

NEON AOP LEVEL 0 DATA QUALITY CHECKS

PREPARED BY	ORGANIZATION	DATE
Tristan Goulden	AOP	06/05/2015
William Gallery	AOP	06/05/2015
David Hulslander	AOP	06/05/2015
Keith Krause	AOP	06/05/2015
Nathan Leisso	AOP	06/05/2015
lan Crocker	AOP	08/25/2016
Tristan Goulden	AOP	11/16/2017

APPROVALS	ORGANIZATION	APPROVAL DATE	
Kate Thibault	SCI	05/26/2022	

RELEASED BY	ORGANIZATION	RELEASE DATE
Tanisha Waters	СМ	05/26/2022

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Change Record

REVISION	DATE	ECO #	DESCRIPTION OF CHANGE
А	07/28/2015	ECO-03045	Initial release
В	07/31/2015	ECO-03172	Formatting changes only, no content changes
С	10/13/2016	ECO-04155	Minor updates in support of Payload 2 FPDR, template update.
D	12/01/2017	ECO-05275	Broken references fixed for Payload 3 IOCR.
E	05/26/2022	ECO-06832	Revised NEON logo and fine print

Date: 05/26/2022 Revision: E

TABLE OF CONTENTS

1	D	ESCRI	РПОN1
	1.1	Pur	pose 1
	1.2	Sco	pe 1
2	R	ELATE	D DOCUMENTS AND ACRONYMS 2
	2.1	Арр	licable Documents
	2.2	Ref	erence Documents
	2.3	Ext	ernal References
	2.4	Acr	onyms 2
3	11	NTROD	UCTION
4	G	ips / IN	1U 6
	4.1	Rav	v Data Required
	4.2	Ver	ification Procedure
	4.3	Pot	ential Limitations12
	4.4	Fut	ure Improvements13
5	Ν	IEON II	MAGING SPECTROMETER14
	5.1	Rav	v Data14
	5.2	Ver	ification Procedure
	5	.2.1	NIS Level-0 Performance Metrics and Acceptable Ranges16
	5	.2.2	NIS Preliminary Flight Line Mapping Utility
	5	.2.3	Procedure for Installing the NIS QAQC on the Hotel Kit19
	5	.2.4	Procedure for Operating the NIS Level-0 Quality Assurance Algorithm
	5.3	Lim	itations25
	5.4	Fut	ure Improvements25
6	V	VAVER	DRM LIDAR
	6.1	Rav	v Data26
	6.2	Ver	ification Procedure
	6	.2.1	Measured PRF27
	6	.2.2	T0 Dark Offset
	6	.2.3	TO Peak Signal

S N	Title: NEON AOP Level 0 Data Qualit	Date: 05/26/2022	
y Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E

	6.2.	4	TO Full Width Half Maximum	28
	6.3	Limit	tations	29
7	DIG	ITAL	CAMERA	30
	7.1	Raw	data	30
	7.2	Verif	fication Procedure	33
	7.2.	1	Exposure Test	33
	7.2.	2	Corrupt Images	37
	7.3	Limit	tations	39
	7.4	Futu	re Improvements	39
8	cov	'ERA C	GE4	10
	8.1	Raw	Data	40
	8.2	Verif	fication Procedure	41
	8.2.	1	Procedure for Operating the AOP Level-0 Coverage Check	43
	8.3	Limit	tations	46
	8.4	Futu	re Improvements4	46
9	REF	EREN	CES	47

LIST OF TABLES AND FIGURES

Table 1. Requirements for Successful LO Quality Check	4
Table 2. Verification Criteria for the POS System	6
Table 3. NIS Operating Sequence during a typical Flight	14
Table 4. NIS Quality Control Metrics tested by the NIS QC algorithm associated with nominal val	ues and
the acceptable ranges	17
Table 5. Waveform LiDAR verification criteria	26
Table 6. Expected value and acceptable range of PRF values	27
Table 7. Expected T0 dark offset values	28
Table 8. Expected value and range for TO peak signal	28
Table 9. Expected values for the TO FWHM	29
Table 10. Verification criteria for the digital camera	30

Figure 1. Listing of Raw POS Data for a Flight of DSNY in D03	7
Figure 2. Running POSPac MMS from the command line in a DOS prompt	9
Figure 3. Extraction of raw data from the proprietary files	10

Figure 4. Internal quality check on the continuity of the IMU data10
Figure 5. Processing of the POS data into a trajectory11
Figure 6. Writing out a processed smoothed best estimated trajectory (SBET)
Figure 7. Processed trajectory which shows successful combination of GPS and IMU data
Figure 8. Example of a NIS OBC collect. In this figure, time is increasing from the top down. Each of the
OBC collects have been temporally shortened for illustration. The OBC data is used for verification of the
NIS behavior during the science collect
Figure 9. Flight lines collected 2014-05-18 by NIS-1 over the NEON DSNY site in Florida. The blue lines
are the planned flight lines while the red lines are the actual flight path for each of the NIS datasets19
Figure 10. Email recipients of NIS LO quality check results
Figure 11. Opening Matlab on a Windows machine
Figure 12. Opening the NIS QAQC algorithm in Matlab
Figure 13. Start the scrip by click the green run button
Figure 14. Click the 'Add to Path' button to point Matlab to all of the ancillary functions required to
process the NIS data22
Figure 15. The user here has selected the 2014051813_PIMB top-level directory for processing22
Figure 16. Select the *.kml file associated with the flight plan that was flown23
Figure 17. Updates from the NIS LO quality check process are displayed in the Matlab command window.
Upon completion, the Matlab command prompt (>>) returns to the command window23
Figure 18. Example of a QA report file from 2014-05-18 NIS dataset collected over the D3 Disney site24
Figure 19. Image 130626A_EH021537(20130626055958)-0001.tiff: left- images, right-histograms of the
rgb channels
Figure 20. Summary statistics for 201306061934
Figure 21. Statistics, image and histograms for an image that failed both the "Very dark" and "Very
uniform" tests
Figure 22. Statistics, image and histograms for an image that failed both the "Very bright" and "Very
uniform" tests. This image was taken over Railroad Valley, NV. The background is desert
Figure 23. Two consecutive images taken on 20120808 over Harvard Forest showing corruption in the
second image
Figure 24. Photo (light blue), LiDAR (green), and spectrometer (red) coverage polygons for a single flight
line over DSNY from 201441
Figure 25. Calculation of coverage from flight swaths
Figure 26. Prompt for directory containing photo and LiDAR KML files
Figure 27. Prompt for selecting spectrometer coverage KML files
Figure 28. Prompt for selecting TOS boundary shapefile45
Figure 29. Prompt for selecting airshed boundary shapefile45
Figure 30. Results of the coverage check46

1 DESCRIPTION

This document describes in-house quality checks of NEON AOP L0 data developed to verify 1) the spatial coverage of data and 2) whether L0 data is within a tolerable range. L0 data observed by AOP is acquired through sensors mounted on an airborne platform and include a POS system (GPS / IMU), imaging spectrometer, high resolution RGB camera, and a full waveform LiDAR. This document describes the tolerance limits of an L0 measurement, which determines whether the measurement is 'in-range', and the algorithmic details on testing the tolerance criteria. Additionally, the document describes the spatial coverage criteria that must be met by in-range data for the airshed boundary (100% coverage) and the priority 1 flight box (80% coverage) along with an algorithm to determine the total spatial coverage.

1.1 Purpose

The purpose of this document is to describe the LO raw quality assurance and quality checks to be performed for each sensor on the NEON AOP. The quality checks determine, to the extent possible, that the raw data is within range and acceptable for producing higher-level data products. The document also guides AOP personnel through the procedure of implementing the code used to perform these checks.

1.2 Scope

This document covers the processing required to produce level one LiDAR, imaging spectrometer, and camera data products.

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

Applicable documents contain information that shall be applied in the current document. Examples are higher level requirements documents, standards, rules and regulations.

AD [01]

2.2 Reference Documents

Reference documents contain information complementing, explaining, detailing, or otherwise supporting the information included in the current document.

RD [01]	NEON.DOC.000008	NEON Acronym List
RD [02]	NEON.DOC.000243	NEON Glossary of Terms
RD [03]	NEON.DOC.015013	AOP Imaging Spectrometer Specifications
RD [04]	NEON.DOC.015073	AOP Imaging Spectrometer Statement of Work
RD [05]	NEON.DOC.001517	AOP Imaging Spectrometer Calibration Plan
RD [06]	NEON.DOC.001548	AOP Payload Data Time Stamping
RD [07]	NEON.DOC.001557	AOP Flight Planning Standards and Configurations
RD [08]	NEON.DOC.002652	NEON Level 1, Level 2, and Level 3 Data Products
RD [09]	NEON.DOC.001989	AOP Payload Imaging Spectrometer System
RD [05]	NEON.DOC.001517	AOP Imaging Spectrometer Calibration Plan
RD [06]	NEON.DOC.001277	AOP directory and file name conventions

2.3 External References

External references contain information pertinent to this document, but are not NEON configurationcontrolled. Examples include manuals, brochures, technical notes, and external websites.

