Title: NEON Algorithm Theoretical Basis Document (ATBD): Water Indices

Date: 03/28/2022

neen
Operated by Battelle | nron poc, # NEON.DOC.004364

Author: D. Hulslander

Revision: B

NEON ALGORITHMTHEORETICAL BASISDOCUMENT (ATBD):
WATER BAND INDEX (WBI), NORMALIZED MULTI-BAND
DROUGHTINDEX (NMDI), NORMALIZED DIFFERENCE WATER
INDEX (NDWI), NORMALIZED DIFFERENCE INFRARED INDEX
(NDII), AND MOISTURE STRESS INDEX (MSI) ALGORITHM

THEORETICALBASIS DOCUMENT (ATBD)

PREPARED BY ORGANIZATION DATE

David Hulslander AOP 05/29/2019
APPROVALS ORGANIZATION APPROVALDATE
Kate Thibault SCI 03/28/2022
RELEASED BY ORGANIZATION RELEASE DATE
Tanisha Waters CM 03/28/2022

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded bythe National Science Foundation and managed under c ooperative agreement by Battelle.

Any opinions, findings, and condusions or recor

National Science Foundation.

mmendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the




-

ne<n

Operated by Battelle | nron poc, # NEON.DOC.004364

Title: NEON Algorithm Theoretical Basis Document (ATBD): Water Indices

Date: 03/28/2022

Author: D. Hulslander

Revision: B

Change Record
REVISION DATE ECO# DESCRIPTION OF CHANGE
A 07/01/2019 EC0-06170 Initial Release
e Minor formatting updates
B 28/2022 ECO-
03/28/20 €0-06754 e Added NEON to document title




@ n e C” n Title: NEON Algorithm Theoretical Basis Document (ATBD): Water Indices Date: 03/28/2022
. Operated by Battelle | yron poc, #: NEON.DOC.004364 | Author: D. Hulslander Revision: B
TABLE OF CONTENTS
I 0 3 o1 3] = 1 T 0 1
1.1 LU 0T 1Y < PPN 1
1.2 Koo ] oL PPN 1
2  RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE.......ccccotvuuniriinnnininennnrnenes 2
2.1 PN oo [ Tor: ] o] (I B To Yol U o T=T o | -3 2
2.2 REfErENCE DOCUMENTS .. .ceuiiit et ettt e e et et e e e e e e eaans 2
2.3 Aol 001 o 0 PP PPt 2
3  DATA PRODUCT DESCRIPTION ....ccuuuiiiiuiiiiieiiiiiiniiiieiiseensssesaissrsasssesasssseassssssssssssesnssssenas 4
3.1 Variables REPOITEd .. .. ..o e 4
3.2 F Yo TUL DT =T o =T o [=T o Yol =P 4
3.3 (ol Vot 10 15 - [ o Tol T ORI 4
3.4 Temporal Resolution and EXEeNt ..o 4
3.5 Spatial ResolUtion @and EXEENT .....ovuuniiiiiie e et ea e 5
4 SCIENTIFIC CONTEXT....ituuiiiuiiiniieniiiusieestianirrasisrassseassssassssasssssssensssrsssssssssenssssassssnssssnsssnnes 6
4.1 Theory of MEaSUIrEMENT.......iie e e e e e e e e e e e ans 7
4.2 Theory of AIZOrTERM ...cuun et e e e eeas 8
4.2.1  Water Band INAeX (WBI).....ouu it e e e e e eans 8
4.2.2 Normalized Multi-band Drought IndeX (NMDI)......ccuuiiiiiiiiiiiii e 9
4.2.3 Normalized Difference Water Index (NDWI).......coueiiniiiiiieiieii e 9
4.2.4 Normalized Difference Infrared INdex (NDII) .......couviriiriiriiniiiii s 9
4.2.5 Moisture STress INAEX (IMISI).....un e ens 10
4.3 Yo LTol =1 e g YT [=T - o) P 10
5  ALGORITHM IMPLEMENTATION....ccuuciitiuiiiiiuiiiiieiiiiiaisinranserasssrsasssesasssssasssssensssssesanssns 11
6 UNCERTAINTY...iiiiuiiiiiuiiiienniiiiransitssisiesasssiessssserasssssssssssesassssssssssssessssssssssssessssssssssssssens 12
6.1 ANalysis Of UNCEIaiNty . ..cuiiniieiiii e e e et e e eas 14
B.1.1  WBI UNCEIAINTY couitiiitiii et ettt et et e e e et e e e et s e et e e et e e et s e eaeanenanns 15
L0 A V1AV T I 1 ToT =T o = 1 N 16
LT S T \ V1D A VAV U o [ol=T s ] [ | 4 PP 18
L0 I S |10 1 | B 1 Vo =T o = 1 20



@_

n e C" n Title: NEON Algorithm Theoretical Basis Document (ATBD): Water Indices Date: 03/28/2022
Operated by Battelle | yron poc, #: NEON.DOC.004364 | Author: D. Hulslander Revision: B

