil                | 30         | MS0405                 | festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase | Udic               | Fine-loamy, mixed, superactive Pachic        |  |
|                       | Lionhead                           | le                        |            | MS0703                 | artemisia tridentata/festuca<br>idahoensis h.t.                            |                    | Haplocryolls                                 |  |
| 2246                  | Midfork-<br>Leavittville-          | <u>Midfork</u>            | 40         | MS0703                 | artemisia<br>tridentata/festuca                                            | Udic               |                                              |  |

| Map<br>unit<br>Symbol | Map unit<br>Name                                            | Comp.<br>Name               | Comp.<br>% | Vegetation<br>Class ID | Vegetation Class<br>Name                                                                                      | Moisture<br>Regime | Classification                                               |  |
|-----------------------|-------------------------------------------------------------|-----------------------------|------------|------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|--|
|                       | Lionhead families,<br>complex                               |                             |            | MS0405                 | festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase                                    |                    | Loamy-skeletal, mixed,<br>superactive Typic<br>Haplocryolls  |  |
| 2543                  | Midfork-<br>Arrowpeak<br>families-Rock                      | Arrowpe<br>ak               | 15         | SC310                  | Douglas-fir/common<br>snowberry                                                                               | Udic               | Loamy-skeletal, mixed,<br>superactive Lithic                 |  |
|                       | outcrop, complex                                            | <u>un</u>                   |            | SC360                  | Douglas-fir/common juniper                                                                                    |                    | Haplocryolls                                                 |  |
| 2543                  | Midfork-<br>Arrowpeak<br>families-Rock                      | <u>Midfork</u>              | 55         | MS0703                 | artemisia<br>tridentata/festuca                                                                               | Udic               | Loamy-skeletal, mixed,<br>superactive Typic                  |  |
|                       | outcrop, complex                                            |                             |            | SC360                  | Douglas-fir/common juniper                                                                                    |                    | Haplocryolls                                                 |  |
| 2546                  | Hobacker-<br>Arrowpeak<br>families-Rock<br>outcrop, complex | <u>Arrowpe</u><br><u>ak</u> | 25         | _                      | _                                                                                                             | Udic               | Loamy-skeletal, mixed,<br>superactive Lithic<br>Haplocryolls |  |
|                       | Hobacker- Libeg-<br>Greyback families,<br>complex           |                             |            | MS0703                 | artemisia<br>tridentata/festuca                                                                               |                    | Loamy-skeletal, mixed,                                       |  |
| 2924                  |                                                             | <u>Greyback</u>             | 25         | MS0405                 | festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase                                    | Ustic              | superactive Ustic<br>Haplocryolls                            |  |
|                       | Hobacker- Libeg-<br>Greyback families,<br>complex           |                             |            | SC340                  | Douglas-fir/white spirea                                                                                      |                    | Loamy-skeletal, mixed,<br>superactive Pachic<br>Haplocryolls |  |
| 2924                  |                                                             |                             | 30         | MS0703                 | artemisia tridentata/festuca<br>idahoensis h.t.                                                               | Ustic              |                                                              |  |
|                       |                                                             |                             |            | HP709                  | silver sagebrush/Idaho fescue<br>h.t.                                                                         |                    | Tuptooryons                                                  |  |
| 2024                  | Hobacker- Libeg-                                            |                             | 20         | MS0205                 | agropyron<br>spicatum/poa                                                                                     | TT -               | Loamy-skeletal, mixed,                                       |  |
| 2924                  | Greyback families,<br>complex                               | Libeg                       | 30         | MS0703                 | artemisia tridentata/festuca<br>idahoensis h.t.                                                               | Ustic              | superactive Ustic<br>Argicryolls                             |  |
| 2996                  | Shook- Badwater-<br>Passcreek families,<br>complex          | Passcreek                   | 15         | MS0703                 | artemisia tridentata/festuca<br>idahoensis h.t.                                                               | Ustic              | Fine-loamy, mixed,<br>superactive Ustic<br>Argicryolls       |  |
|                       | Shook- Badwater-                                            |                             |            | MS0405                 | festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase                                    |                    | Loamy-skeletal, mixed,                                       |  |
| 2996                  | Passcreek families,<br>complex                              | Badwater                    | 30         | MS0703                 | artemisia tridentata/festuca<br>idahoensis h.t.                                                               | Ustic              | superactive Pachic<br>Argicryolls                            |  |
|                       |                                                             |                             |            | MS0402                 | festuca idahoensis/agropyron<br>spicatum h.t.                                                                 |                    |                                                              |  |
| 2996                  | Shook- Badwater-<br>Passcreek families,<br>complex          | <u>Shook</u>                | 40         | MS0703<br>MS0405       | artemisia<br>tridentata/festuca<br>festuca idahoensis/agropyron<br>caninum h.tgeranium<br>viscosissimum phase | Ustic              | Coarse-loamy, mixed,<br>superactive Pachic<br>Haplocryolls   |  |

Table 4. Soil map unit, component, vegetation and soil classification comparison.

