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1 DESCRIPTION 

1.1 Purpose 

This document details the algorithms used for creating the NEON Level 2 Biomass data product 

(NEON.DOM.SITE.DP2.30016) from Level 1 data, and ancillary data (such as calibration data), obtained 

via instrumental measurements made by the Neon Imaging Spectrometer (NIS) sensor on the Airborne 

Observation Platform (AOP). It includes a detailed discussion of measurement theory and 

implementation, appropriate theoretical background, data product provenance, quality assurance and 

control methods used, approximations and/or assumptions made, and a detailed exposition of 

uncertainty resulting in a cumulative reported uncertainty for this product. 

1.2 Scope 

This document describes the theoretical background and entire algorithmic process for creating 

NEON.DOM.SITE.DP2.30016 from input data. It does not provide computational implementation 

details, except for cases where these stem directly from algorithmic choices explained here.   



 

Title:  NEON Algorithm Theoretical Basis Document (ATBD): Total Biomass Date:  03/28/2022 

NEON Doc. #:  NEON.DOC.004363 Author:  T. Goulden Revision:  B 

 

Page 2 of 15 

2 RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE 

2.1 Applicable Documents 

AD[01] NEON.DOC.000001 NEON Observatory Design (NOD) Requirements  

AD[02] NEON.DOC.002652          NEON Level 1, Level 2 and Level 3 Data Products Catalog 

AD[03] NEON.DOC.002293 NEON Discrete LiDAR datum reconciliation report 

AD[04] NEON.DOC.002649 NEON configured site list 

2.2 Reference Documents 

RD[01] NEON.DOC.000008         NEON Acronym List 

RD[02] NEON.DOC.000243         NEON Glossary of Terms 

RD[03] NEON.DOC.005011         NEON Coordinate Systems Specification 

RD[04] NEON.DOC.002890 NEON AOP Level 0 quality checks 

RD[05] NEON.DOC.001984 AOP flight plan boundaries design 

RD[06] NEON.DOC.001292 NEON Imaging Spectrometer Geolocation Algorithm Theoretical Basis 

Document 

RD[07] NEON.DOC.001288 NEON Imaging Spectrometer Radiance to Reflectance Algorithm 

Theoretical Basis Document 

RD[08] NEON.DOC.002391 NEON Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Atmospherically Resistant Vegetation Index 

(ARVI), Canopy Xanthophyll Cycle (PRI), and Canopy Lignin (NDLI) 

Algorithm Theoretical Basis Document 

2.3 Acronyms 

Acronym Explanation 

AGB Above Ground Biomass 

NIS NEON Imaging Spectrometer 

ITRF00 International Terrestrial Reference Frame 2000 

UTM Universal Transverse Mercator 

TIFF Tagged Image File Format 

AGB Above Ground Biomass 

AOP Airborne Observation Platform 

FBO Fixed Base Operator 

NDVI Normalized Difference Vegetation Index 

VI Vegetation Index 

ASPRS American Society of Photogrammetry and Remote Sensing 
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3 DATA PRODUCT DESCRIPTION 

3.1 Variables Reported 

The products supplied through NEON.DOM.SITE.DP2.30016 include a biomass map, in raster format by 

flight line. The biomass maps are derived from the directional surface reflectance RD[07], through the 

intermediate NDVI (Normalized Difference Vegetation Index) product. Biomass maps are reported with 

horizontal reference to the ITRF00 datum, projected to the Universal Transverse Mercator (UTM) 

mapping frame in accordance with RD[03]. The biomass is reported as g/m2 value which describes the 

total weight of vegetative material. The product is stored in a GeoTIFF format in accordance with the 

GeoTIFF specification (Ritter et al., 2000). 

3.2 Input Dependencies 

The creation of biomass rasters is dependent on the creation of the bi-directional surface reflectance, and 

is based on the NDVI products. Procedures for creating NDVI can be found in RD[08]. 

3.3 Product Instances 

The NEON data products produced directly from these algorithms are summarized in Table 1. 