LT T |V, I I O 1 (o= o = ] | oY PP 22
6.2 Y=Y oY g d=Te [ U Lo 1o =Yy =1 [ oY 28 24
7  VALIDATION AND VERIFICATION....ccuitiuiiiniiiiuiriiniiranieuiirasieasstsassteasstesssrssssssssseasssenssssnssses 25
7.1 Algorithm Validation ... 25
7.2 Data Product Validation...........ouuiiiiiii e 25
7.3 Data Product Verification........cou.ieieiii e e 25
8  FUTURE PLANS AND MODIFICATIONS ....cuiuiuituituireireiresrenieceiisisisesessesessssssssrssssssassassanss 26
9 BIBLIOGRAPHY.....ccuuiiiiitiiiiiiiiiiii e ir s rea s s s s s ea s s e sas s s sasss s e eaasssseassssssassssesnsssssens 27

LISTOF TABLES AND FIGURES

Table 1. Data Products generated by Algorithms described in this ATBD. ........cc.coveiiiiiiiiiiiiiee, 4
Table 2. Water indices, their optimal center wavelengths, and their references. ............ccccoeeieniiniinnin 11
Table 3. Summary of expectedreflectance uncertainties due to site and observing conditions, data

acquisition procedures, instrumentation nature, and data processing requirements...................ceu..... 12

Figure 1. Portions of the electromagnetic spectrum showing % atmospheric transmissionandthe
bandpasses for Landsat 7 (ETM+) and Landsat 8 (OLI and TIRS) sensors. Landsat 8 OLI Bands 2, 3,4, and 5
correspond to Blue, Green, Red and Near Infrared (NIR), respectively. Landsat has used 4 to 9 bands,
depending on generation, to cover the roughly 400 to 2400 nm portion of the spectrum here, which is
covered by the NEON Imaging Spectrometer with 424 5-nm-wide bands. (USGS, 2013). ........cc..ceunennee. 8
Figure 2. End-to-end canopy water content spectral index processing chain diagram including sources of
uncertaintyin upstream processing and systems contributing to the reflectance data input required for
calculating canopy water content spectral iNndiCes. .....c..iviiiiiiiii s 13
Figure 3. Error in WBI as a function of input reflectance values with 5% uncertainty. Error surfaces for
WBI with different reflectance value uncertainty retain the same shape and differ only by magnitude. .16
Figure 4. Error in NMDI as a function of varying pgso and p1s40 reflectance values, p,;3oreflectance of 5%,
and all reflectance values with 5% uncertainty. Error surfaces for NMDI with different reflectance value
uncertainty retain the same shape and differ only by magnitude. .........c.cocoiviiiiiiiiiii, 18
Figure 5. Error in NDWI as a function input reflectance values with 5% uncertainty. Error surfaces for
NDWI with different reflectance value uncertainty retainthe same shape and differ only by magnitude.

Figure 6. Error in NDIl as a function of input reflectance values with 5% uncertainty. Error surfaces for
NDII with different reflectance value uncertainty retain the same shape and differ only by magnitude..22
Figure 7. Error in MSI as a function of input reflectance values with 5% uncertainty. Error surfaces for
MSI with different reflectance value uncertainty retain the same shape and differ only by magnitude. .24



n e C) n Title: NEON Algorithm Theoretical Basis Document (ATBD): Water Indices Date: 03/28/2022
®
r

Operated by Battelle | nron poc, # NEON.DOC.004364 | Author: D. Hulslander Revision: B

1 DESCRIPTION

Contained in this document are details concerning NEON Airborne Imaging Spectrometer (NIS)
measurements made at NEON sites. Specifically, the processes necessaryto convert “raw” sensor
measurements into meaningful scientific units and their associated uncertainties are described.

1.1 Purpose

This document details the algorithms and processes used for creating the NEON Level 2 Canopy Water
Content data product, which includes Water Band Index (WBI), Normalized Multi-band Drought Index
(NMDI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), and
Moisture Stress Index (MSI) from Level 1 reflectance data. Data Product Identifiers are provided in Table
1. Where necessary, this document includes a detailed discussion of appropriate theoretical
background, data product provenance, quality assurance and control methods used, approximations
and/or assumptions made, and an exposition of uncertainty resulting in a cumulative reported
uncertainty for this product.

1.2 Scope

This document describes the theoretical background and entire algorithmic process for creating the
NEON Level 2 Canopy Water Content data product (WBI, NMDI, NDWI, NDII, and MSI) from Level 1
reflectance data (RD[03]). It does not provide computational implementation details, except for cases
where these stem directly from algorithmic choices explained here.
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2 RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE

2.1  Applicable Documents

AD[01] | NEON.DOC.000001 NEON OBSERVATORY DESIGN

AD[02] | NEON.DOC.002652 NEON Level 1, Level 2 and Level 3 Data Products Catalog
AD[03] | NEON.DOC.002236 AOP Overview Document