ER [01]

2.4 Acronyms

Acronym	Explanation
AGL	Above Ground Level
BDE	Bad Detector Element
COTS	Commercial off the shelf
DN	Digital Number
GPS	Global Positioning System
GSD	Ground Sampling Distance
IMU	Inertial Measurement Unit
POS	Positioning and orientation system
RGB	Red Blue Green

Title: NEON AOP Level 0 Data Quali	Date: 05/26/2022	
NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E

SOBC Spectral On-Board Calibrator

3 INTRODUCTION

The NEON AOP (Airborne Observatory Platform) contains a suite of remote sensing instrumentation on an airborne platform. The sensors on the AOP include a GPS / IMU, used to provide the position and orientation of the aircraft, a full waveform LiDAR which captures three-dimensional information about the topography and structure of surface features such as vegetation, a high resolution RGB digital camera which provides information on land-use, and a visible and shortwave infrared spectrometer which provides enhanced information on surface features, especially vegetation. According to NEON.MGMT.DPS.005004.REQ any raw information collected by the AOP sensors is considered Level-0 (L0) data, and must be checked for quality and completeness. The fidelity of the L0 data is paramount because all subsequent data products (L1 through L4) are developed from the L0 data.

The AOP is tasked with acquiring L0 data at the NEON sites for a given year. A typical site for an AOP survey is contained within a 10 x 10 km box, which can be flown in a single mission. However, some areas will require multiple missions to complete. Several restrictions are placed on the timing for acquisition of L0 AOP data including plant photosynthetic activity (peak greenness), sun conditions (high solar angles) and weather (no inclement weather). Given the high cost and time sensitive nature of the flights it is imperative to gain a prompt estimate (< 12 hrs) of the quality and coverage of the L0 data to allow development of higher level data products of sufficient quality to perform scientific analyses. Once assurance of data quality is ascertained, the aircraft can depart the current site for the subsequent survey location. If the criteria have not been met, it indicates that another flight will be required prior to proceeding to the subsequent survey site. This document describes checks, which have been designed to ascertain the quality of L0 data. **Table 1** lists the requirements, which must be met in order to achieve success on the L0 quality checks and allow departure of the aircraft to a subsequent survey site.

	Table 1. Requirements for Succession to Quality Check			
Criteria	Requirement			
Site coverage80% of the data AOP collects within the official site boundary swithin range as defined in NEON.DOC.002890				
Airshed coverage	95% of the data AOP collects within the TIS-defined site airshed shall be within range as defined in NEON.DOC.002890			

Table 1. Requirements for Successful L0 Quality Check

The in-range criteria identified in **Table 1** is described within the following sections which highlight the individual sensors including 1) GPS / IMU, 2) waveform LiDAR, 3) imaging spectrometer and 4) RGB camera. The design of the checks and their associated tolerance criteria considered both robust ness of checks and their execution time. For example, processing the data to an L1 product provides the most robust assurance that the data is suitable for further product development; however, the volume of information collected in a single flight precludes processing to an L1 product due to time constraints.

Therefore, deliberate effort was placed in avoiding processing data to an L1 product in order to maintain processing efficiency and allow a compromise between robustness and execution time.

In the field, the data must be extracted from the sensor systems prior to the implementation of L0 quality checks. Currently, this is performed through the Hotel Kit, with an in-house algorithm. In an operational scenario, the airborne sensor operators (ASOs) will extract the L0 data and perform the quality checks in-field at the end of each day of acquisition. The extraction of L0 data and associated quality checks must be completed prior to the beginning of the following day's acquisition, imposing a maximum time for data extraction and execution of quality checks of 12 hrs.

The document is hereafter divided into five sections which discuss the quality checks for each individual sensor systems including 1) the GPS / IMU, 2) the spectrometer, 3) the waveform LIDAR, 4) the digital camera, followed by a section 5) assessment of spatial coverage for the LiDAR, camera and spectrometer. Within each section, the in-range criteria imposed for success, raw data required for verification, algorithm design, and if required; potential limitations and future improvements.

4 GPS / IMU

4.1 Raw Data Required

The GPS / IMU information is obtained with POS AV 510 sensor or 610 sensor, a commercial-off-theshelf (COTS) product produced by Applanix (Applanix, 2012). The POS AV sensor records GPS information at 1 Hz and IMU data at 200 Hz. The raw GPS and IMU measurements are recorded into several files in a proprietary format designed by Applanix. Each file has a maximum size of ~12.8 MB, and several of these files are required to record the data for an entire flight. For a flight which maximizes the aircraft flight time, over 30 files may be required. The files are organized with an extension that begins with *.000 and ends with number of files recorded (i.e. *.033 as the last file of 34 total files) (**Figure 1**). As identified in **Table 2**, the L0 quality check for the GPS/IMU consists of ensuring the data is not corrupt.

Table 2. Verification Criteria for the POSSystem			
Verification	Criteria for fail		
POS data has not been corrupted	Files unsuccessfully open in POSPac MMS and unable to create smoothed best estimated trajectory (SBET)		

Table 2. Verification Criteria for the POSSystem

nean	Title: NEON AOP Level 0 Data Qualit	Date: 05/26/2022	
Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

e Edit View Tools Help				
Organize 🔻 Burn New folder			8	• 🗖 🕜
★ Favorites	14051813.000	14051813.010	14051813.020	14051813.0
Nesktop	14051813.001	14051813.011	14051813.021	14051813.03
📕 Downloads	14051813.002	14051813.012	14051813.022	14051813.0
🔢 Recent Places	14051813.003	14051813.013	14051813.023	14051813.0
	14051813.004	14051813.014	14051813.024	
Libraries	14051813.005	14051813.015	14051813.025	
Documents	14051813.006	14051813.016	14051813.026	
J Music	14051813.007	14051813.017	14051813.027	
Pictures	14051813.008	14051813.018	14051813.028	
Subversion Videos	14051813.009	14051813.019	14051813.029	
Computer	•			

Figure 1. Listing of Raw POS Data for a Flight of DSNY in D03

4.2 Verification Procedure

As the file format of the data is in a binary and proprietary format, there is no possibility of developing in-house algorithm / code to verify the quality of the data. To read the proprietary format of the raw data the files must be opened in PosPAC MMS, a software package provided by Applanix. Opening the raw files PosPAC MMS automatically prompts an internal quality check on the continuity of the data. If the data can be successfully opened in the software, assurance is ascertained that the data has not been corrupted and an acceptable trajectory can be successfully produced. The importation of the raw files can be automated within a Window's DOS prompt with the following command (Applanix, 2014)

>> pospac.exe -b input_parameters.posbat

where the input_parameters.posbat is an xml file organized as follows:

1 <?xml version="1.0"?>

- 2 <Batch xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- 3 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- 4 <Project>
- 5 <Name>L0_check</Name>
- 6 <Kernel />
- 7 <Extract>
- 8 <FirstPosFile>D:\tristan\POStest_batch\POS\14101317.000</FirstPosFile>
- 9 <LastPosFile>D:\tristan\POStest_batch\POS\14101317.013</LastPosFile>
- 10 <StartTimeTotalSec>0</StartTimeTotalSec>
- 11 <StopTimeTotalSec>999999</StopTimeTotalSec>
- 12 </Extract>
- 13 <Process>
- 14 <GnssMode>PriGNSSNav</GnssMode>
- 15 <GnssNavType>None</GnssNavType>
- 16 <SingleBaseList />
- 17 <AutoSelectDownload>false</AutoSelectDownload>
- 18 </Process>
- 19 <TemplateFile />
- 20 <Status>Completed</Status>
- 21 <Stage>
- 22 <Name>POSDataImport</Name>
- 23 <Status>Completed</Status>
- 24 </Stage>
- 25 <Stage>
- 26 <Name>GNSSInertial</Name>
- 27 <Status>Completed</Status>
- 28 </Stage>

- 29 </Project>
- 30 <Version>3.0</Version>
- 31 </Batch>

On line 8 of the XML file the first POS file intended for processing must be entered, and on line 9 the last POS file intended for processing must be entered. Line 5 contains the name of the project, which has been set at 'L0_check.' The file is then run from the command line in a DOS prompt (**Figure 2**). Once executed POSPac MMS will open and extract the raw data (**Figure 3**) and perform a continuity QA check on the IMU data (**Figure 4**). Following this, the program does a coarse forward processing on the trajectory (**Figure 5**). For scientific data, the forward processing will be done with CORS and local basestation to improve the accuracy of the trajectory, however, execution of a coarse trajectory at this stage proves that it will be possible to create the desired trajectory at a later date. POSPac MMS will write the trajectory (**Figure 6**) to a folder that is located with the POS data.