Table 1. Data products generated by algorithms described within this ATBD. 

Data product identification Data product name 

NEON.DOM.SITE.DP2.30016 Biomass 
 

3.4 Temporal Resolution and Extent 

The biomass product is derived from data collected during acquisition of a single core, re-locatable or 

aquatic site by the AOP (Airborne Observation Platform).  Depending on external variables such as 

weather, transit time to the site FBO (Fixed Based Operator), and total area of the priority 1 flight box 

(see RD[05]), the temporal resolution of a single acquisition of L0 NIS information could range from a 

single flight (4 hrs.) to several flights acquired over multiple days. Generally, due to the peak greenness 

constraint of AOP data acquisition (site at > 90% peak greenness value), and the requirement that all 

sites are to be flown annually, the total potential time to acquire a  site will have a limit which defines 

the largest temporal resolution for a single acquisition. Details defining the total amount of potential 

time dedicated to a single site acquisition are given in RD[05]. As the NEON AOP payload is scheduled 

to repeat each NEON site on an annual basis, the temporal resolution of multiple acquisitions will be 

one year. 
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3.5 Spatial Resolution and Extent 

The spatial resolution and extent of the biomass product will be equivalent to the spatial resolution and 

extent of the surface directional reflectance. The biomass product relies on the intermediate 

calculation of NDVI (RD[08]), which shall maintain 1 m spatial resolution. The spatial extent of the 

biomass maps will relate to the definition of the AOP flight box for each individual site (RD[04]). It is 

intended that a minimum of 80% of the priority 1 flight box and 95% of the tower airshed will be 

acquired each year (RD[07]). As discussed in Section 3.4, the actual acquired area could vary depending 

on external conditions encountered during the flight. Ultimately, the flight schedule as defined in 

RD[04] shall supersede the percent coverage requirement. Therefore, the actual acquired spatial extent 

may vary annually. 
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4 SCIENTIFIC CONTEXT 

The world’s forest ecosystems are a critical variable in quantifying changes in annual global carbon 

budgets due to their carbon storage potential. Accurate quantification of potential annual uptake and 

storage of carbon by forests is critical for long term forecasting of greenhouse gas emissions due to 

their offsetting effect.  Aboveground biomass density (AGB) is a biophysical quantity that can be used as 

a proxy for carbon content and sequestration. As such, AGB is a primary input for models of the 

terrestrial carbon budget, which is known to be the least constrained component of the global budget 

(Bloom, Exbrayat, van der Velde, Feng, & Williams, 2016), (Le Toan et al., 2011), (Houghton, Hall, & 

Goetz, 2009), (Schimel, House, Hibbard, Bousquet, et al., 2001). Developing estimations of spatial and 

temporal patterns of biomass is also useful for monitoring the ecosystem impacts of natural and 

anthropogenic events, such as forest fires, drought, deforestation, urbanization, and land-use changes 

(Koch, 2010), (Lu et al., 2012).  Quantifications of AGB can help inform policy decisions pertaining to 

agricultural and wildfire management, sustainable forestry practices, bio-energy resources, and carbon 

sequestration (Man, Dong, Guo, Liu, & Shi, 2014). 

4.1 Theory of Measurement / Observation 

Optical satellite remote sensing data has become a primary source for continental and global scale 

biomass estimation, largely due to the extensive spatial coverage and availability of Landsat data (Lu et 

al. (2016), Man et al. (2014), Goetz et al. (2009)). A number of studies have related spectral variables 