## Analysis of Plots for Sampling

The YELL sample plots were evaluated for major environmental characteristics. Sample plots were selected to cover the major soils, bedrock formations, surficial geology units, soil-climatic groups and vegetation types, and to depict the unique combinations of these factors that occur within the YELL site area. To that end, 11 sample plots were selected representing all eight of the possible soil map units, the major bedrock and surficial geology units, udic and ustic soil moisture regimes, and both grassland/shrubland and forested habitat types. In addition to the 11 selected sample plots, 5 alternate sample plots were selected as backups in case sampling could not occur at any of the selected 11 plots (Table 5), however these were not sampled.

The eleven selected sample plots achieved the following criteria:

- At least one sample plot was selected for each of the eight soil units that contain YELL plots.
- The map units of largest extent (2213 and 2924) have two sample plots each.
- Each of the five most extensive surficial geology units had at least one plot selected.
- Each of the major landforms and parent material groups identified in the soil survey inventory include selected sample plots.
- The six most extensive bedrock geology groups had sample plots selected. The geology map unit "Thr" (Huckleberry Ridge Group), located at the tower airshed, did not have a sample plot selected. However, a large soil pit located near the NEON tower was sampled and described by NEON in 2018.
- The ratio of plots selected for sampling roughly corresponds to the ratio of grassland/shrub to forest across the entire YELL site area (7 grassland/shrub plots, 4 evergreen forest plots).
- Most of the YELL site area was mapped as loamy-skeletal Mollisols with ustic soil moisture regimes and glacial till parent materials, and as such most of the selected sample plots reflect these conditions. However, some sample plots were selected to capture more diverse characteristics including sites on outwash terraces and forested Inceptisols and Mollisols with udic soil moisture regimes.

| Plot ID  | State | County | Plot Type   | MU Sym | Plot Status  |
|----------|-------|--------|-------------|--------|--------------|
| YELL_001 | WY    | Park   | distributed | 2996   | Selected     |
| YELL_004 | WY    | Park   | distributed | 2996   | Selected     |
| YELL_005 | WY    | Park   | distributed | 2213   | Selected     |
| YELL_007 | WY    | Park   | distributed | 2546   | Selected     |
| YELL_012 | WY    | Park   | distributed | 2543   | Selected     |
| YELL_019 | WY    | Park   | distributed | 2924   | Selected     |
| YELL_021 | WY    | Park   | distributed | 1324   | Selected     |
| YELL_022 | WY    | Park   | distributed | 522    | Selected     |
| YELL_024 | WY    | Park   | distributed | 2924   | Selected     |
| YELL_025 | WY    | Park   | distributed | 2246   | Selected     |
| YELL_029 | WY    | Park   | distributed | 2213   | Selected     |
| YELL_003 | WY    | Park   | distributed | 2546   | Alternate    |
| YELL_011 | WY    | Park   | distributed | 2996   | Alternate    |
| YELL_016 | WY    | Park   | distributed | 2924   | Alternate    |
| YELL_023 | WY    | Park   | distributed | 2213   | Alternate    |
| YELL_028 | WY    | Park   | distributed | 1324   | Alternate    |
| YELL_002 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_006 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_008 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_009 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_010 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_013 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_014 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_015 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_017 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_018 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_020 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_026 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_027 | WY    | Park   | distributed | 2924   | Not selected |
| YELL_030 | WY    | Park   | distributed | 2213   | Not selected |
| YELL_046 | WY    | Park   | tower       | 2213   | Not selected |
| YELL_048 | WY    | Park   | tower       | 2213   | Not selected |
| YELL_051 | WY    | Park   | tower       | 2213   | Not selected |
| YELL_052 | WY    | Park   | tower       | 2213   | Not selected |

Table 5. Plot sampling status at YELL site. Sampling status indicates whether a plot was selected for sampling and analysis as follows: 'Selected' indicates the plot was selected for sampling, 'Not selected' indicates the plot was not selected for sampling, 'Alternate' indicates the plot is a backup selected for sampling in case a first priority sample plot is rejected by NEON, sensitive archaeological objects are found, or it is impossible to excavate based on field observations. MU Sym: map unit symbol.