Figure 2. Running POSPac MMS from the command line in a DOS prompt

POS Data Extraction		
Extracting POS data		
Solution Status: Pri C/A		
Time Remaining: 0:00:09		
-	15 %	
		Cancel

Figure 3. Extraction of raw data from the proprietary files

IMU Data Contin	uity Check			
Checking IMU d	ata			
Time Remaining	: 0:00:04			
		21 %		
			Cancel	

Figure 4. Internal quality check on the continuity of the IMU data

NSF	neen	Title: NEON AOP Level 0 Data Qualit	Date: 05/26/2022
			Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso

		A912	
GNSS-Inertial Processor I	Mission 1		
 Forward processing			
Time Remaining: 0:00:03			
	71 %		
		Cancel	

Figure 5. Processing of the POS data into a trajectory

		A912	
GNSS-Inertial Processor	Mission 1		
 Smoother processing: Writi	ing SBET		
Time Remaining: 0:00:22			
	34 %		
		Cancel	
Λ			

Figure 6. Writing out a processed smoothed best estimated trajectory (SBET)

Once forward processing is complete, the trajectory will turn green, indicating the GPS and IMU data has been successfully processed into an airborne trajectory (**Figure 7**). The final SBET will be named '**sbet_Mission 1.out'** and will be located in the folder where the executable was run in the DOS prompt. In this example, it was created in the folder '**POSPac_MMS_batch_example\'**. Within that folder, the final trajectory will be contained in

'L0_check \ Mission1 \ Proc'

Figure 7. Processed trajectory which shows successful combination of GPS and IMU data

The successful creation of the SBET file provides the final verification that the GPS / IMU data is capable of producing a trajectory that will contribute to the within range verification of the remaining sensors. For the example flight presented here, less than five minutes was required for processing indicating it is sufficient for the time constraints imposed by the L0 quality check criteria.

4.3 Potential Limitations

It is possible during data collection that a power interruption (intended or not intended) will cause the POS data to stop recording. If a flight is continued after a power interruption there will be a large gap in the trajectory that occurred during the power outage. In this circumstance, the LO quality check for the trajectory will have to be executed multiple times. A separate input file for execution in the DOS window will have to be created for the POS files associated with each unique portion of the trajectory. In this circumstance, the Name one line 5 of the input file will also have to be changed for each section.

n	Title: NEON AOP Level 0 Data Qualit	Date: 05/26/2022	
ttelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

Following the NEON.DOC.001277, a letter, starting with 'A' should be appended to the end of the name for each section of the trajectory.

4.4 Future Improvements

This process may be further automated in the future through automated population of the required fields in the XML input file for the project name, and the first and last input POS file. The execution of the DOS command prompt can also be automated, reducing any need for human interaction into the system. Such a system could also automate the processing of separate trajectories if unique naming was applied to each individual section. Further tests can also be performed on the SBET and associated QA files once it is produced, such as analysis of the errors, number of GPS satellites tracked during data acquisition.

5 NEON IMAGING SPECTROMETER

The Neon Imaging Spectrometer (NIS) is a custom instrument developed by NASA's Jet Propulsion Laboratory (JPL) specifically for use in ecological studies. Details about the design and operation of the instrument may be found in applicable reference documents listed above, see RD [03], RD [04], and RD [05].

The calibration is based on extensive work done in the NEON Sensor Test Facility. This calibration is operationally monitored through the use of an on-board calibration (OBC) system (see RD [05]). Typical flight lines consist of collection of OBC data, the desired science collect, and concluding with a second collection of OBC data. The OBC sequence consists of a 10-second collect of shuttered darks, a medium intensity broadband radiance, a high-intensity broadband radiance, and ending with a spectral source (HeNe laser at 632.8-nm).

5.1 Raw Data

During flight operations, the NIS collects data along previously planned flight lines. The collected data consists of the desired raw science data collected over the site but also includes On-Board Calibration (OBC) data collected before and after each flight line (**Figure 8**, **Table 3**). These are stored as separate files beneath a common individual directory for each flight line.

Flight Leg	NIS status	Spatial lines (Frames)	
Fly from forward operating	NIS not recording although a test collect		
base (FBO) to survey area	is collected on the tarmac prior to taxi		
Conduct flight line	OBC dark shutter	1000	
	OBC mid-level source	1000	
	OBC high-level source	1000	
	OBC dark shutter (Dark offset)	1000	
	OBC HeNe laser	500	
	Science flight line	variable, 50000 typical	
	OBC dark shutter (Dark Offset)	1000	
	OBC mid-level source	1000	
	OBC high-level source	1000	
	OBC HeNe laser	500	
Turn around for next flight line	NIS not recording	Not recording	
Conduct next flight line			

Table 3. NIS Operating Sequence during a typical Flight

ne@n	Title: NEON AOP Level 0 Data Qualit	y Checks	Date: 05/26/2022
Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

Flight Leg	NIS status	Spatial lines (Frames)
Conduct next flight line		
Return to FOB	NIS not recording	

Figure 8. Example of a NIS OBC collect. In this figure, time is increasing from the top down. Each of the OBC collects have been temporally shortened for illustration. The OBC data is used for verification of the NIS behavior during the science collect.

The structure of each individual flight line directory (ex: NISX_YYYYMMDD_HHMMSS) consists of multiple sub-directories. A single sub-directory labeled 'raw' contains the OBC and science data collected. Each of the collects in **Figure 8** consists of an individual ENVI format file consisting of the binary image and an associated header file of ASCI format. Other directories contain navigation data, calibration data, timing and geolocation data, and resulting shape of the collected flight line.

5.2 Verification Procedure

The operational behavior of the NIS is monitored through the use of the On-board Calibration (OBC) system in addition to environmental health telemetry collected by the image acquisition computer (DCC) and the monitor NIS laptop. This is required due to the size of the science portion of the acquisitions

rendering the time required for analysis to be extensively long. In addition, monitoring the OBC data enables a better ability to monitor parameters that would be washed out due to the science signal in the actual imagery.

The plan laid out here is based on comparison of the operational OBC data to OBC data collected in the NEON sensor test facility during the calibration of the NIS. In addition, the focal plane temperature and vacuum vessel pressure from the environmental health telemetry is monitored to verify the behavior is within typical operating constraints.

The parameters used in the quality assurance are based on previously encountered issues during NEON engineering flights. While it is hoped that we may catch every conceivable failure mode this is not realistic for a starting point. As we continue to gain understanding of the operational behavior of the NIS, it is expected that the quality assurance verification algorithm will continue to improve. Table 4 summarizes the following performance metrics listed below and describes the within range criteria.

5.2.1 NIS Level-0 Performance Metrics and Acceptable Ranges

- 1. The FPA temperature is monitored for variances from the operational set point (nominal) defined by JPL for a particular NIS prior to delivery. If cooling to the NIS is lost, the FPA temperature will quickly drop below nominal then warm over a longer period. Temperature gradations throughout the NIS result in spectral calibration changes that lead to unacceptable data quality. In addition, as the temperature of the FPA warms, the noise level of the FPA increases leading to degraded quality of the L0 data.
- 2. High Chamber pressure levels indicate that either the Non-Evaporable Getter pumps needs reactivation or the chamber is leaking at a higher than expected rate. This could lead to icing of the instrument and poor data quality.
- 3. The positive bias of the Focal Plane Array output (DN) while the NIS is shuttered is monitored for changes from the laboratory calibration. Variation in the dark offset is acceptable within a range of conditions. However, it is important that this value is not too low or too high. If the value is too low, it results in pixels that are floored meaning that they report zero when the NIS is shuttered. If the dark offset value is too high, the available dynamic range is reduced along with the resulting data quality. Variation in the dark offset should minimal on the temporal scales of a flight line.
- 4. The dark offset data collected before and after the science collect is also used to monitor the noise levels of the FPA. This is monitored by looking at the RMS of the 1000 frames of shuttered data collected before and after each science collect.
- 5. The On-Board Calibration (OBC) is monitored to verify that the radiometric calibration has not shifted from the laboratory. Typically the NIS is more stable than OBC system in terms of absolute accuracy. However, the OBC may be used for trending the NIS behavior. The OBC illuminates the entire used area of the FPA with varying light levels depending on the spectral/spatial position. The

results of the 1000 frame bright OBC collects are averaged and compared with the laboratory collect to look for gross changes in the NIS behavior. The range listed in **Table 4** is the mean of the percent difference of the operation OBC from the lab OBC across the entire FPA.

- 6. The number of determined Bad Detector Element (BDE's). This is determined through the analysis of the OBC and SOBC data collected operationally. A BDE mask is determined in the laboratory, typically the total number of BDE is around 200 (out of a total number of approximately 250,000 used pixels). Some of the BDE's are 'Blinkers'. These are pixels that operate for some light levels or just occasionally work. The algorithm for determining the number of BDE's is still in the early stages. Currently it is preferential to over count BDEs than to undercount due to the correction algorithm implemented in the Level-1 processing.
- 7. The spectral calibration is monitored through use of the Spectral On-Board Calibration (SOBC) system. The SOBC injects laser light into the NIS and onto a diffuser in the optical path. However, only portions of the FPA are illuminated. The first method examines the difference in spectral pixel location illuminated between the operational collects and Laboratory calibration.
- 8. The variation of in spectral pixel location illuminated by the laser source is also examined across the FPA, this variation is typically referred to as spectral clocking. The range listed in Table 4 equates to an allowable spectral range of approximately 0.30-nm across the FPA for the fit of a linear equation through the determined band-centers of the spatial columns illuminated by the SOBC.