AD[04] | NEON.DOC.015015 AOP Payload Integration Mount Design

2.2 Reference Documents

RD[01] | NEON.DOC.000008 NEON Acronym List

RD[02] | NEON.DOC.000243 NEON Glossary of Terms

RD[03] [ NEON.DOC.001288 NEON Imaging spectrometer radiance toreflectance algorithm
theoretical basis document

RD [04] | NEON.DOC.001290 NEON Algorithm Theoretical Basis Document: Imaging
Spectrometer Geolocation Processing

RD[05] [ NEON.DOC.001210 NEON Algorithm Theoretical Basis Document: NEON Imaging
Spectrometer Level 1B Calibrated Radiance

RD [06] | NEON.DOC.003840 NEON fPAR Algorithm Theoretical Basis Document

2.3 Acronyms

AGL Above Ground Level

AOP Airborne Observation Platform

API Application Programming Interface

ATBD Algorithm Theoretical Basis Document

ATCOR Atmospheric Correction

AVIRIS Airborne Visible/Infrared Imaging Spectrometer
DN Digital Number

ENVI Environment For Visualizing Imagery

FPAR Fraction of Photosynthetically Active Radiation
IDL Interactive Data Language

IEEE Institute of Electrical and Electronics Engineers
IFOV Instantaneous Field Of View

MODIS Moderate Resolution Imaging Spectroradiometer
MSI Moisture Stress Index

NCSL National Conference of Standards Laboratories
NDII Normalized Difference Infrared Index

NDWI Normalized Difference Water Index

NEON National Ecological Observatory Network

NIR Near Infrared
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NIS NEON Imaging Spectrometer
NMDI Normalized Multiband Drought Index
NRC National Research Council
ORNL Oak Ridge National Laboratory
SWIR Shortwave Infrared

TOA Top Of Atmosphere

UTM Universal Transverse Mercator
VNIR Visible and Near Infrared

VWC Vegetation Water Content
WBI Water Band Index

WGS84 World Geodetic System 1984
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3 DATAPRODUCT DESCRIPTION

3.1 Variables Reported

The primary outputs from the NEON Imaging Spectrometer (NIS) WBI, NMDI, NDWI, NDII, and MSI
algorithms include:

e WBIrasterstoredin a GeoTIFFFile
e NMDIrasterstoredina GeoTIFF File
e NDWiIrasterstoredin a GeoTIFFFile
e NDllrasterstoredina GeoTIFF File
e MSI rasterstoredina GeoTIFF File

The GeoTIFF files contain the output variables as 4-byte floating point pixel data values and use the UTM
map projection in the zone appropriate to the site (e.g. UTM 16 N WGS84 for Oak Ridge National
Laboratory (ORNL), TN).

3.2 InputDependencies

A NIS Level 1B reflectance dataset is the only required input for creating the Canopy Water Content
(WBI, NMDI, NDWI, NDII, and MSI) data product.

3.3 ProductInstances

The NEON data product produced directly from these algorithms is:

Table 1. Data Products generated by Algorithmsdescribed in this ATBD.

Data Product Identification Code Data Product Name

NEON.DOM.SITE.DP2.30019 Canopy Water Content — Spectrometer

3.4 TemporalResolution and Extent

The NIS Canopy Water Content algorithms are applied on each AOP flight line, which typically measure
between 5 and 20 km in length and approximately 600 m in width. Flight speeds are typically around
100 knots (185.2 km/hour), and therefore, the time required to acquire flight lines of the lengths stated
will range from 1.6to 6.5 minutes. The integrationtime for the NIS detector arrayis 100 milliseconds, so
a timeintegrated observationis acquired every 100 milliseconds along-track.

NEON sites are planned for varying AOP revisit rates. Most sites have an expectedrevisit rate of once
per year for three of every four years. Some sites, such as those in Domains 20 (Hawaii)and 04 (Puerto
Rico), may have less frequent revisits depending upon logistics, budget, and proposal status. Flight
schedules are developed for eachyear on ayear-by-year basis in coordination with other NEON
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sampling, such as foliar chemistry measurements. Flight schedules are announced at the beginning of
each yearand are available through the NEON website.

3.5 SpatialResolution and Extent

The NIS Canopy Water Content algorithms are applied on each AOP flight line, which typically measure
between 5 and 20 km in length and approximately 600 m in width, at 1000 m above ground level (AGL).
The Instantaneous Field of View (IFOV) of the NEON Imaging Spectrometer is 1.0 milliradian, which
equates to a ground sampling distance at a nominal flight of 1000 m AGL of 1 meter at nadir. The actual
ground resolution will vary with flight altitude and cross-trackfield angle. While these variations
frequently result in an IFOV which differs from 1 m, NIS data are always resampledto 1 m (RD[04]).
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4  SCIENTIFICCONTEXT

Designed as a decadal- and continental-scale observatory, NEON targets a series of Grand Challenges in
the environmental sciences as identified by the National Research Council (NEON, 2011; National

Research Council, 2001). Imaging spectrometer data, such as that acquired with the NIS instrument,

supports the creation of derived data products which give unique insight in to the types, abundance,

and quality of various land covers (Govender etal., 2007). The Grand Challenges include five topics and

guestions which canbe addressed by hyperspectral remote sensing technologies including canopy water
content spectralindices:

1.