(e.g. vegetation indices, textural measures, etc.) to field measurements of biomass, using either multiple 

regression analysis or non-parametric methods. Spectral indexes are often exploited for biomass 

estimation because they relate to the relative amount of reflected solar energy in photosynthetically 

active wavelengths in vegetation, allowing inference on the overall photosynthetic capacity. It follows 

that there will be a positive correlation between photosynthetic capacity and biomass. Most studies 

estimating biomass from hyperspectral data focus on a small case-study area featuring a unique 

ecosystem type (e.g.  Cho, Skidmore, Corsi, Van Wieren, and Sobhan (2007), Goswami, Gamon, Vargas, 

and Tweedie (2015)), while studies encompassing larger spatial extents typically implement multiple 

data sources ((Hu et al., 2016), (Su et al., 2016), (Saatchi et al., 2011)). Estimations of biomass from 

single-sensor data have restrictive limitations, discussed in section 4.3 and 7, but can still provide a 

baseline estimate. Several ecological studies have developed relationships relating NDVI to biomass, 

despite a known saturation of NDVI at high biomass values. The NDVI-biomass equation published by 

Dong et al. (2003) was selected to produce a preliminary biomass product because it is the most 

comprehensive analysis relating biomass to NDVI for forests in the continental U.S.  

4.2 Theory of Algorithm 

Biomass is calculated according to functional biomass relationship with NDVI and latitude, as reported 

by Dong et al. (2003):  
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1

𝐵𝑖𝑜𝑚𝑎𝑠𝑠
= 𝛼+ 𝛽 [

1
𝑁𝐷𝑉𝐼

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒2
]+ 𝛾𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 

where α,  β, and γ are regression coefficients summarized in Table 2. The coefficients were estimated 

using ordinary least squares regression comparing the cumulative growing season NDVI to National 

Forest Resource Inventory data of six industrialized temperate -boreal countries (Canada, Finland, 

Norway, Russia, Sweden, and USA). The global 8 x 8 km resolution NDVI dataset was derived from 

Advanced Very High Resolution Radiometers (AVHRR) on board the NOAA- 7, -9, -11, and -14 satellites 

run by the Global Inventory Monitoring and Modeling System (GIMMS) group (Los, Justice, & Tucker, 

1994). Inventory data for the USA was obtained from the USDA Forest Inventory and Analysis database, 

downloadable from https://www.fia.fs.fed.us/tools-data/. The relationship depends only on the latitude 

of the site as well as the NDVI of the vegetation (Figure 1). 

 

 

Figure 1. Biomass as a function of latitude and NDVI. 

 

Table 2. Regression coefficients for NDVI-Biomass equation reported by Dong et al. (2003). 

Variable Value Standard Error 

Α -0.0557 0.0136 

Β 5548.05 1274.17 

Γ 0.000854 0.000153 

4.3 Special Considerations 

There are known critical limitations in using solely hyperspectral data, and more generally any single-

sensor data, for approximating biomass; 1) Hyperspectral data contains useful information about the 

spectral reflectance at the top- of-canopy, but not the three dimensional structure (i.e. density) below 
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canopy and the understory, which are essential parameters for biomass estimation, 2) spectral indices 

derived from optical sensor data are subject to saturation at sites with high biomass density, which 

affects the upper limit of biomass estimation. Biomass calculated from the Dong et al. (2003) NDVI -

biomass equation saturates at 180 g/m2 at the highest latitudes in the continental US, and at 60 g/m2 at 

the lowest latitudes Figure 1, 3) modeled relationships can be sensor, scale and site specific. For 

example, Dong et al. (2003) acknowledge that their equation poorly approximates biomass in certain 

“US temperate forests, where biomass is either uncharacteristically low (southern states) or high (pacific 

northwest states)”. Because spectral indices,  in this case NDVI, are reflectance band ratios, they can be 

unstable if not used in the correct setting (e.g. non-vegetated areas), which carries over into the 

biomass product. 