Table 4. NIS Quality Control Metrics tested by the NIS QC algorithm associated with nominal values and theacceptable ranges.

Performance metric (calculated w/o BDE*)	Nominal	Low	High
1. Difference in FPA Temperature (Kelvin) from JPL setpoint (NIS-1 = 134K, NIS-2 = 140K).	NIS JPL setpoint	Setpoint – 0.5°	Setpoint + 0.5°
 NIS Chamber Pressure (Values below 5.0E- 4 Torr are acceptable). 	< 5.0E-4 Torr	Not Applicable	> 5.0E-4 Torr
3. Focal Plane Array Dark Offset Positive Bias. Mean value for each pixel is calculated independently and the average determined for the used area of the FPA neglecting BDEs.	Nominal FPA dark offset value is about 1000 DN	10% < Nominal	10% > Nominal
4. Dark Offset RMS over 1000 frames. RMS for each pixel is calculated independently	Nominal Dark Offset RMS is about 2.4 DN	2 DN	3 DN

and the average determined for the used area of the FPA neglecting BDEs.

5. Difference in Bright OBC from Lab. Value each pixel is calculated independently and the average determined for the used area of the FPA neglecting BDEs.	Nominal FPA response to OBC determined in Lab	5% < Nominal	5% > Nominal
6. Number of BDEs in used area of FPA.	Nominal BDE determined in Lab	< 25 BDE	> 500 BDE
7. Fractional pixel location of the illumination from a SOBC HeNe laser at 632.8-nm.	Nominal determined from Lab Calibration	Nominal – 0.5	Nominal + 0.5
8. Absolute value of the SOBC Clocking of given as the slope in Pixel Space (zero is perfect spectral clocking).	Lab ~1E-5)	0	> 1E-4

*BDE = Bad detector elements

The performance metrics that will be monitored are based on the previously encountered failure modes as well as identified potential issues that could be detrimental to the NIS data. For each of these performance indices, there is the establish range of acceptable behavior listed above. Beyond this range the NIS Level-0 quality assurance algorithm will return an out-of-range response. The out-of-range response will result in either a warning or status of 'fail' for the NIS flight line of interest.

5.2.2 NIS Preliminary Flight Line Mapping Utility

The NIS QC algorithm also attempts to determine the planned flight line number for each of the collected NIS datasets. This algorithm is in a very preliminary state and does not differentiate between flight lines flown at different altitudes along the same planned line. The flight logs collected by the Airborne Sensor Operators should be utilized as the definitive answer for matching the NIS collect with the planned flight line.

The computed mapping between planned flight line number and NIS collect is displayed via two methods. The first is graphically in a plot at the top of the QC output as shown in (**Figure 9**). In this plot the planned lines are in blue while the position information recorded from the NIS GPS/IMU (see RD [06]) is displayed in red. In addition, the assigned flight line number is printed at the start of QC output for each NIS collect. The plot is a useful diagnostic tool if the computed flight line number does not match the planned flight line or the recorded line number in the ASO logs.

ne@n	<i>Title</i> : NEON AOP Level 0 Data Qualit	Title: NEON AOP Level 0 Data Quality Checks		
Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E	

Figure 9. Flight lines collected 2014-05-18 by NIS-1 over the NEON DSNY site in Florida. The blue lines are the planned flight lines while the red lines are the actual flight path for each of the NIS datasets.

The algorithm for assigning flight line numbers to NIS datasets computes the distance between decimated values of the GPS/IMU data and the straight-line planned flight line. Averaging GPS/IMU data from 100 frames to a single value decimates the GPS/IMU data. This results in GPS/IMU data at 1-second intervals, which is sufficient for this work. The distance is then found between each of the GPS/IMU data points and the planned flight lines and the smallest difference below a threshold value is selected as the planned flight line number for that particular NIS dataset.

5.2.3 Procedure for Installing the NIS QAQC on the Hotel Kit

 Checkout the NIS Level-0 Quality Assurance Algorithm from SVN. The algorithm is written in Matlab and makes use of a variety of included Matlab functions. For this reason, the entire NIS Matlab folder structure (the NIS_test_code folder and subdirectories) should be checked-out of SVN. The main NIS Matlab directory is located at:

https://svn.eco.neoninternal.org/svn/AOP/CommonTools/MATLAB/NIS_test_code/

- 2. Matlab will be installed on the Hotel Kits, if not, I will create an executable that may be run without Matlab being installed. Doing so, however, requires the Matlab Runtime Compiler, which we do not currently have.
- 3. The next step is editing the default path the script initially takes the user. To edit this, the variable baseP='D:\nleisso\; should be changed to the location the data to be tested will be on the Hotel Kit.
- 4. The final step is to edit the emailto variable to include the correct recipients (**Figure 10**). This should at a minimum include the relevant Airborne Sensor Operator's email (fltops1@neoninc.org

associated with NIS1, fltops2@neoninc.org associated NIS2, etc) and Nathan Leisso (nleisso@neoninc.org). Additional recipients may be added as needed.

43 -	emailto =	{'fltops1@neoninc.org',
44		'nleisso@neoninc.org'};

5. Verify the algorithm operates correctly including emailing the resulting PDF report to the desired recipients. The Matlab code uses the aopnis1@gmail.com email account for sending the results. This should be updated to a NEON account in the future.

5.2.4 Procedure for Operating the NIS Level-0 Quality Assurance Algorithm

1. Open Matlab from the Hotel Kit start menu (**Figure 11**), I have used 2013b for development but 2014 is acceptable as well.

Figure 11. Opening Matlab on a Windows machine.

 After Matlab has opened, click the open folder button, navigate to the nisDataChk.m file located several directories under the NIS_test_code directory checked out from SVN \NIS_test_code\statusChk\nisDataChk.m (Figure 12).

	nean	<i>Title</i> : NEON AOP Level 0 Data Qualit	ty Checks	Date: 05/26/2022
	Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

ganize 🔻 New folder				100	- 🔟 (
🔶 Favorites	Name ^	Date modified	Туре	Size	
🧮 Desktop	🏂 nisDataChk	1/21/2015 3:47 PM	MATLAB Code	14 KB	
Downloads					
🔚 Recent Places					
🔰 Libraries					
Documents					
J Music					
E Pictures					
Subversion					
Videos					
 Computer					
10.100.131.21:/sc					
Local Disk (C:)					
Rev Volume (D:)					
home (\\nas2fs.net					
			▼ A	II MATLAB files	

Figure 12. Opening the NIS QAQC algorithm in Matlab.

If Matlab is closed with the nisDataChk.m file still open in the editor, Matlab will reopen with the file already loaded.

3. To run the script, click the green run button in the Matlab GUI header (Figure 13).

AMATLAB R2014b						
HOME PLOTS	APPS EDITOR	PUBLISH	VIEW		L 🖬 🕹 .	🚡 🛱 🤝 🔄 🔁 🕐 Search Docur
New Open Save Compare FILE FILE FILE FILE FILE FILE FILE FILE	Go To V Comment	EDIT BREAKPOINTS	 Advance 	Run Section Advance Run a Time	nd	
Current Folder	😠 📝 Editor - D:\nleisso	\Matlab\NIS test code\sta	atusChk\nisDataCl	ık.m		⊙×W
Name A	nisDataChk.m 💥				help.	×
	1 - clc; c 2 - - 3 %% Sub - 4 - codeRe 5 - codeNe 6 - codeDa 7 - userPa 0 - codePa 11 - addpat 12 - s% Edit	lear all; fclose all	<pre>t; close all; to be writte nleisso \$'; nleisso \$'; nl4-07-09 14:. ble riginal path ne('fullpath' L;))</pre>	tic; n in ENVI header 29:08 -0600 (Wed,	of results 09 Jul 2014) \$';	

Figure 13. Start the scrip by click the green run button.

Clicking the Green run button will bring up a small gray dialog box asking whether the code should be added to the Matlab path. Click the 'Add to Path' button (**Figure 14**).

Figure 14. Click the 'Add to Path' button to point Matlab to all of the ancillary functions required to process the NIS data.

4. The user is then prompted to select the main flight directory for quality checking. Navigate to the desired folder, highlight the directory, and proceed by clicking the 'Select Folder' button (**Figure 15**).