#### **Plot Findings**

Our sampling team was able to describe and sample all the pre-chosen primary plots as planned. Table 6 summarizes the environmental and geomorphic characteristics of each plot. Table 7 displays a summary and comparison of the geomorphic, geologic and parent material data determined at the plots and in background sources. The 1:500,000 scale Wyoming state maps are the most coarse-scaled data; the information taken from the NASIS soil database represents more detail, while the soil observations for the NEON plots provides the highest detail. The three different sources agreed on nine of 11 plots. On plot YELL\_004, our field interpretation of subglacial till from Rhyolite and Basalt on ground moraines was more closely aligned with the Wyoming state bedrock and surficial geology maps than the glacial outwash described for soil map unit 2996 in the NASIS soils database. We thought the plot was more similar to the nearby 2924 map unit. On plot YELL\_007, the surficial geology map unit indicated glacial outwash and alluvium, however, the soil survey database and our observations indicated colluvium from mixed volcanic till. Otherwise, there was general agreement between our field observations, the soil survey database and the sate geology maps on parent materials and landforms.

| NEON<br>ID   | MU<br>Sym            | precip &<br><i>(effective</i><br><i>precip)</i> mm | elev<br>m | % Slope | Slope<br>Aspect | Slope Shape<br>Vertical/Horizon<br>tal | 2D/3D and<br>Relative Slope<br>Position |
|--------------|----------------------|----------------------------------------------------|-----------|---------|-----------------|----------------------------------------|-----------------------------------------|
| YELL_<br>001 | 2996                 | 363<br><i>375</i>                                  | 1910      | 6       | 160             | V/C                                    | -/-<br>lower                            |
| YELL_<br>004 | 2996<br>near<br>2924 | 425<br>525                                         | 1996      | 21      | 37              | C/C                                    | FS/HS lower                             |
| YELL_<br>005 | 2213<br>near<br>2924 | 561<br>525                                         | 2118      | 37      | 118             | V/L                                    | BS/NS upper                             |
| YELL_<br>007 | 2546                 | 404<br>475                                         | 2089      | 32      | 46              | L/C                                    | FS/BS lower                             |
| YELL_<br>012 | 2543                 | 363<br><i>425</i>                                  | 1920      | 24      | 260             | L/L                                    | FS/BS lower                             |
| YELL_<br>019 | 2924                 | 437<br><i>475</i>                                  | 2160      | 15      | 19              | L/L                                    | BS/SS (MF) upper                        |
| YELL_<br>021 | 1324                 | 464<br>550                                         | 2106      | 73      | 345             | L/L                                    | SU/IF upper                             |
| YELL_<br>022 | 522                  | 363<br>400                                         | 1943      | 57      | 270             | L/C                                    | BS/SS middle                            |
| YELL_<br>024 | 2924                 | 374<br>300                                         | 1999      | 36      | 210             | L/L                                    | BS/NS middle                            |
| YELL_<br>025 | 2246                 | 403<br><i>375</i>                                  | 2032      | 5       | 170             | L/V                                    | SU/NS upper                             |
| YELL_029     | 2213                 | 540<br>600                                         | 2032      | 45      | 0               | L/V                                    | SH/SS upper                             |

Table 6. Climatic and geomorphologic data identified for each plot during sampling. Definitions (left to right) come from Schoeneberger and Wysocki, 2017: "effective precip" is the relative quantity of precipitation stored in the soil; "slope asp" refers to the slope aspect (0 to 360 degrees), slope shape is described in two directions: 1) up and down, perpendicular to the contour and 2) across slope, parallel to the contour) L=linear, C=concave and V=Convex. 2D refers to 2-dimensional hillslope or mountain profile position (SU = summit, SH=shoulder, BS=backslope, FS=footslope. 3D refers to 3-dimensional geomorphic component (IF=interflueve, HS = head slope, NS = nose slope, SS = side slope and MF=mountain flank. Table 8 summarizes the soil, parent material and vegetation structure determined at each plot. In reviewing these tables, one might want to revisit Tables 1, 2 and 3 to compare with similar data contained within the draft WY665 soil survey database (Soil Survey Staff, NASIS. Accessed 2018 & 19). The Kellogg Soil Survey Laboratory completed their analyses as this summary was being written and those results are also included in this summary report.

There were seven grassland/shrubland plots and six of these classified as Mollisols. The exception was plot YELL\_024 which was on a dry, south-facing slope with low vegetation productivity and classified as an Inceptisol.

Of the four forested sites, three had Ochric epipedons (lighter color and relatively lower {OC} content) and one (YELL\_012) was an mollic epipedon. However, even YELL\_012 had borderline colors for mollic criteria and the lowest OC totals of any surface horizon from the sampled NEON plots.

All forested soils had "O" horizons except for plot YELL\_029, which was in a younger lodgepole stand regenerated after the 1988 Yellowstone fires.

Five of the 11 pedons were loamy-skeletal and these were relatively coarse in the fine-earth fractions (sand, silt and clay-sized particles) with between 7 and 17% clay. Three pedons were coarse-loamy and three were fine-loamy based on the weighted averages of the particle-size taxonomic control sections. Overall, the pedon with the least clay was YELL\_021 at 7% clay in the subsoil and the most subsoil clay was found at YELL\_025 with 31% clay content.

Four pedons were provisionally classified in the field with argillic horizons. This was indicated by significant clay films or clay bridging between sand grains that indicates clay illuviation and field clay estimates that indicated clay increases from the surface horizons down to subsurface horizons. After review of lab data, only two of these pedons had sufficient clay increases to classify as argillic horizons (YELL\_005 and YELL\_025).