Climate Change

Carbon-based greenhouse gases suchas CO, and CH, play major roles in driving climate change.
The biosphere, including vegetation, is an important part of the carbon cycle. Spectralindices,
such as those addressing canopy water content, have shown to be important tools in measuring
and mapping the role of the biosphere in the water cycle, carbon cycle, and in climate change
for purposes of assessment, modeling, and forecasting (Schlesinger & Bernhardt, 2013).

Land Use

Remote Sensing has a long history in land use mapping, beginning with airborne applicationsin
the early 20t century and with widespread application beginning with the launch of the Earth
Resources Technology Satellite in 1972, later renamedto Landsat 1 (Short, 1982). Water indices
have been shown to be useful for mapping land cover classes and changes (Jones & Vaughan,
2010).

Invasive Species

Directly mapping invasive vegetation species by spectral signature can be difficult in many cases,
or even impossible due to either their differences with native species being too subtle to detect
even at higher spatial and spectral resolutions or in cases where they may be understoryas
compared to native vegetation stands (Jones & Vaughan, 2010). Detecting invasive species using
remote sensing is more effectively done by proxies such as plant stress or nutrient
cycling/content which are efficiently mapped by spectralindices, including those addressing
canopy water content (Clarket al., 1995; Skakun et al., 2003; Coops et al., 2006; Carlsonet al.,
2007; Borengasser et al., 2008)

Biogeochemistry

Imaging spectrometry, including and especially hyperspectral remote sensing in the VNIR/SWIR
spectralrange covered by the NIS and similarinstruments suchas AVIRISand Hyperion, has
been very effective in geochemistryand spectroscopic applications such as material
identification and mapping (van der Meer & de Jong, 2011). Canopy water content spectral
indices are designed to exploit spectral features specific to water content in vegetation
communities and canopies for purposes of assessing their role in the water cycle and climate
(Roberts et al., 2016).

Biodiversity
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While hyperspectral remote sensing can be used for direct species identification given
sufficiently high data quality and resolution, canopy water indices can be used as indirect tools
for estimating biodiversity in ecological communities (Carlson et al., 2007).

6. Ecohydrology

Land cover, including vegetationtype, density, and health, are important factors in mapping and
modeling landscape ecohydrology (Wilcox & Thurow, 2006). How much vegetation covers a
landscape, as well as type, vigor, and density, are key factors in run-off, infiltration, nutrient
movement, evapotranspiration, and erosion (Scanlon et al., 2005; Foley et al., 1996; Ortenberg,
2012). Canopy water content spectralindices are effective tools and inputs for modeling and
characterizing these phenomena and processes (Rodriguez-lturbe, 2000; Nagler et al., 2007).

4.1 Theoryof Measurement

Level 1 NIS hyperspectral reflectance data provide reflectance spectra for each pixel in 426 discrete 5
nm bandpasses for wavelengths from 382 nm to 2512 nm (RD[05]). The unique reflectance spectra of
materials on the ground are captured in this data (van der Meer & de Jong, 2011). As full spectral curves
and hyperspectralimage cubes are difficult and cumbersome to process and analyze, many earth
science applications utilize only those spectral regions relevant to the materials or phenomena of
interest and their key spectral features (Jones & Vaughan, 2010). This approach also works well with the
much broader bandpasses of multispectral sensors (vander Meer & de Jong, 2011). For canopy water
content indices, these spectral features and regions include bandpasses at 819, 857, 860, 900, 970,
1241, 1599, 1640, 1649, and 2130 nm (Jones & Vaughan, 2010). The regions are shown in Figure 1 in the
larger context of the electromagnetic spectrum as well as how they relate to the commonly used
Landsat 7 and 8 bandpasses.
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Figure 1. Portions of the electromagnetic spectrum showing % atmospheric transmission and the bandpasses for
Landsat7 (ETM+) and Landsat 8 (OLl and TIRS) sensors. Landsat 8 OLI Bands 2, 3,4, and 5 correspond to Blue,
Green, Red and Near Infrared (NIR), respectively. Landsat has used 4 to 9 bands, dependingon generation, to
cover the roughly400to 2400 nm portion of the spectrum here, which is covered by the NEON Imaging
Spectrometerwith 424 5-nm-wide bands. (USGS, 2013).

For spectralindices, the reflectance values of the spectral bandpasses of interest are combined using
various functions, often as normalized ratios of two or more bands. This reduces the data volume to a
single value per pixel directly related to the topic of study and comparable across both space and time
and even between different sensors and datasets. As ratios are inherently relative measures, using them
can help reduce the error common to the absolute measure of the bands involved. Many such indices
are now common in remote sensing earth science applications, including but not limited to (Thenkabail
et al, 2012):

e WaterBand Index (WBI)

e Normalized Multi-band Drought Index (NMDI)
e Normalized Difference Water Index (NDWI)

e Normalized Difference Infrared Index (NDII)

e Moisture Stress Index (MSI)

4.2 TheoryofAlgorithm

Though they differ in the phenomenology on which they focus, all canopy water content spectralindices
have the same basic approach of using two to three spectral bands related to reflectance or absorption
by water as itis found in vegetation communities and canopies and combining those bands in unitless
ratios. The following subsections, one per index covered in this document, detail the theory behind each
index’s particular ratio algorithm. Currently, NISbands are selected to most closely match the center of
historically used broader multispectral ranges or most closely match the specified band(s) for the index
as specified in the index’s original publication as noted.