V 🔰 🕹 • Computer • New Volume (D:) • nleisso • 🔹 🚱 Search nleisso						
Organize 👻 New folder						
★ Favorites	Name ^	Date modified	Туре	Size		
E Desktop	2014_DSNY_radiance	1/27/2015 3:57 PM	File folder			
Downloads	2014_DSNY_reflectance	1/27/2015 1:27 PM	File folder			
🔛 Recent Places	2014_OSBS_radiance	1/20/2015 1:15 PM	File folder			
🔚 Libraries	2014_OSBS_reflectance	1/21/2015 8:18 AM	File folder			
Documents	2014HighParkCoverage	9/29/2014 9:56 AM	File folder			
J Music	20141204_ATCOR_testing	12/11/2014 10:57 AM	File folder			
E Pictures) 2014042315_PIMB	11/6/2014 9:20 AM	File folder			
Subversion	2014050713_PIMB	1/22/2015 1:12 PM	File folder			
Videos 👘	퉬 2014051813_PIMB	1/21/2015 9:19 AM	File folder			
💻 Computer	ᆶ aigCleanup	8/4/2014 9:23 AM	File folder			
9 10.100.131.21:/sc	💑 aigGeolocation	1/26/2015 2:57 PM	File folder			
Local Disk (C:)	AOPh52ENVI	1/12/2015 8:32 AM	File folder			
Rew Volume (D:)	鷆 Matlab	1/21/2015 10:03 AM	File folder			
home (\\nas2fs.net ▼	NIS_test_code	1/21/2015 3:47 PM	File folder			
Fold	er: 2014051813_PIMB					

Figure 15. The user here has selected the 2014051813_PIMB top-level directory for processing.

5. The user is then prompted to select the *.kml file associated with the flight plan that was flown. This is typically located ...\2014051813_PIMB\L0\Ancillary\FlightPlans\KMLs\ under the L0 ancillary folder. Please select the *_fltlines.kml file, NOT the *_swath.kml file (Figure 16).

nean	Title: NEON AOP Level 0 Data Qualit	ty Checks	Date: 05/26/2022
Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

Select flight plan kml file	e (D:) → nleisso → 2014051813_PIMB → LO → A	ncillary 🔻 FlightPlans 👻 KMLs	-	Search KMLs	×
Organize 🔻 New folder					- 🗋 😧
★ Favorites	Name *	Date modified	Туре	Size	
Tesktop	D03_DSNY_R1_P1_v1_fittines	4/2/2014 4:01 PM	KML File	12 KB	
Downloads	D03_DSNY_R1_P1_v1_swaths	4/2/2014 4:01 PM	KML File	150 KB	
Call Libraries Documents ↓ Music Pictures Subversion ↓ Videos					
Demputer 20. 100. 131. 21: /sc 20. Local Disk (C:) 20. New Volume (D:)					
Phome (\\nas2fs.net					
File na	me: D03_DSNY_R1_P1_v1_fitlines		•	(*.kml) Open	▼ Cancel

Figure 16. Select the *.kml file associated with the flight plan that was flown.

6. The script will then proceed to process the flightlines included in the selected directory. The status will be displayed in the Matlab Command Window (**Figure 17**).

Command Window
Calculated BDE mask has 127 bad pixels
File to be processed is 20140518_170650_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 126 bad pixels
File to be processed is 20140518_171345_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 126 bad pixels
File to be processed is 20140518_172013_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 126 bad pixels
File to be processed is 20140518_172722_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 125 bad pixels
File to be processed is 20140518_173404_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 127 bad pixels
File to be processed is 20140518_174044_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 127 bad pixels
File to be processed is 20140518_174728_hsi_raw_0000
NIS-1 20141103_NIS1v3_calCube is being used
Calculated BDE mask has 126 bad pixels
fx >>

Figure 17. Updates from the NIS LO quality check process are displayed in the Matlab command window. Upon completion, the Matlab command prompt (>>) returns to the command window.

- 7. After the Matlab script has finished, a report will be emailed to the recipients included in the setup of the code. In addition, the report file is also saved to the Ancillary folder under LO (Currently disable due to read/write access).
- 8. The user should then examine the status of the lines collected (Figure 18).

Figure 18. Example of a QA report file from 2014-05-18 NIS dataset collected over the D3 Disney site.

- 9. If a line does not pass inspection, the offending variable will be flagged in red and the status will report 'Fail' instead of 'Pass'.
- 10. If any of the quality checked flight lines do not pass inspection, the default option is to refly that particular flight line. However, if there is a systematic reason for the failure the root cause should be corrected prior to the second collection of the failed flight lines. A potential example is cooling to the NIS being lost during the flight and the focal plane temperature warming beyond the acceptable range.

5.3 Limitations

The current NIS Level-O algorithm does not look at the actual science data collected. This is currently by design as this is not a controlled input. However, it would be useful to verify that the collected science data does not consist entirely of zeros or of saturated data. This is currently out of scope due to the size of the collected data and the expected turn-around time.

5.4 Future Improvements

Future additions to this algorithm will incorporate a method to check random subsets of the science collect. While the input is unknown, this will be used to verify the external shutter is not closed and data is collected above the Focal Plane Array's nominal background output yet remains below saturation levels for the collect.

6 WAVEFORM LIDAR

The waveform LiDAR sensor is a COTS system, manufactured at Optech. The LiDAR sensor produces both discrete LiDAR results and waveform LiDAR results. The discrete results can be thought of as a derivative of the waveform LiDAR, however the implementation of this difference within the Optech system is important. When a laser pulse is returned to the system, the signal is split between two receivers. One receiver records an analog signal and determines the discrete LiDAR directly from the analog signal. The second receiver performs an analog to digital conversion of the signal at time bins of 1 ns and an 11-bit dynamic range to produce the waveform. In our experience with the Optech system, the waveform signal is prone to hardware malfunctions, resulting in data gaps. However, the discrete return results have been robust, and no hardware malfunctions have been observed. The discrete LIDAR is saved into a proprietary format with a '.range' extension that cannot be read by code developed in-house. Optech provides software which can read this data, however, it does not perform an appropriate quality check to determine if the results are within an acceptable range. To provide the L0 quality check on the LiDAR data, it is being assumed that if waveform data was successfully observed, the same is true for the discrete LiDAR. This allows quality checks to be performed only on the waveform data, avoiding the issue of the inability to parse the proprietary format of the '.range' file. If the unusual circumstance occurred in which the discrete LiDAR were not taken, and the waveform did exist, the discrete LiDAR can be recreated in-house from the waveform LiDAR. Table 5 lists the criteria for testing the waveform LIDAR.

Parameter assessed	What data stream it is measured from	Within range value
PRF	Measured from returns	+/- 5% of expected
Darkoffset	T0 pulse	Within a predefined range
Peak signal	T0 pulse	+/- 20% of expected
FWHM	T0 pulse	Within a predefined range
Number of missing shots	T0 pulses	< 0.01% of shots
Number of saturated shots	T0 pulses	< 5% of shots
Number of 'invalid' shots	T0 pulses	< 5% of shots
Number of missing return shots	Returned signal	< 25% of shots
Number of saturated returns	Returned signal	< 20% of shots
Valid signal range	Returned signal	< 5% of shots
Range values too small	Returned signal	< 5% of shots

Table 5. Waveform LiDAR verification criteria

6.1 Raw Data

The raw data required for the waveform verification is the binary waveform packets recorded during the flight as well as a log file which contains information about the flight parameters. The structure of the binary waveform packets is described by Optech, allowing in-house code to read their contents. The

waveform packets contain wavefrom data in sections. The log file is in an ASCII format and contains information about the laser parameters used to acquire the data such as the PRF (pulse repetition frequency).

6.2 Verification Procedure

For each flight line processed and each subset frame the code runs stats on all laser pulses within that frame. A subset of frames processed to reduce analysis time. The subset fraction value is configured by an input parameter file. For each flight line, the code verifies that raw data is within range for the following parameters as listed in **Table 5**.

- Measured PRF
- T0 dark offset
- TO Peak Signal
- T0 FWHM
- Missing T0 shots
- Saturated TO shots
- Invalid T0 shots
- Missing return shots
- Saturated return shots
- Low signal return shots
- Short range returns

6.2.1 Measured PRF

The PRF (Pulse repetition frequency) determines the rate at which LiDAR pulses are transmitted. The Optech system allows settings of 33, 50, 70, 100, 142 and 166 kHz. The purpose of this test is to verify that the instrument is operating nominally. The test compares the mean PRF (number of shots in frame divided by the time difference to the next frame) to the expected value. The expected values were determined through in house testing of the instrument as shown in **Table 6**.

PRF Setting	Expected Value	Expected Range
33	33.3326 kHz	± 5%
50	49.9989 kHz	± 5%
70	71.4270 kHz	± 5%
100	99.9978 kHz	± 5%
125	124.9973 kHz	± 5%
142	142.8 kHz	± 5%
166	166.0 kHz	± 5%

Table 6. Expected value and acceptable range of PRF values

6.2.2 T0 Dark Offset

The T0 dark offset represents the level of signal the receiver interprets in the absence of real signal. The T0 is assessed because a high dark offset value could be indicative of a data truncation issue, indicating that some actual signal was removed from the waveform. To verify, the mean T0 dark offset is compared to an expected value determined from in-house experimentation as shown in **Table 7**.