One pedon (YELL\_022) was shallow (49 cm) to a bedrock contact (R); two pedons (YELL\_025 and YELL\_019) were moderately deep (57 cm and 68 cm) to soft bedrock (Cr); and the other eight pedons were either deep (100-150 cm) or very deep (>150 cm).

Surprisingly, only 2 pedons had calcium carbonates and higher pH's: all horizons of YELL\_024 and the C horizon (37-57 cm) of YELL\_025 had measurable CaCO<sub>3</sub> and 1:1  $H_2O$  pH's from 7.9 to 8.3. All other pH's were from 5.6 to 6.8, except for a 7.3 pH on YELL\_025 in the horizon above the C horizon noted above.

All horizon for all pedons were greater than 50% base saturation (as measured by NH<sub>4</sub>OAC). In addition, laboratory data did not indicate spodic or andic properties in the NEON plots.

| Plot<br>ID   | MU<br>Sym             | Landform<br>ID'd in<br>field           | Parent<br>Material ID'd<br>at plot                              | Landform in<br>WY665 NASIS<br>soils database           | Parent Material<br>in NASIS WY665<br>soils<br>database                | Surficial Geology<br>Map of WY -<br>sym. &<br>abbreviated<br>desc. | Geology of<br>Wyoming Map -<br>sym & abbreviated<br>desc.    |
|--------------|-----------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| YELL<br>_001 | 2996                  | valley<br>floor/<br>outwash<br>terrace | outwash from<br>tuff & other<br>volcanics                       | outwash<br>terraces,<br>outwash fans,<br>kame terraces | outwash from<br>andesite or<br>sedimentary<br>rock                    | ag-Glacial<br>Outwash &<br>alluvium                                | Qu-Pleistocene<br>Surficial                                  |
| YELL<br>_004 | 2996,<br>near<br>2924 | Ground<br>Moraine                      | subglacial till<br>from rhyolite<br>& basalt                    | outwash<br>terraces,<br>outwash fans,<br>kame terraces | outwash from<br>andesite or<br>sedimentary<br>rock                    | Gg-Bedrock &<br>glaciated<br>Bedrock                               | Qr-Pleistocene<br>Rhyolite, Tuff &<br>Intrusive              |
| YELL<br>_005 | 2213<br>near<br>2924  | Hillslope                              | colluvium &<br>till from mixed<br>sources                       | moraines                                               | till                                                                  | Gg-Bedrock &<br>glaciated<br>Bedrock                               | Qu-Pleistocene<br>Surficial                                  |
| YELL<br>_007 | 2546                  | Hillslope                              | colluvium<br>from mixed<br>volcanic till                        | glacial-valley<br>floors, moraines                     | colluvium<br>and/or till from<br>andesite or<br>limestone             | ag-Glacial<br>Outwash &<br>alluvium                                | Tas & Taw-<br>Absoraka Volcanic<br>Supergroup<br>(Tertiary)  |
| YELL<br>_012 | 2543                  | Hillslope/<br>Colluvial<br>Apron       | colluvium<br>from gneiss &<br>volcanics over<br>subglacial till | moraines                                               | till or till over<br>residuum<br>derived from<br>gneiss and<br>schist | CsgR -<br>Colluvium, slope<br>wash, glacial,<br>bedrock            | Wgn-Precambrian<br>Granitic Gneiss                           |
| YELL<br>_019 | 2924                  | Hillslope                              | till from<br>volcanics                                          | moraines                                               | till                                                                  | CsgR -<br>Colluvium, slope<br>wash, glacial,<br>bedrock            | Tas & Taw -<br>Absoraka Volcanic<br>Supergroup<br>(Tertiary) |
| YELL<br>_021 | 1324                  | Bench or<br>moraine on<br>Mtn. Slope   | till from<br>rhyolite                                           | moraines on<br>plateaus,<br>moraines                   | till derived from<br>rhyolite and/or<br>rhyolitic tuff                | g-Glacial<br>Deposits                                              | Qr-Pleistocene<br>Rhyolite, Tuff &<br>Intrusive              |
| YELL<br>_022 | 522                   | Escarp-<br>ment                        | colluvium<br>from gneiss                                        | escarpments,<br>glacial-valley<br>walls, moraines      | colluvium<br>and/or till                                              | CsgR -<br>Colluvium, slope<br>wash, glacial,<br>bedrock            | Wgn-Precambrian<br>Granitic Gneiss                           |
| YELL<br>_024 | 2924                  | Lateral<br>Moraine                     | mixed till                                                      | moraines                                               | till                                                                  | CsgR -<br>Colluvium, slope<br>wash, glacial,<br>bedrock            | Tas & Taw-<br>Absoraka Volcanic<br>Supergroup<br>(Tertiary)  |
| YELL<br>_025 | 2246                  | High Hill                              | subglacial till<br>over residuum<br>from rhyolite               | moraines                                               | till derived from andesite                                            | CsgR -<br>Colluvium, slope<br>wash, glacial,<br>bedrock            | Tas & Taw-<br>Absoraka Volcanie<br>Supergroup<br>(Tertiary)  |
| YELL<br>_029 | 2213                  | Hillslope                              | colluvium<br>from till of<br>rhyolite, tuff &<br>volcanics      | moraines                                               | till                                                                  | Gg-Bedrock &<br>glaciated<br>Bedrock                               | Qr-Pleistocene<br>Rhyolite, Tuff &<br>Intrusive              |