Biomass can be calculated with higher accuracy if the structural information from the laser scanner and 

spectral information from the imaging spectrometer are used in synergy, along with field measured tree 

parameters (i.e. diameter at breast height, tree height, crown width) to develop allometric relationships 

to appropriately train modeled estimates. At the time of writing, neither a standardized and accepted 

algorithm for calculating AGB was available, or appropriate tree measurements for developing 

allometric equations across the NEON sites. Future availability of these measurements will allow further 

development and testing of the algorithm as the community develops standardized approaches for 

calculation of biomass from remote sensing data. Nevertheless, the Dong et al. (2003) relations hip is 

applied here as the best available estimate, despite its limitations. Further information on the data 

product uncertainty can be found in Section 6. 
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5 ALGORITHM IMPLEMENTATION 

The processing of surface reflectance into the biomass product is achieved through the steps outlined in 

this section (Figure 2). The algorithm for Biomass is implemented through multiple interconnected 

Matlab functions which automate the algorithm. The process is dependent on only the existence of a 

Normalized Difference Vegetation Index (NDVI) geotiff and the model parameter inputs. Details into the 

algorithm which creates the NDVI from input surface reflectance can be found in RD[08].  

Step 1: 

Calculate NDVI from surface reflectance according to RD[08].  

Input: 

1.  reflectance data (HDF5 format) 

Output: NDVI in geotiff format 

Functions used: NEONAOPVegIndexer.pro  

Step 2: 

Calculate biomass raster according to Equation (1) using output from Step 1.  

Input: 

1.  NDVI from Step 1 

Output: Biomass in geotiff format 

Functions used: calc_spec_biomass_v01.m  
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Figure 2. Workflow for creating the biomass product. 
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6 UNCERTAINTY 

The uncertainty in the biomass is derived from several sources of error including: 

1. calibration of the sensor 

2. quality of geometric co-registration of the spectral bands 

3. quality of the ortho-rectification 

4. accuracy of the radiative transfer code (MODTRAN 5) 

5. correct choice of the atmospheric input parameters 

6. terrain type (flat vs. rugged) 

7. surface cover 

NEON undertakes annual calibrations of the imaging spectrometer, which will minimize errors due to 

source 1. Currently, the uncertainty introduced through calibration is not strictly quantified and 

propagated into derived products. Vicarious calibration surveys are performed over homogeneous 

targets (concrete, consistent low vegetation) at the beginning and end of the annual flight campaign, 

including ground validation of targets with known reflectance measured with a field spectrometer. This 

information allows an annual empirical assessment of the calibration uncertainty which is used to verify 

the quality of the calibration. Additional research will be necessary to propagate the calibration 

uncertainty through to final products. Results of the annual vicarious calibration tests indicate that the 

error is small (<0.5%), indicating its effect may be negligible. 

Internal testing has shown sub-pixel accuracy of the ortho-rectification (source 3), which is based on a 

spectrometer camera model described in RD[06]. The individual spectral bands are collected 

simultaneously on a single focal plane array, introducing negligible error in co-registration between 

spectral bands (source 2). Therefore, it can be assumed that the geo-location error does not introduce 

a significant level of uncertainty into resulting surface reflectance in flat or smoothly undulating terrain. 

However, as identified in richter2012atmospheric highly rugged terrain such as mountainous 

environments can introduce a mis-registration between the DSM and reflectance measurements, which 

can cause errors in surface reflectance greater than ±100% (due to error source 6). Richter (2012) 

atmospheric recommend that the DSM spatial resolution is one-third or one-quarter the spatial 

resolution of the imaging spectrometer data. However, the DSMs at NEON are created at equivalent 

resolutions (1 m) due to limitations in the point density of the LiDAR system. At current nominal 

altitudes and LiDAR system collection parameters, the resulting point spacing is not capable of 

confidently supporting DSM grid resolutions below 1 m spatial resolution. Therefore, users should be 

aware that data located near sharp peaks or ridges should be treated with extreme caution, as the 

uncertainty may be extremely high. NEON data does maintain an advantage in reducing uncertainty 

due to terrain effects by simultaneously collecting the NIS and LiDAR from co-mounted sensors on the 

same platform, and creating the spectrometer camera model using intensity images from the LiDAR. 

This provides a high level of relative accuracy between the DSM and spectrometer, minimizing 

uncertainty due to the terrain conditions. Typically, geo-location errors are highest at strip edges due to 

limitations in derivation of the geo-location model (see RD[06]). Therefore, the combination of 
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mountainous terrain and data acquired at strip edges will introduce the largest sources of uncertainty 

in geo-location. 