Table 7: Expected to dark offset values		
PRF Setting	Expected Value	Expected Range
33	210.00 DN	150-250 DN
50	210.00 DN	150-250 DN
70	210.00 DN	150-250 DN
100	210.00 DN	150-250 DN
125	210.00 DN	150-250 DN
142	210.00 DN	150-250 DN
166	210.00 DN	150-250 DN

6.2.3 TO Peak Signal

The TO peak signal corresponds to the maximum amplitude of the transmitted signal waveform. A low signal can be indicative of an optical misalignment in the receiving optics or an issue with the sensitivity of the receiving hardware. To verify, the mean TO peak signal is compared to an expected value. **Table 8** summarizes the expected value of the TO peak signal with an associated PRF.

Table 5. Expected value and range for To peak signal		
PRF Setting	Expected Value	Expected Range
33	2676.76 DN	± 20%
50	1719.55 DN	± 20%
70	1045.53 DN	± 20%
100	651.00 DN	± 20%
125	462.36 DN	± 20%
142	407.01 DN	± 20%
166	348.16 DN	± 20%

Table 8. Expected value and range for TO peak signal

6.2.4 T0 Full Width Half Maximum

The FWHM (full width half max) of the TO pulse describes its shape. The FWHM is based on the total transmission time of the pulse. If the TO FWHM is outside of range it represents an issue in the laser transmission hardware. Table 6-5 lists the verification criteria for assessing the TO FWHM, with the expected values being derived from in-house experimentation as shown in **Table 9**.

	Title: NEON AOP Level 0 Data Quality Checks		Date: 05/26/2022
5	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E

PRF Setting	Expected Value	Expected Range
33	8.96 ns	2-20 ns
50	10.48 ns	2-20 ns
70	12.31 ns	2-20 ns
100	14.52 ns	2-20 ns
125	17.64 ns	2-20 ns
142	TBD	2-20 ns
166	TBD	2-20 ns

Table 9. Expected values for the T0 FWHM

In addition to the above components, which vary with PRF, several additional tests which are independent of PRF must be checked. The total number of missing T0 shots should be less than 0.01% of the total number of expected shots. The number of saturated T0 shots should be less than 5% of shots, a higher percentage represents a potential issue with insecure cabling. The total number of invalid TO shots should be less than 5% of shots. The total number of missing return shots should be less than 25% of the total shots. If a high value of missing shots is noted, confirmations that this is not simply due to a surface feature such as a water body as water features will tend to absorb energy in the 1064 nm wavelength of the laser. The total number of saturated returns should be less than 20% of shots. If the number of saturated returns is higher, confirmation is required that surface features which result in strong returns, such as snow were not present. The returns are inspected for a valid signal range, which is considered to be 100 DN through in-house experimentation. The signal range is calculated as the difference between the maximum signal and the minimum signal. In total, less than 5% of shots should have a low signal. A basic range calculation is also performed to determine if shots were being returned from surface features and not some reflective particles in the atmosphere such as dust. Given the aircraft flies at 1000 m above ground level (AGL), a threshold of 400 m from the aircraft was set as the criteria for a short range. Less than 5% of shots should be less than the 400 m.

6.3 Limitations

The waveform LO quality check has the ability to produce false positives in terms of rejecting returning waveforms due to missing shots or high signal strength as shown in Table 5. The criteria for the number of missing shots allows 25%. Waterbodies will typically absorb some portion of the 1064 nm laser, as well as cause a specular reflection at incidence angles above zero resulting in very few returns. Therefore, if a line contains a large body of water it may fail the LO quality check, but this is not a result of a malfunction in the hardware system. A similar situation is true for the saturated signal, which allows 20% of shots according to Table 5. If a there is a target within the swath which is reflects the 1064 nm laser energy well (such as dry snow), it is possible that the LO quality check will fail. In these circumstances, the landscape within the failed swath will have to be interpreted by a human operator.

7 DIGITAL CAMERA

The digital camera hardware is supplied by Optech in a package with the LiDAR, however the camera is manufactured by Phase One. The camera records RGB images at 8 cm resolution under nominal altitude conditions (1000 m) and each image has dimensions of 8,984 x 6,732 pixels. Images are captured in a snapshot mode, and assuming a nominal flight altitude of 1000 m AGL, each image encompasses an area of 770 m cross-track by 577 m along-track (44 deg x 33 deg). Images are collected at a rate designed to 50 percent overlap between adjacent images. At an altitude of 1000 meters and a ground speed of 100 knots, an image is collected about every 5.7 seconds. **Table 10** lists the tested parameters and their failure criteria for the digital camera.

Parameter	Criteria for fail
Corrupt	Cannot be read in
Black image	All pixel values = 0
White image	All pixel values = 255
Image underexposed	90% of pixels have counts <= 40
Image over exposed	90% of pixels have counts >= 230
Reduced dynamic range within image	Standard deviation of pixel values is <= 10

Table 10. Verification criteria for the digital camera

7.1 Raw Data

The raw camera images are recorded in the proprietary II Q format but have a .tiff extension (see http://help.phaseone.com/en/CO7/Output/File-formats/Capture-One-and-RAW.aspx#item3). The file includes a 561 by 420 rgb thumbnail, as described in '.<u>TIF vs .IIQ</u>'

"Basically the final file is a valid TIFF of a very small preview of the image, with a "note" at the end of the file with the entire raw data. When opened in a program that does not support the Phase One Raw file format that program would see the TIFF-compliant preview and, at least, be able to show what the picture was of (although it would not be able to actually view the raw data)."

This thumbnail can be viewed by any Windows picture viewer that supports tif files, including Windows Explorer and Microsoft Office¹. Most image processing software, notably IDL and ENVI, can read these files but can access only the thumbnails.

¹ However, Microsoft Photo Viewer displays a 2246 by 1683 image that appears similar to the uncorrected raw data. Apparently, it is accessing a portion of the raw data and not the thumbnail.

Accessing the full 8,984 by 6,732 image requires software that recognizes the IIQ format, such as:

- <u>Capture One Pro 7 photo editing software: http://www.phaseone.com/en/Imaging-Software/Capture-One-Pro-7.aspx</u>
- <u>Raw Therapee: http://rawtherapee.com/blog/features</u>

Capture One is the software provided with the camera and is free to use with files in IIQ format. RawTherapee is open source software. Currently, AOP uses Capture One to process the raw images. The output from Capture One is a regular 8,984 by 6,732 tiff image that can be read by most software. However, processing the raw images requires, for example, several hours for 1000 images on a computer with 24 cores and 256 GB memory (all 24 cores are utilized.) For a 'quick look' of the images, processing the raw data in not feasible. Rather we must rely on the thumbnail images.

In creating the thumbnail images from the raw image data, the data collection software applies some (unknown) stretch to make the images more realistic, as shown in (**Figure 19**). In this figure, the left side shows the thumbnail image, the full resolution, raw uncorrected image, and the full resolution image after correcting for white balance and exposure. The right side shows the histograms of the *rgb* channels.
ne@n	Title: NEON AOP Level 0 Data Quali	ty Checks	Date: 05/26/2022	
	Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E

Thumbnail

Figure 19. Image 130626A_EH021537(20130626055958)-0001.tiff: left- images, right-histograms of the rgb channels.

7.2 Verification Procedure

The possible failure modes identified through experience so are:

- 1. The camera is not turned on before the flight line
- 2. The data collection process fails and data is not collected
- 3. The image file is corrupt and cannot be read
- 4. The exposure is set incorrectly or the lighting conditions change significantly during the flight and the operator does not adjust the exposure.
- 5. The recorded image is readable but is corrupted or has significant artifacts.
- 6. The camera lens is obscured (lens cap on or there is dirt/water on the lens)
- 7. The image suffers from smearing due to excessive aircraft motion or incorrect forward motion compensation

The first two failure modes occur when data is not collected and will be covered by the LiDAR verification plan. The modes 3 and 4 occur when data is collected but is corrupted or out of range and will be covered here. Modes 5 through 7 may require that an operator visually review the images. It is more convenient to describe the out-of-range criteria than the within-range criteria. Failure modes 4 and 5 relate to the data values (exposure) and can be detected programmatically. Failure modes 5 through 7 will probably require an operator to view some or all of the images.

7.2.1 Exposure Test

The following conditions are identified as out-of-range:

- 1. The image is all black: all the counts for all bands are 0
- 2. The image is all white: all the counts for all bands are 255
- 3. The image is very dark (underexposed) : the histograms of the image counts are shifted too far to the left
- 4. The image is very bright (overexposed): the histograms of the image counts are shifted too far to the right.
- 5. The histograms of the image counts are too narrow, i.e., the image appears uniform.

The IDL routine verify_camera_validation_stats.pro is designed to detect corrupt and out-of-range images. It reads each image and collects the following statistics:

- 6. Whether the file is corrupt, i.e., not readable
- 7. The mean, minimum, maximum and standard deviation of each band
- 8. The histogram and cumulative histogram of each band

Operated by Battelle	Title: NEON AOP Level 0 Data Qualit	ty Checks	Date: 05/26/2022
	Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso

The routine then applies the five exposure tests listed above and plots the results. The results for one case, for 2013060619 over the Colorado National Monument Park and Uncompanyer, are shown in Figure 20. Note that four images fail the "Very dark" and thirteen images fail the "Very uniform" tests.