Table 7. Review and comparison of the geomorphic, geologic and soil parent materials identified at the plot and with background sources. Yellow items were identified through sampling, green items in the WY665 provisional NASIS soil database and blue items in the 1:500,000 scale Wyoming geology and surficial geology maps.

| Climate<br>Regime |                             | Dep            |                                   | Taxonor                                                                        | nic Class                                                                      | Parent Material                                                 |                 |  |
|-------------------|-----------------------------|----------------|-----------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|--|
| ID                | Moist/<br>Temp              | Cl             | Series                            | Field Determined                                                               | Lab adjusted                                                                   | ID'd at plot                                                    | Veg. Group      |  |
| YELL<br>_001      | Typic<br>Ustic <i>Cryic</i> | DE<br>or<br>VD | Shook-like<br>or Browns-<br>gulch | Fine-loamy,<br>mixed, superactive<br>Pachic<br>Haplocryolls                    | Coarse-loamy,<br>mixed, superactive<br>Pachic<br>Haplocryolls                  | outwash from<br>mixed sources                                   | Grass/<br>Shrub |  |
| YELL<br>_004      | Typic<br>Ustic <i>Cryic</i> | DE<br>or<br>VD | Hobacker-<br>like                 | Loamy-skeletal,<br>mixed, superactive<br>Pachic Argicryolls                    | Loamy-skeletal,<br>mixed, superactive<br>Pachic<br>Haplocryolls                | subglacial till<br>from rhyolite &<br>basalt                    | Grass/<br>Shrub |  |
| YELL<br>_005      | Typic<br>Ustic <i>Cryic</i> | DE<br>or<br>VD | SND                               | Fine-loamy,<br>mixed, superactive<br>Ustic Argicryolls                         | Fine-loamy,<br>mixed, superactive<br>Ustic Argicryolls                         | colluvium & till<br>from mixed<br>sources                       | Grass/<br>Shrub |  |
| YELL<br>_007      | Typic<br>Ustic <i>Cryic</i> | DE<br>or<br>VD | Hobacker-<br>like                 | Fine-loamy,<br>mixed, superactive<br>Pachic Argicryolls                        | Coarse-loamy,<br>mixed, superactive<br>Pachic<br>Haplocryolls                  | colluvium from<br>mixed volcanic<br>till                        | Grass/<br>Shrub |  |
| YELL<br>_012      | Typic<br>Ustic <i>Cryic</i> | DE<br>or<br>VD | Midfork-<br>like                  | Loamy-skeletal,<br>mixed, superactive<br>Pachic<br>Haplocryolls                | Loamy-skeletal,<br>mixed, superactive<br>Ustic Haplocryolls                    | colluvium from<br>gneiss &<br>volcanics over<br>subglacial till | Forest          |  |
| YELL<br>_019      | Typic<br>Ustic <i>Cryic</i> | MD             | SND                               | Fine-loamy,<br>mixed, superactive<br>Ustic Haplocryolls                        | Fine-loamy,<br>mixed, superactive<br>Ustic Haplocryolls                        | till from volcanics                                             | Grass/<br>Shrub |  |
| YELL<br>_021      | Ustic Udic<br>Cryic         | DE<br>or<br>VD | Shadow-like                       | Loamy-skeletal<br>over Fragmental,<br>mixed, superactive<br>Ustic Haplocryepts | Loamy-skeletal<br>over Fragmental,<br>mixed, superactive<br>Ustic Haplocryepts | till from rhyolite                                              | Forest          |  |
| YELL<br>_022      | Typic<br>Ustic <i>Cryic</i> | SH             | SND                               | Loamy-skeletal,<br>mixed, superactive<br>Lithic<br>Haplocryepts                | Loamy-skeletal,<br>mixed, superactive<br>Lithic<br>Haplocryepts                | colluvium from<br>gneiss                                        | Forest          |  |
| YELL<br>_024      | Aridic<br>Ustic<br>Frigid   | DE<br>or<br>VD | SND                               | Fine-loamy,<br>mixed, superactive<br>frigid Aridic<br>Calciustept              | Coarse-loamy,<br>mixed, superactive,<br>frigid Aridic<br>Haplustepts           | mixed till                                                      | Grass/<br>Shrub |  |
| YELL<br>_025      | Typic<br>Ustic <i>Cryic</i> | MD             | SND                               | Fine-loamy,<br>mixed, superactive<br>Ustic Argicryolls                         | Fine-loamy,<br>mixed, superactive<br>Ustic Argicryolls                         | subglacial till<br>over residuum<br>from rhyolite               | Grass/<br>Shrub |  |
| YELL<br>_029      | Ustic Udic<br><i>Cryic</i>  | DE<br>or<br>VD | Shadow-like                       | Loamy-skeletal,<br>mixed, superactive<br>Ustic Haplocryepts                    | Loamy-skeletal,<br>mixed, superactive<br>Ustic Haplocryepts                    | colluvium from<br>till of rhyolites,<br>tuff & volcanics        | Forest          |  |