The retrieval of surface reflectance is performed with ATCOR, which is a commercial off-the-shelf 

software package (see RD[07]), preventing NEON from controlling the uncertainty introduced through 

source 4, the accuracy of radiative transfer code derived from MODTRAN 5. It is assumed that this is 

being correctly implemented within ATCOR, and that efforts to minimize the uncertainty due to this 

source were applied. User’s should be aware that ATCOR does not explicitly calculate a radiative 

transfer model for every observation. For processing efficiency, ATCOR pre-generates a series of look-

up tables which are representative of common atmospheric and flight conditions (altitude, aerosol 

loading, visibility humidity etc.). Some uncertainty will be introduced through interpolation of true 

conditions to the most representative scenarios in the look up tables (LUTs). Assuming error source 4 is 

well controlled within ATCOR and appropriate conditions are available in the LUTs, the primary source 

of error affected by NEON processing procedures is due to source 5, the correct choice of atmospheric 

input parameters. Currently, a standard set of parameters is selected across all NEON sites, and no 

attempt is made to dynamically vary the input parameters for unique site conditions. Details into the 

implemented input parameters can be found in RD[07]. As the NEON project continues, research will be 

undertaken to allow the conditions experienced during flight to inform the correct selection of 

parameters for atmospheric correction, and better quantify the uncertainty introduced in these 

choices. 

The aforementioned sources of uncertainty each relate to errors introduced through the instrument or 

processing of reflectance data, however, the largest source of uncertainty in the biomass product is 

likely the empirical equation used to relate NDVI to biomass (see Equation (1)). This relationship may 

not be valid for spectral-biomass relationships of the alternative instruments, study areas, and spatial 

and temporal scales of the NEON airborne remote-sensing data, which have unique acquisition 

parameters, calibration, and processing procedures. The Dong et al. (2003) equation was developed 

using satellite remote sensing data with a pixel resolution of 8km x 8km, while NEON hyperspectral 

data is acquired with 1 m2 resolution. Uncertainty introduced through the scaling a mesoscale 

relationship to fine-scale pixels at the individual scale, will undoubtedly result in unacceptable levels of 

uncertainty. For example, the relationship derived in Dong et al. (2003) included highly heterogeneous 

individual pixels, often compromising multiple forest and land use types. It is unlikely that forcing this 

relationship on fine-scale resolution imagery with nearly homogeneous individual pixels will be 

accurate, and the level of uncertainty will be difficult to quantify. The relationship may be valid under 

conditions of a nearly homogeneous landscape (Wu & Li, 2009), which is atypical for NEON study areas. 

As such, it is currently recommended that the biomass estimates are used with caution, as the absolute 

values are likely to be highly inaccurate. The biomass product in its current form would be best  used 

only as a relativistic biomass comparison, not as an absolute estimate.  
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7 VALIDATION AND VERIFICATION 

A number of biomass maps have been produced spanning the continental U.S., but there is still 

considerable variation and uncertainty in these reported values (Neeti and Kennedy, 2016, Hill, Williams, 

Bloom, Mitchard, and Ryan, 2013). Accurately estimating continental biomass is still an active research 

topic. Given the variability of reported biomass values, validation for this data product was carried out 

by 1) comparing results with existing biomass models to see if it lies within the range of published 

values, and 2) comparing the NDVI-derived biomass with biomass estimated from LiDAR data for a single 

site as a test case. 
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8 FUTURE PLANS AND MODIFICATIONS 

Further research is required in order to develop a more robust estimate of biomass from NEON 

hyperspectral data. Lu et al. (2016) outline a more comprehensive procedure for modeling biomass from 

remote-sensing data, which includes “field survey data collection, biomass calculation at plot level, 

remote sensing data selection, variable extraction, proper algorithm selection, and error evaluat ion”. 

Future enhancements will be made to the biomass product, which include multi-sensor fusion and 

integration of appropriate allometric equations as calibration / validation data.  
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