4.2.1 WaterBandIndex(WBI)

Penuelas et al (1993) derived the Water Band Index, targeting the 970 nm water absorption band and a
reference band at 900 nm. Their study, using beans and peppers, found it to be a good proxy for relative
water content and plant water status in agricultural crops without bare soil. The study alsoshowed WBI
to have good sensitivity when plant water stress was well developed. As a result, it may be of most use
for agricultural management and assessment, fire hazard assessment, and water cycle modeling and
analysis. Theideal WBI algorithm is given in Eq. 1.

war = 270 Eq.

Pooo 1
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4.2.2 Normalized Multi-band Drought Index (NMDI)

NMDI is a broadband spectralindex derived and proposed by Wang and Qu (2007) and originally
intended for use with data from orbital sensors suchas MODIS for remotely sensing both soil and
vegetation water content. Their study showed NMDI has enhanced sensitivity to drought severity
compared to NDWI and NDII. While their study indicated NMDI is useful for water content estimationin
relatively pure soil and vegetation pixels, it could yield inaccurate results in mixed pixels with LAI
between 0.5 and 1.0. In combination withits sensitivity to both soil and vegetation moisture content,
NMDI has possible applications in fire hazard assessment and water cycle studies (Wang et al., 2008).
The ideal NMDI algorithmis given in Eq. 2.

NMD] = Pseo — (P16a0— P2130) Eq.

Psso + (P1ea0— P2130) 2

4.2.3 Normalized Difference Water Index (NDW!I)

First proposed by Gao (1996), the NDWI is designed as a narrowband hyperspectralindex for remotely
sensing liquid water in vegetation from orbital sensors. Similarin formulation to NDVI, Gaofound NDWI
to exhibit similar sensitivities toin-pixel bare soil contributions but as NDVI saturated at higher
vegetation water content values and multiple layers of leaves, NDWI continued to vary with VWC.
Jacksonet al (2004) found similar results and were able to show NDW!I-derived VWC compared to
ground measurements for soybeans and corn had lower bias (-0.015 and -0.010 respectively) and RMSE
(0.171 and 0.576) than NDVI-derived VWC (biases of 0.071 and 0.336, RMSE values of 0.203 and 0.735).
NDWI is often considered to be a vegetationindex as well as a canopy water index and has been useful
in multispectral (Landsat) vegetation water content mapping for agricultural, fire hazard assessment,
and water cycle analysis and modeling (Jackson et al., 2003).

NDWI = M Eq.

(P857 + P1241) 3

4.2.4 Normalized Difference Infrared Index (NDII)

First developed and used as a multispectral radiance index, NDII is useful for applications in mapping
vegetation canopy water content (Hardisky et al., 1983). Sriwongsitanon et al (2015) showed good
results using NDIl in agricultural and forestry applications, especially when addressing soil moisture
storage during the dry season, obtaining average R2 values of 0.87. For fire hazard applications, Chuvieco
et al. (2002) found good results in grassland and shrubland ecosystems, while Dasgupta et al. (2007) had
poorer results in forests.
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NDII = Pg19 — P1649 Eq.
(Pg19 + P164a9) 4

4.2.5 Moisture Stress Index(MSlI)

First developed and used with Landsat data for assessing leaf water content, MSI has also been useful
for applications in monitoring and detecting forest damage, and relative water content mapping (Rock
et al., 1985; Rock et al., 1986; Hunt & Rock, 1989). These strengths, combined with the possibility of
using widely available broadband multispectral data, make MSI a popular tool in climate change, land

use, invasive species, forestry, agriculture, and ecohydrological applications.

MSI =

4.3 SpecialConsiderations

P1599

Pg19

Eq.
5

While the equations for these indices are well settled and agreed upon, the exact wavelength ranges or

bandpasses tobe used in eachare largely undetermined. Most canopy water content spectralindex

products are constrainedto the larger bandpasses of the multispectralinstruments for which they are
developed, e.g. Landsat and MODIS “blue”, “red”, and “NIR” bands. Historically, researchers using
hyperspectralinstruments such as AVIRIS have chosen either single bands closest to the band centers of

the popular multispectral bandpasses mentioned above, or have used a weighted resampling of a
number of the hyperspectral bands to mimic the broader multispectral bandpasses (Vane, 1988).

The NIS instrument, however, provides a new level of flexibility in choosing which spectralbands to

choose in calculating band indices and ratios. Where a multispectral sensor may offer one band for

“NIR”, NISwill offer a selection from one to tens of bands that may be used, excluded, or combined in

various ways.