 Table 8. Soil and site properties related to soil climate regimes, soil depth, soil taxonomy, parent materials and vegetation growth forms identified during NEON sampling.

Definitions (left to right) "moist" = moisture regime; "temp" = temperature regime; "dep cl" = depth class, with SH = shallow (<50 cm in depth), MD = moderately deep (50-100 cm) DE = Deep (100-150 cm deep) and VD = very deep (>150 cm); SND = Series Not Defined; Veg = vegetation.

# **Summary of Soils**

The following pedon summaries are presented within five groups based on parent materials and vegetation. The grassland/shrubland soils formed on glacial till group includes six of the pedons both because it was dominant within the YELL NEON site and because the mixed lithology of the parent materials observed made it difficult to group them more precisely. The other four groupings contain only one or two pedons and include one for outwash and three for forest soils.

#### Grassland/Shrubland soils formed in outwash (generally soil map unit 2996).

#### **YELL\_001**

Map unit: 2996 -- Shook-Badwater-Passcreek families, complex

Field Investigation taxonomy: Fine-loamy, mixed, superactive Pachic Haplocryoll

Lab adjusted taxonomy: Coarse-loamy, mixed, superactive Pachic Haplocryoll.

Series: Brownsgulch or Shook-like

Prominent characteristics include a mollic epipedon that is markedly thick (pachic). Lab data showed a coarse-loamy particle -size class with 14% clay in the subsoil particle-size control section and pH's ranging from 6.0-6.8. This soil was also bordering on loamy-skeletal because of the high fragment contents in the C horizon. The lab estimates for clay were lower than our field-estimates.

This soil meets the criteria for the "Shook family" component in the draft WY665 database, although note that it is significantly different than the Shook OSD. The Brownsgulch series OSD is probably a better OSD fit.

This plot was the only pedon that fit this designation. YELL\_004 also occurred in the outwash map unit 2996 but was a better fit for the nearby 2924 map unit used on glacial till.

# Grassland and Shrubland soils formed primarily of glacial till or colluvium from till derived a wide variety of rocks mostly of volcanic origin including rhyolite, basalt, tuff and andesite and non-volcanic gneiss.

Soil map units 2924, 2213, 2546 and 2246 are including with this grouping.

#### YELL\_004

Map unit: 2996 (near 2924 boundary) -- Hobacker-Libeg- Greyback families, complex

Field Investigation: Loamy-skeletal, mixed, superactive Pachic Argicryolls

Lab adjusted: Loamy-skeletal, mixed, superactive Pachic Haplocryoll.

Series: Hobacker-like

Prominent characteristics include a Mollic epipedon that is markedly thick (pachic). We had predicted an argillic horizon because of evidence of clay illuviation and an increase in clay from the surface into the subsoil. However, lab data did not show a clay increase to support an argillic with 17% clay in the subsoil. pH's ranged from 6.0 to 6.8.

This soil meets the criteria of the "Hobacker family" as defined in CO665, although it lacked the CaCO3 and pH of the Hobacker OSD.

Note that while this plot occurred in the glacial outwash map unit of 2996, it was near the boundary with map unit 2924 and we felt the pedon and parent materials were a better fit for 2924.

#### YELL\_005

Map unit: 2213 (near 2924 map unit boundary) -- Hobacker-Greyback- Shadow families, complex

Field Investigation: Fine-loamy, mixed, superactive Ustic Argicryolls

Lab adjusted; same as field

Series: Not defined

Prominent characteristics include a Mollic epipedon (0-35 cm, A, BAt), an argillic horizon (6-105 cm, BAt, Bt and BCt) and a fine-loamy particle size with a field estimate of 25% clay in the subsoil particle-size control section. pH's was 6.5 to 6.7 and this soil lacked significant CaCO3.

Lab data supported an argillic horizon but not until the BCt (62-105 cm) and that horizon was 21.3% clay. The BAt (14.0% clay) and Bt (14.8% clay) horizons lacked sufficient clay pickup to qualify as part of the argillic horizon. This did not change the taxonomy however.