Number of failures by test:

- 1. Image is corrupt: 0
- 2. Black Image: All the pixels are 0: 0
- 3. White image: All the pixels are 255: 0 4. Very dark image: 90 percent of pixels have counts le 40: 4
- Very bright image: 90 percent of pixels have counts ge 230: 0
- 6. Very uniform image: the standard deviation of the image counts is le 10: 13

Figure 20. Summary statistics for 2013060619

For each image that fails an exposure test, the image plus histograms of the band counts are plotted, as shown in **Figure 21**. In this case, the area within the image was in a deep cloud shadow. Other images that fail the "Very dark" test include views of water.

Failure results for image 20130606B_EH021537(20130606110328)-0048.t	tiff
Failed tests:	
4 Manual dark increase 00 and and a failure in house an units in 40	

4. Very dark image: 90 percent of pixels have counts le 40 6. Very uniform image: the standard deviation of the image counts is le 10

Statistics	:					
Band	Mean	StDev	Min	Max	# Black	# White
Red	19.0	10.3	0.0	97.0	10633	0
Green	30.0	6.7	0.0	81.0	5	0
Blue	24.7	7.9	0.0	75.0	2551	0

Figure 21. Statistics, image and histograms for an image that failed both the "Verydark" and "Veryuniform" tests.

ר	Title: NEON AOP Level 0 Data Qualit	y Checks	Date: 05/26/2022
elle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

An image that fails the "Very bright" and "Very uniform" tests is shown in **Figure 22**. This image was taken over Railroad Valley, NV where the background is bright desert. It does not represent a "failure" rather just a natural background.

Statistic							
Band	Mean	StDev	Min	Max	# Black	# White	
Red	251.2	4.4	219.0	255.0	# DIACK	53108	
Green	252.6	3.3	228.0	255.0	0	94270	
Blue	237.7	9.9	178.0	252.0	0	0	
	20130	0608_RRV	_EH021537	7(2013060	8074404)-0	013.tiff	
1.0						T T T T T T T T T T	T (# _) 1.0
Ē			- <u>_</u>		Histogr		NI .
Ē					1	ram ative Histogra	0.8
Ē					1		0.8
0.8		T ,T ,T -T			1		0.8
		1 1 1			1		0.8

Figure 22. Statistics, image and histograms for an image that failed both the "Very bright" and "Very uniform" tests. This image was taken over Railroad Valley, NV. The background is desert

n	Title: NEON AOP Level 0 Data Qualit	y Checks	Date: 05/26/2022
elle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

7.2.2 Corrupt Images

Some images show obvious corruption and/or artifacts that are not revealed by the exposure tests. **Figure 23** shows two consecutive images taken on 2-12-8-8 over Harvard Forest, Massachusetts. The second image shows obvious corruption. The source of this corruption is not known. Currently there is no known programmatic test to detect this kind of image failure. Until one is devised, this kind of failure can only be detected by an operator viewing the images.

Title: NEON AOP Level 0 Data Qualit	y Checks	Date: 05/26/2022
NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	<i>Revision:</i> E

20120808_D_EH021656(20120808123644)-0210.tiff

20120808_D_EH021656(20120808123851)-0211.tiff

Figure 23. Two consecutive images taken on 20120808 over Harvard Forest showing corruption in the second image.

7.3 Limitations

Similar to the waveform LiDAR, the camera LO quality checks are capable of producing false positive failures. For instance, a deep water body will fail the 'very uniform' and 'very dark' tests. Additionally, if a bright area is flown, such as the desert landscape in Railroad Valley (**Figure 22**), the 'Very uniform' and 'Very bright' tests can potentially fail. This will require interaction by a human operator to assess the failures to determine if the failures are legitimate.

7.4 Future Improvements

The out-of-range tests described here are initial attempts at catching invalid data. Both the test parameters and the tests themselves are subject to revision based on experience. In particular, the too dark or too bright tests may flag images that are still useful, especially if in the future, 16-bit images are collected. In addition, some scenes are naturally uniform, e.g., smooth lake surfaces and dense hardwood forest. Further experience is needed to determine the optimum thresholds for these tests, or whether to keep these tests at all.

Note that the analysis shown here is based on the 561 by 420 pixel "thumbnail" images extracted from the full 8,984 by 6,732 images: it is not possible to read the full images in a timely fashion (see Section 3). The assumption is that the statistics for the thumbnails and the full resolution images are similar enough that the thumbnail histograms can be used as proxies for the full image histograms. As seen in **Figure 19**, the thumbnail and the full image histograms are significantly different. However, for the purpose of these tests, I feel that they are similar enough. Specifically, an all-black thumbnail should indicate a too dark or bright full resolution image.

8 COVERAGE

8.1 Raw Data

The payload, as described in Section 3, produces sensor data (described elsewhere) and a large amount of ancillary data. The ancillary data produced includes two sets of KML files which can be used for L0 coverage checks. The KML files are generated in real-time and can be extracted immediately after flight. One set of KML files has polygons for the digital camera coverage and polygons for the LiDAR on-ground footprint per flight line. Within a single KML of a swath there is one polygon per acquired digital photograph, and one polygon per LiDAR swath. The second set of KML files contains polygons for the on-ground footprint of the NIS acquisition. These are also stored as complex polygon swaths with one KML per flight line. These sets of KML files are stored in two separate directories as described in the sensor data acquisition documents. An example of the polygons collected for one flight line is shown in **Figure 24**.

It is important to note that these KML files and the polygons contained therein are first-order coverage polygons and are not exactly the same as those produced by downstream high-precision geolocation processing. They are sufficient for immediate coverage checks and have the added benefit of not requiring extensive processing time for accurate geolocation.

AOP data acquisition is required to provide at least 80% coverage for all three instruments for the area described by the AOP priority 1 flight box and 952% coverage for the area described by the Airshed boundary as specified in **Table 1**. Flight plans to cover these areas are developed within AOP using considerations of platform capabilities, cloud cover, growing season and maximum greenness, system logistics and more. Flight plans, the Priority 1 Flight Box boundary, and the Airshed boundary are stored on the portable AOP systems (aka "Hotel Kit") for immediate post-flight processing and LO data checks.

8.2 Verification Procedure

The AOP LO coverage check code is written entirely in Python 2.7.9 using the open and freely available GDAL, os, pykml and tkinter modules. The program prompts the user to select the directory for the photograph and LiDAR input KMLs, the directory for the spectrometer input KMLs, the Priority 1 Flight Box boundary shapefile, the Airshed boundary shapefile, and lookup files for each of the three

instruments (spectrometer, LiDAR, and digital camera) indicating any data footprint polygons which should be excluded from coverage consideration from failing earlier data range validity testing.

All photograph polygons are Unioned in to a large, complex, multipart polygon preserving any holes or separate pieces (**Figure 25**). Polygon Union operations produce a result where any area included in one or more of the input areas is included in the output area. All LiDAR swath pologons are Unioned similarly, as are all spectrometer polygons. LiDAR and spectrometer polygons are also topologically validated prior to Unioning to eliminate any self-crossing boundaries or other vector invalid conditions possible with active swath coverage spatial data. Photograph footprints do not require this validation as they are simple quadrilaterals by definition.

The photograph, LiDAR and spectrometer Union polygons are converted from their input native Geographic projection to the UTM map projection of the Priority 1 Flight Box and Airshed boundaries. This allows coverage areas to be expressed and tested in square meters and produces much more reliable percentage coverage results.

The photograph, LiDAR and spectrometer Union polygons are each individually Intersected with the Priority 1 Flight Box boundary and individually Intersected with the Airshed Boundary (**Figure 25**) Polygon Intersection produces an output area that includes only those areas covered by all input areas. Coverage percentage results are then calculated as:

 $\frac{\cup (All \ Individual \ Sensor \ Polygons \) \cap (Required \ Area \ Polygon \))}{(Required \ Area \ Polygon \)}$

(1)

This produces six percentage coverage values:

- 1) Percentage coverage of Priority 1 Flight Box by digital photographs
- 2) Percentage coverage of Priority 1 Flight Box by LiDAR
- 3) Percentage coverage of Priority 1 Flight Box by spectrometer
- 4) Percentage coverage of Airshed by digital photographs
- 5) Percentage coverage of Airshed by LiDAR and
- 6) Percentage coverage of Airshed by spectrometer.