For current implementation of canopy water content spectralindex products, NEON will be using single

NIS bands closest tothe band centers of the relevant traditional multispectral bands. In 2018, NEON will

be optimizing the combination of NIS channels in production implementation of these indices. The

combination of channels will be chosen to best capture the spectral features required for eachindex.
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5 ALGORITHMIMPLEMENTATION

The processing of the NIS reflectance data to the canopy water content spectralindices data is achieved
in the steps shown in the left column of Figure 2. The NIS canopy water content spectralindex

algorithms have been implemented in IDLand use the ENVI API for data access and processing.

Inputs: NEON Imaging Spectrometer L1 Orthorectified Surface Directional Reflectance data product
(NEON.DOM.SITE.DP1.30006).

As each of the three NIS instruments is individually manufactured, exact spectral bandpasses between
the instruments are not identical. To maximize compatibility of vegetationindex products across the
sensors in initial vegetationindex algorithm implementation, the bands used for calculating the indices

are currently chosen to be those closest tothe centers as defined in the literature. The desired band
centers used for the indices are shown in Table 2. As described in Section 8, the vegetationindex
algorithmimplementation will be upgraded in 2018 to use specified bandpasses centered on the desired

band centers for each variable in the vegetationindices and input sensor bands will be convolved to

those bandpasses.

Table 2. Water indices, their optimal center wavelengths, and their references.

Water Index Band centers usedin index (nm) | Reference

WBI 900, 970 Penuelas et al., 1993
NMDI 860, 1640, 2130 Wang & Qu, 2007
NDWI 857,1241 Gao, 1996

NDII 819, 1649 Hardiskyet al., 1983
MSI 819, 1599 Rock et al., 1985
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6  UNCERTAINTY

As the canopy water content index products described in this document are all entirely derived from L1
NIS surface reflectance data combined in normalized ratios, their uncertainties are therefore entirely
dependent on the uncertaintyin the L1 reflectance data and the combinations and ratios of bands used
in each index. Additional sources of errors or uncertainties will be included in analysis as they are
identified during the course of observatory constructionand operation. There are a number of sources
of uncertainty contributing to the reflectance data product uncertainty, as shown in Figure 2. The
detailed analysis of uncertainty in the reflectance datais discussedin the L1 Reflectance ATBD. The
reported uncertainty values from the L1 Reflectance ATBD are used here. A summaryof them isin Table
3.

Table 3. Summary of expected reflectance uncertainties due to site and observing conditions, data acquisition
procedures, instrumentation nature, and data processingrequirements.

Data Quality Surface Type Atmospheric Conditions p Error (%
reflectance)

Ideal Well characterized, low | Well characterized, spatially +2%

complexity and temporally consistent,
clear
Medium Moderately complex, Some spatialand temporal 5%

moderately well variation, moderate haze and
characterized aerosol

Low Highly complex and/or Poorly characterized, highly +10%
poorly characterized variable, anomalous conditions
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Figure 2. End-to-end canopy water content spectral index processing chain diagramincluding sourcesof
uncertaintyin upstream processing and systems contributing to the reflectance datainput required for calculating
canopy water content spectral indices.
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6.1 Analysis of Uncertainty

Propagationand accumulation of uncertainty from sources in to the canopy water content spectral
index products can be modeled using the “law of propagation of uncertainty” (NCSL, 1997; Taylor &
Kuyatt, 1994). This approach handles only random errors, does not consider systematic biases, and
assumes statistical independence in the errors. Systematic errors and biases are addressed in the
processing of the raw NIS data to the surface reflectance values used here (RD[03], RD[04], RD[05]). As
has been done with MODIS vegetationindices, we use the framework of water indices being a quantity
of interest y based on a function combining estimates of n other quantities as shown in Eq. 6 (Huete et
al., 1999).

y = flxy,x5,..,%,)
Eq.
6

An uncertainty propagation equation, Eq. 7, can be based on a first-order Taylor series expansion of Eq.
6, where u is uncertainty (Huete et al., 1999).

From Eq. 7 a set of uncertainty propagation equations designed for reflectance calibration uncertainties
in atmospherically corrected canopy water content s pectral indices can be createdand are shown in
their respective sections below (Miura et al., 1999). From those equations, it can be seenthat errorin
the indices will vary with both the error of the input reflectance and with the actual reflectance values.
Uncertainty estimations for surface reflectance values have been developed during AOP construction
and will be rigorously monitored and revised during operations via lab and field calibration and
validation activities.

In each of the following subsections, uncertainty values are calculated across the range of all possible
combinations of input reflectance values and the results presented as surfaces. Some of these surfaces
show certain combinations of reflectance values canresult in uncertaintyincreasing very rapidly. The
combinations of values that result in uncertaintyrising asymptotically are where two or more of the
bands have reflectance values approaching 0.0 or 1.0. While this is theoretically possible, e.g. extremely
dark shadows or extremely bright surfaces, it is very unlikely in real world data or practical use cases and
would occur only over areas where vegetationindices would be inappropriate or not useful.
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6.1.1 WBI Uncertainty

Because WBI is a simple two-band ratio, as shown earlierin Eqg. 1, WBI can theoretically range from zero
to infinity. The equation for WBI uncertainty as derived from Eq. 7 is shown in Eq. 8 (Huete et al., 1999).