This pedon was dissimilar to all the components of map unit 2213 since it had an argillic horizon and a non-skeletal particle-size family. This plot was on the boundary of map units 2213 and 2924 but is better grouped with the 2924 map unit because of the observed grassland/shrubland vegetation.

#### YELL\_007

Map unit: 2546 -- Hobacker-Arrowpeak families-Rock outcrop, complex

Field Investigation: Fine-loamy, mixed, superactive Pachic Argicryolls

Lab adjusted: Coarse-loamy, mixed, Pachic Haplocryolls

Series: Hobacker-like

Prominent characteristics determined in the field included a Mollic epipedon (0-60 cm, A1, A2, BAt1, BAt2) that is thick enough to meet the Pachic taxonomic subgroup, a weakly developed

argillic horizon (14-105 cm, BAt1, BAt2 and BCt) with a field estimate of 21% clay in the subsoil particle-size control section (low end of fine-loamy particle-size family).

The lab data did not support an argillic horizon with subsoil clay of 11%. pH was 6.1 to 6.4.

This soil was similar to the Hobacker family component. While it lacked enough fragments to qualify as loamy-skeletal, it still contained between 25 and 35% fragments through the profile. It differed from the Hobacker OSD in lacking CaCO3 and high pH's.

#### YELL\_019

Map unit: 2924 -- Hobacker-Libeg- Greyback families, complex

Field Investigation: Fine-loamy, mixed, superactive Ustic Haplocryoll

Lab adjusted: same as field

Series: Not defined

Prominent characteristics include a mollic epipedon (0-36 cm, A1, A2) and a paralithic contact (Cr horizon) at 68 cm and a fine-loamy particle size family with an estimate of 23% clay in the subsoil.

Lab data confirmed the taxonomy with 19% clay in the subsoil. The 2C horizon in this pedon was estimated at approximately 85% total fragments using a combination of the lab and field data. However, 45% of the fragments were paragravels (moderately cemented) which are not included in the rock fragment calculations for the particle-size control section, thus the weighted average for the particle-size control section of this soil is just under 35% inducated fragments indicating a fine-loamy particle size family. Lab pH's were 6.0 to 6.3.

This soil does not fit any of the components of map unit 2924 because it is moderately deep to a paralithic contact and is less than 35% hard fragments in the subsoil.

#### YELL\_024

Map unit: 2924 -- Hobacker-Libeg- Greyback families, complex

Field Investigation: Fine-loamy, mixed, superactive frigid Aridic Calciustepts

Lab adjusted: Coarse-loamy, mixed, superactive, frigid Aridic Haplustepts

Series: Not defined

Prominent characteristics included secondary carbonates (8-104 cm, Bk1, Bk2, Bk3, CBk) and a fine-loamy particle size family with an estimate of 23% clay in the subsoil. pH was 7.4 to 7.8 throughout.

The lab data did not confirm to field determinations. Lab estimated clay was 15.5% in the subsoil, making this pedon coarse-loamy. Also, this pedon was just shy of meeting criteria for a calcic horizon, which would classify it as an Aridic Calciustept. Also note there was an increase

in clay from the A to the Bk1 and clay bridging in that horizon, but much of the clay increase determined by the lab was carbonate clays which cannot be used to classify a horizon as an argillic. Neither the field investigation nor the lab data suggested an argillic horizon.

This pedon does not match any of the components of the 2924 map unit but most likely can be found in other locations at the NEON site on lower elevations and south facing slopes.

#### YELL\_025

Map unit: 2246 -- Midfork-Leavittville-Lionhead families, complex

Field Investigation: Fine-loamy, mixed, superactive Ustic Argicryolls

Lab adjusted: same as field.

Series: Not defined

Prominent characteristics included a mollic epipedon (0-37 cm A, BAt1, BAt2), an argillic horizon (4-37 cm, BAt1, BAt2) with clay content of 31%, and a paralithic contact (Cr, 57-75 cm). There was slight effervescence (evidence of CaCO3) in the C horizon. pH's ranged from 6.7 in the surface to 8.2 in the C horizon.

This soil does not fit any of the components of map unit 2246 but it would be managed somewhat similarly to the Leavittville family component. It differs in having an argillic horizon, a thinner mollic epipedon (not pachic) and lacks the silty clay loam surface textures found in the Leavittville family component.

#### Forested soils formed in glacial till with a substantial rhyolite influence

Generally includes map unit 1324 and the more forested portions of 2213.

#### YELL\_021

Map Unit: 1324 -- Como-Como, moderately deep-McCort families, complex

Field Investigation: Loamy-skeletal over Fragmental, mixed, superactive Ustic Haplocryepts

Lab adjusted: same as field

Series: Not defined.

Prominent characteristics were an E horizon (7-35 cm) in the subsoil and fragmental subsoil below 35 cm. In this pedon we estimated the fragmental horizon to be a huge boulder approximately 4 meters in diameter or greater. There is a possibility this was a bedrock contact, but in our estimation, this was not a bedrock-controlled landform and we observed other very large boulders nearby.