Original flightlines

Unioned flightlines

Intesected with flightbox

Figure 25. Calculation of coverage from flight swaths

8.2.1 Procedure for Operating the AOP Level-0 Coverage Check

- 1. Checkout the AOP Level-0 Coverage Check from SVN. The algorithm is written in Python and makes use of the GDAL, os, pykml and tkinter modules. These modules must be available on the machine on which the code is to be run.
- 2. Python will be installed on the Hotel Kits along with the required modeuls. If they are not, AOP scientists can create a Python app distribution that includes them with the code.
- 3. At a system command prompt, change directories to where the Level-0 Coverage Check code has been installed.
- 4. At the command prompt, type:

python PolygonTest

5. The user will be prompted to select the directory containing the KML files for the digital photograph and LiDAR flight line coverage polygons (**Figure 26**):

A neon	Title: NEON AOP Level 0 Data Qualit	ry Checks	Date: 05/26/2022	
	Operated by Battelle	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

	Documents +	۵,
AVORITES	Name	Date Modified
Applications	DSNY_kmis_and _boundary	Mar 30, 2015, 11:00 AM
Documents	▼ ■ LiDAR_kml	Mar 26, 2015, 3:23 PM
🗇 dhulslander	ALTMReport_1.kml	May 18, 2014, 1:59 PM
LE GHAISIGHACI	ALTMReport_2.kml	May 18, 2014, 2:09 PM
DEVICES	ALTMReport_3.kml	May 18, 2014, 2:16 PM
Remote Disc	ALTMReport_4.kml	May 18, 2014, 2:24 PM
	ALTMReport_5.kml	May 18, 2014, 2:31 PM
HARED	ALTMReport_6.kml	May 18, 2014, 2:38 PM
nas2fs	▲ ALTMReport_7.kml	May 18, 2014, 2:45 PM
-	ALTMReport_8.kml	May 18, 2014, 2:54 PM
	ALTMReport_9.kml	May 18, 2014, 3:02 PM
	ALTMReport_10.kml	May 18, 2014, 3:10 PM
	ALTMReport_11.kml	May 18, 2014, 3:18 PM
	ALTMReport_12.kml	May 18, 2014, 3:27 PM
	ALTMReport_13.kml	May 18, 2014, 3:35 PM
	ALTMReport_14.kml	May 18, 2014, 3:43 PM

Figure 26. Prompt for directory containing photo and LiDAR KML files

6. After clicking Choose/OK, the user will be prompted to select the directory containing the spectrometer coverage KML files (**Figure 27**):

FAVORITES	Name	▲ Date Modified	
Applications	DSNY_kmls_and _boundary	Mar 30, 2015, 11:00 AM	
🐴 Documents	LiDAR_kml	Mar 26, 2015, 3:23 PM	
	🔻 🚞 Spec_kml	Mar 26, 2015, 3:21 PM	
😭 dhulslander	20140518_132i_kml_0000.km	May 18, 2014, 7:28 AM	
DEVICES	20140518_135i_kml_0000.km	May 18, 2014, 8:00 AM	
Remote Disc	20140518_140i_kml_0000.km	May 18, 2014, 8:11 AM	
W Remote Disc	20140518_141i_kml_0000.km	May 18, 2014, 8:19 AM	
HARED	20140518_142i_kml_0000.km	May 18, 2014, 8:27 AM	
nas2fs	20140518_142i_kml_0000.km	May 18, 2014, 8:33 AM	
	20140518_143i_kml_0000.km	May 18, 2014, 8:41 AM	
	20140518_144i_kml_0000.km	May 18, 2014, 8:48 AM	
	20140518_145i_kml_0000.km	May 18, 2014, 8:56 AM	
	20140518_145i_kml_0000.km	May 18, 2014, 9:04 AM	
	20140518_150i_kml_0000.km	May 18, 2014, 9:13 AM	
	20140518_151i_kml_0000.km	May 18, 2014, 9:21 AM	
	20140518_152i_kml_0000.km	May 18, 2014, 9:29 AM	
	The set of a set i i seen i		

Figure 27. Prompt for selecting spectrometer coverage KML files

7. After clicking Choose/OK, the user will be prompted to select the Priority 1 Flight Box boundary shapefile (**Figure 28**):

neon	Title: NEON AOP Level 0 Data Qualit	ty Checks	Date: 05/26/2022
		Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E

AVORITES	Name Witimaker.pro	Date Modified	
Applications	DSNY_kmls_and _boundary	Mar 30, 2015, 11:00 AM	
Documents	LiDAR_kml	Mar 26, 2015, 3:23 PM	
😭 dhulslander	Spec_kml	Mar 26, 2015, 3:21 PM	
	🔻 🚞 TOS_shapfile	Mar 26, 2015, 3:44 PM	
DEVICES	DSNY_UTM_pretend_airshed.cpg	Mar 26, 2015, 3:44 PM	
Remote Disc	DSNY_UTM_pretend_airshed.dbf	Mar 26, 2015, 3:45 PM	
	DSNY_UTM_pretend_airshed.prj	Mar 26, 2015, 3:44 PM	
HARED	DSNY_UTM_pretend_airshed.qpj	Mar 26, 2015, 3:44 PM	
*	DSNY_UTM_pretend_airshed.shp	Mar 26, 2015, 3:45 PM	
	DSNY_UTM_pretend_airshed.shx	Mar 26, 2015, 3:45 PM	
IEDIA	DSNY_UTM.cpg	Mar 26, 2015, 3:20 PM	
J Music	DSNY_UTM.dbf	Mar 26, 2015, 3:20 PM	
Photos	DSNY_UTM.prj	Mar 26, 2015, 3:20 PM	
Movies	DSNY_UTM.sbn	Mar 26, 2015, 3:20 PM	
	DSNY_UTM.sbx	Mar 26, 2015, 3:20 PM	
	SNY_UTM.shp	Mar 26, 2015, 3:20 PM	

Figure 28. Prompt for selecting TOS boundary shapefile

8. After clicking Choose/OK, the user will be prompted to select the Airshed boundary shapefile (**Figure 29**).

		Documents	¢ (0,		
FAVORITES	Name	witmaker.pro		Date Modified	
Applications		Y_kmls_and_boundary		Mar 30, 2015, 11:00 AM	
Documents	► 🗀	LiDAR_kml		Mar 26, 2015, 3:23 PM	
😭 dhulslander	► 🖬	Spec_kml		Mar 26, 2015, 3:21 PM	
	v	TOS_shapfile		Mar 26, 2015, 3:44 PM	
DEVICES		DSNY_UTM_pretend_a	irshed.cpg	Mar 26, 2015, 3:44 PM	
Remote Disc		DSNY_UTM_pretend_a	irshed.dbf	Mar 26, 2015, 3:45 PM	
		DSNY_UTM_pretend_a	irshed.prj	Mar 26, 2015, 3:44 PM	
SHARED		DSNY_UTM_pretend_a	irshed.qpj	Mar 26, 2015, 3:44 PM	
nas2fs	▲	DSNY_UTM_pretend_a	irshed.shp	Mar 26, 2015, 3:45 PM	
		DSNY_UTM_pretend_a	irshed.shx	Mar 26, 2015, 3:45 PM	
MEDIA		DSNY_UTM.cpg		Mar 26, 2015, 3:20 PM	
J Music		DSNY_UTM.dbf		Mar 26, 2015, 3:20 PM	
Photos		DSNY_UTM.prj		Mar 26, 2015, 3:20 PM	
Movies		DSNY_UTM.sbn		Mar 26, 2015, 3:20 PM	
		DSNY_UTM.sbx		Mar 26, 2015, 3:20 PM	
		DSNY_UTM.shp		Mar 26, 2015, 3:20 PM	

Figure 29. Prompt for selecting airshed boundary shapefile

- 9. After clicking Choose/OK, the user will be prompted to select the valid spectrometer lookup file.
- 10. After clicking Choose/OK, the user will be prompted to select the valid digital photo lookup file.

- 11. After clicking Choose/OK, the user will be prompted to select the valid LiDAR lookup file.
- 12. After clicking Choose/OK, the user will be presented with a LO Coverage Check Results dialog containing the results of all six required coverage checks (**Figure 30**).

Figure 30. Results of the coverage check

8.3 Limitations

The coverage check utilizes KML files which are produced in real time by the sensors. The real-time results are not as accurate as results generated from a rigorous geolocation with appropriate calibration parameters and finalized aircraft trajectory. As a result the KML files of the swaths can contain geolocation errors of several tens of meters. It is possible that false positive and false negative gaps will occur in the data that will not become evident until L1 processing is complete.

8.4 Future Improvements

Future development of the LO Coverage Check application includes:

• Integration with automated Hotel Kit processing, eliminating operator interaction/selection.

Creation of KML files containing any gaps in coverage, optionally displayable in Google Earth by operators with individual layers and symbology for each of the sensor systems.

N telle	Title: NEON AOP Level 0 Data Qualit	Date: 05/26/2022		
	NEON Doc.#: NEON.DOC.002890	Author: T. Goulden, W. Gallery, D. Hulslander, K. Krause, N. Leisso	Revision: E	

9 **REFERENCES**

- Applanix (2012). POSAV Specifications, Applanix, 85 Leek Crescent Richmond Hill, ON, Canada, obtained online at: <u>http://www.applanix.com/media/downloads/products/specs/posav_specs_1212.pdf</u>, last accessed March, 2015
- Applanix (2014). POSPac MMSGNSS-Inertial Tools Software. nix, 85 Leek Crescent Richmond Hill, ON, Canada