OWBI\? OWBI\?
uly(WBI) = (6 ) uZ,(po70) + (6 ) uZ,,(pooo)
970 Paoo
OWBIOWBI ® ) Eq
—_—Uu ’p .
90970 OPo0o cal \P970:P900 8
where
OWBI B 1
0P970  P90o
Eq.9
OWBI — pyyo
9 P9oo Pooo?
Eq. 10
OWBIdWBI _ Pazo
0P970 Pg00 Pooo>
Eq.11

Errorin WBI has been calculated for all combinations of pg79and pgg reflectance values from 5% to 95%
for 2%, 5%, and 10% error in those values. The surface plot for the 5% error calculations are in Figure 3.
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Figure 3. Errorin WBI as afunction of input reflectance values with 5% uncertainty. Error surfaces for WBI with
different reflectance value uncertainty retain the same shape and differ only by magnitude.

6.1.2 NMDI Uncertainty

Because NMDl is a ratio of three bands, as shown earlierin Eq. 2, NMDI uncertainty varies across the full
range of NMDI values. The equation for NMDI uncertainty as derived from Eq. 7 is show in Eq. 12 (Huete

et al., 1999).
. dNMDI\? | ONMDI\* |
Ucal (NMDI) = ( ) ucal(p860) + (—> Ucar (p1640)
0Psg60 0p1640
. (6NMDI>2 2 0 )2 ONMDI dNMDI ( )
u u ,
9p2130 cal 72130 0Pge0 9IP1640 cal \PB60-P1640 Eq.12
ONMDIONMDI )
9Pse OPz130 Ucar (Pg60,P2130
ONMDIONMDI

Ucqr (P1640:P2130)

0p1640 9P2130
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ONMDI 2(p1640 = P2130)
OPseo ( + ( - )’
Pseo P1640 — P2130 Eq.13
q.
ONMDI —2Pg60
= 2
0p1640 (Pseo + (p1640— P2130)) Eq. 14
q.
ONMDI 2pge0
= 2
a.02130 (p860 + (101640 - P2130)) Eq. 15
q.

Errorin NMDI has been calculated for all combinations of pgsp and p;44¢ reflectance values from 5% to
95% for 2%, 5%, and 10% error in those values with the pig40 reflectance fixed at 5% with uncertainty
values equal to those for pggp and pis40. As P164p iNncreases there are many points where input reflectance
values can combine such that NMDI becomes undefined due to the construction of its denominator. The

surface plot for the 5% error calculations arein Figure 4.
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the same shape and differ only by magnitude.

6.1.3 NDWI Uncertainty

Because NDWI is a normalized ratio of twobands, as shown earlierin Eg. 3, NDWI uncertaintyvaries
across the allowed range of NDWI from -1 to 1. The equation for NDWI uncertainty as derived from Eq. 7

is showin Eg. 16 (Huete et al., 1999).

2
cal

ONDWI\* ONDWI\>
(NDWI) = <T857) uZy, (pgs7) + (W> uZa (1241)

ONDWIONDWI
0pgs7 0p1241

u

Ucar(Pgs7,P1241) Eq.16

where
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ONDWI 2D1941
0pgsy;  (Pgsy + P1241)?

Eq.17

aNDWI _2p857

0p1241 (pgs7 + P1241)?
Eq.18

aNDWI aNDWI _4p857p1241
0pgs7 Opiza1  (Pgsy + P12ar)?

Eq.19

Errorin NDWI has been calculatedfor all combinations of pgs;andp;,4; reflectance values from 5% to

95% for 2%, 5%, and 10% error in those values. The surface plot for the 5% error calculations are in

Figure 5.
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Figure 5. Errorin NDWIlas afunction input reflectance valueswith 5% uncertainty. Error surfaces for NDWI with
different reflectance value uncertainty retain the same shape and differ only by magnitude.

6.1.4 NDIl Uncertainty
Because NDIl is a normalized ratio of two bands, as shown earlierin Eq. 4, NDIl uncertainty varies across
the allowed range of NDIl from -1 to 1. The equation for NDIl uncertainty as derived from Eq. 7 is shown
in Eq. 20 (Huete et al., 1999).

2 ONDII
) ucal (p819) + <_

0pP1649

JONDII

0pPg19
ONDIIONDII

0Pg19 0P1649

2
uczal (NDII) = ( ) uﬁal (P1649)

Eq.20

Ucqr (Pg19,P1649)

where
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0pg19  (Pg1o + P16a9)?
Eq.21
aNDII _ _2p819
0p16a0  (Pg19 + P16ag)?
Eq. 22
ONDIIONDII _ —4pg10P1649
0Pg19 0P1649 (P819 + .01649)4
Eq.23

Errorin NDII has been calculated for all combinations of pg;9andp;s49 reflectance values from 5% to 95%

for 2%, 5%, and 10% error in those values. The surface plot for the 5% error calculations are in Figure 6.
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Figure 6. Errorin NDIll as a function of input reflectance values with 5% uncertainty. Error surfaces for NDIl with
different reflectance value uncertainty retain the same shape and differ only by magnitude.