Lab data confirmed the taxonomy, although the E horizon at 50.2 percent silt would be an extremely cobbly (cbx) silt loam and not a cbx-sandy loam, as described in the field. pH was 5.6.

This pedon was difficult to judge because of the massive boulder (the fragmental layer) but it was different from Como in having less sand and the fragmental horizon below 35 cm. It was also dissimilar to McCort because it lacked a mollic epipedon. It might be judged somewhat similar to Shadow, which was not a component of this map unit.

#### YELL\_029

Map unit: 2213 -- Hobacker-Greyback-Shadow families, complex

Field Investigation: Loamy-skeletal, mixed, superactive Ustic Haplocryept

Lab adjusted: same as field

Series: Not defined.

Prominent characteristics include a cambic horizon (5-39 cm, Bw1, Bw2) and a loamy-skeletal particle-size family. Lab data confirmed the classification with 8% clay in the particle-size control section. Lab pH's ranged from 6.3 to 6.5.

Although dry colors of the Bw1 and Bw2 were not dark enough to qualify as part of a mollic epipedon (moist colors did fit within the mollic criteria), this pedon had organic carbon totals and base saturation consistent with many mollic epipedons.

This pedon was dissimilar to Hobacker because of the low percent clay. It was dissimilar to both Greyback and Shadow due to the lack of CaCO<sub>3</sub> and high pH's and dissimilar to Hobacker and Greyback due to not having a mollic epipedon. However, it was somewhat similar to the Shadow family component, which lacked CaCO<sub>3</sub>, as this profile did.

# Forested colluvial soils in map units with rock outcrop and rubble areas of nonvolcanic rocks of granite, gneiss and schist (map unit 522).

#### YELL\_022

Map unit: 522 -- Rock outcrop-Rubble land-Hobacker family, complex

Field Investigation: Loamy-skeletal, mixed, superactive Lithic Haplocryept

Lab adjusted: same as field

Series: Not defined.

Prominent characteristics included a cambic horizon (15-49 cm, Bw) and a lithic contact at 49 cm. This soil was loamy-skeletal with 9% clay in the Bw and pH's ranged from 5.8 to 6.3.

This pedon was the only one in the Yellowstone NEON site with significant mica flakes, which were field-estimated at 25% for the Bw horizon (15-40 cm). However, our estimates were not high enough to meet micaceous mineralogy, although lab data for minerology (not part of the suite of analyses that the Kellogg lab is running on the NEON project) is the most reliable way of making this determination.

This pedon was not similar to the Hobacker due to its shallow depth, low clay percent and lack of a thick mollic epipedon. It was also much shallower than the Kegsprings minor component.

# Forested soils in formed in metamorphic and igneous (non-volcanic) till and residuum (map unit 2543).

#### YELL\_012

Map unit: 2543 -- Midfork-Arrowpeak families-Rock outcrop, complex

Field Investigation: Loamy-skeletal, mixed, superactive Pachic Haplocryoll

Lab adjusted: Loamy-skeletal, mixed, superactive Ustic Haplocryoll

Series: Midfork-like

Prominent characteristics identified in the field included a Mollic epipedon (3-22 cm, A1) and a loamy-skeletal particle size class with a field estimated 16% clay in the subsoil.

Originally, the A2 horizon (22-48 cm) was identified as part of the mollic, which would meet the Pachic subgroup taxonomic classification. However, lab data showed low organic carbon values (< 0.6% OC) were low for the A2 horizon (22-48 cm) and upon reviewing our samples, the dry color for the A2 was too light to meet mollic criteria. Therefore, only the A1 qualifies as part of the mollic. Lab data indicated 9.5% clay with pH's ranging from 6.6 to 7.0.

This soil was taxonomically the same as the Midfork series but it deviated from the Midfork component in having less clay throughout (around 9.5% in this pedon while the Midfork component averages around 20%).

#### References

Case, J.C, Arneson, C.S and Hallberg, L.L. 1998. Preliminary 1:500,000-Scale Digital Surficial Geology Map of Wyoming.

Love, J.D., and Christiansen, A.C. (compilers), 1985. Geologic map of Wyoming: U.S. Geological Survey, map scale 1:500,000.

Licciardi, J. L. Pierce, K. 2018. History and dynamics of the Greater Yellowstone Glacial System during the last two glaciations. Quaternary Science Reviews. 200. 1-33. 10.1016/j.quascirev.2018.08.027.

Prism Climate Group. Available online at http://www.prism.oregonstate.edu/. Accessed 7/5/2018.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. *National Soil Information System (NASIS)*. Not available to the general public. Accessed [7/5/2018 & 3/1/2019].

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. *Official Soil Series Descriptions (OSD)*. Available online.

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2\_053587 Accessed [2/24/2019].

Schoeneberger, P.J., and Wysocki, D.A. 2017. Geomorphic Description System, Version 5.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.