6.1.5 MSIUncertainty

Because MSl is a simple two-band ratio, as shown earlier in Eq. 5, MSI can theoretically range from zero
to infinity. The equation for MSI uncertainty as derived from Eq. 7 is shown in Eq. 8 (Huete et al., 1999).

OMSI \* OMSIN>

6p1599> uZ,, (p1599) + (@) uZ,, (pg19)
OMSI OMSI

+2

0P15990P319

uz, (si) = (

Ucar (P1599,P819) Eq.24

where
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Eq. 26
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Errorin MSI has been calculatedfor all combinations of p;599 and ps;4 reflectance values from 5% to 95%
for 2%, 5%, and 10% error in those values. The surface plot for the 5% error calculations are in Figure 7.
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Figure 7. Error in MSlas afunction of input reflectance values with 5% uncertainty. Error surfaces for MSI with
different reflectance value uncertainty retain the same shape and differ only by magnitude.

6.2 Reported Uncertainty

Currently, no uncertainty is reported with the Canopy Water Content spectralindex product. In the
future, the uncertainty associated with each pixel will be reported in a separate raster of uncertainty
values. The uncertainty will be obtained from the reflectance errors propagated through the appropriate
index formulae as was done for the surfaces in 6.1. This form of communicating uncertainty in remote
sensing products is consistent with similar spectralindex products suchas MODIS Vegetation Index
Product Series Collection5. NEON, operating in data acquisition, processing, and distribution roles, has a
unique opportunity to create and provide this more detailed information on uncertainty within given
data products, such as canopy water content spectralindices, to researchers and end users. This

upgrade is planned for implementation in 2018.
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7 VALIDATIONAND VERIFICATION

7.1  AlgorithmValidation

The algorithms as implemented are already defined and agreed upon in the remote sensing disciplines.
However, if newer, more preferable indices arise they may be added to the NEON Data Products
Catalog, complementing or replacing other canopy water content spectral indices as necessary.

Validation of the algorithm implementation was performed by comparing NEON-produced canopy water
content index values to those from the commercial software package ENVI. The validation comparison
was run on data from the NEON 2017 collection over the Harvard Forest site (HARV). Differencing the
ENVIand NEON canopy water indices showed the results matched tothe level of precision offered in the
single precision floating point IEEE data type used to store the reflectance data and to perform the

calculations.

7.2 Data Product Validation

During observatory operations, canopy water content index products will be validated against similar
data products derived from other well-established and calibrated sensor programs such as Landsat.
These validation analyses are planned to begin in 2018. NISimagery will be spatiallyaggregatedand
spectrally resampled to matchthe bandpasses and pixel sizes of candidate validation datasets. Most
multispectral sensors do not have the required bands for all NEON canopy water content spectralindex

products.

7.3 DataProduct Verification

During observatory operations, data product verification for canopy water content spectral indices will
be accomplished using directly measured field reflectance spectra. NEON AOP operations include

periodic acquisition of field spectra during data acquisition flights as a level-of-effort activity. The field
spectra will be used to verify L1 directional reflectance products as well as canopy water content

spectralindex products.
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8 FUTURE PLANS AND MODIFICATIONS

A more sophisticated approach for selecting the NIS bands to be used in index calculations is currently in
development, similar to that used in making the FPAR data product [RD 06]. The new approach will usea
weighted combination of a number of NIS bands to optimally cover the range of the spectral feature of
interest. This will result in an implementation of the standard canopy water content spectralindex
algorithms in a way making them most comparable between sensors, more robust to noise and/or error
in individual bands, and better able to properly capture the index value for different types of land cover
when the exact location of the spectral feature of interest differs somewhat from the average.

After the band centeris mapped to a specific pixel, additional pixels around the central wavelength pixel
are co-added and weightedto meet the desired spectral bandpass for the given spectral band. Optimal
bandwidths for the bandpasses vary from one spectralindex to the next. NIS5 nm bandpass es allow for
very precise targeting of the spectral features required for each index. For narrowband spectral indices,
e.g. NDWI, the 5 nm NIS bandpasses meet the standardin researchand industry and only 2 or 3 NIS
bands may be combined. Broadband indices originally designed for use with data from orbital
multispectral sensors suchas MODISand Landsat may use many more NIS bands for recombination.
NEON will be implementing combining multiple NIS bands in to bandpasses appropriate for use in these
indices in 2018. Earlyindications are that combining several NIS bands may provide a more robust and
cross-sensor compatible product while helping to improve quality (Hulslander et al., 2015).

The modeled, predicted uncertainty ranges in this document will be continuously validated against
measured uncertaintyin actual NIS data as it is collected. This document will be updated accordingly
with the results and plots of those comparisons.
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