
Nicl Function Library
Sarah Elmendorf, Claire Lunch, and Corey Morgan

11/27/2018

Nicl is the NEON Ingest Conversion Language. It is the scripting language used to write validation and conversion rules for observational data to be
ingested into the NEON database. The OS Parser is the software that ingests the data and stores it in the database; all user-modifiable instructions to
the OS Parser are written in OS ingest workbooks. Within the workbooks, Nicl is used in the validationRulesParser and parserToCreate fields.

It is highly recommended to read this document while referencing at least one ingest workbook or validation file (an abbreviated version of an ingest
workbook, provided along with data downloads from the NEON data portal). Seeing the functions as used in practice will be far clearer than reading
this document alone.

This document is an index of available Nicl functions and practical considerations for their usage. For a more detailed description of the software
underlying Nicl, see the Nicl Language document.

Table of Contents

Section Title Description
1 General principles Nicl principles and syntax as applied to all functions
2 NEON functions Functions specific to NEON data handling; unlikely to have analogues in other

languages
2.1 Samples Functions to handle data related to physical samples, including sample identifiers and

sample hierarchies
2.2 Taxonomy Functions to validate taxonomic data
2.3 File paths Functions to store and validate data in cloud storage buckets
2.4 Other Other NEON-specific functions
3 Logical functions Functions for handling logic statements
4 Numeric functions Functions for handling numeric data
5 String functions Functions for handling text strings
6 Date functions Functions for handling date and time fields
6.1 Date formats Acceptable input date formats
7 IF usage Making conditional Nicl statements
8 Null handling Nicl rules when input fields are blank

1

1. General principles

For validation rules, a data upload that fails to meet the criteria of any one rule will result in failure to ingest the entire data upload. However, to the
extent possible, the failure report will include all rules failed, to enable efficient resolution of failures. There is no warning capability; validation either
passes or fails.

For creation rules, a data upload that fails to create a value will result in a blank field. If the field in question is required, either implicitly (date and
location fields) or explicitly (using the validation function REQUIRE), the upload will fail.

Creation functions must be written in the parserToCreate column; validation functions must be written in the validationRulesParser column. Functions
placed in the wrong column will not be carried out.

Validation and creation rules are written in square brackets. Multiple rules can be applied to the same field, in sequential sets of square brackets, e.g.
[REQUIRE][GREATER_THAN(0)].

Inputs to functions can be numbers, strings, or fieldNames of other fields in the same workbook table. Strings must be in single quotes, e.g.
[DEFAULT_TO(‘active’)].

2. NEON functions

2.1. Samples

Sample data are central to almost all NEON observational data. Controlling the values of sample identifiers, connecting data collected on the same
samples at different times, and maintaining hierarchies of samples and their subsamples, are all essential to the integrity of observational data. These
functions are part of the system that instructs the OS Parser in how to handle sample-related data.

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

EXISTS Validation NA [EXISTS] This sample must
already be
present in the
NEON database.

See Sample
Existence
Rules below.

DOES_NOT_EXIST Validation NA [DOES_NOT_EXIST] This sample must
not be present in
the NEON
database, nor
elsewhere in the
current upload.

See Sample
Existence
Rules below.

2

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

DOES_NOT_EXIST_IN_DB Validation NA [DOES_NOT_EXIST_IN_DB] This sample must
not be present in
the NEON
database, but
may be present
elsewhere in the
current upload.

See Sample
Existence
Rules below.

MIGHT_EXIST Validation NA [MIGHT_EXIST] This sample may
or may not be
present in the
NEON database.

Avoid using
unless strictly
necessary. See
Sample
Existence
Rules below.

3

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

DERIVE_FROM_SAMPLE_TREE Creation At least
one valid
sample-
Class.
Multiple
sample-
Classes
are sepa-
rated by
OR.

[DERIVE_FROM_SAMPLE_TREE(
‘swc’ OR ‘gsi’)]

Allows date and
location data to
be inherited
through a sample
hierarchy.
Populate by
finding the values
in data associated
with samples of
the input
sampleClass,
which must be
either the class of
the primary
sample, or of one
of its ancestors.
The input class
must exist in a
table where the
date and location
were NOT
derived. If there
are multiple
ancestor samples
of the input class,
the earliest start
and latest end
dates will be used,
and the lowest
location on the
location hierarchy
that encompasses
all the locations
appearing in the
data.

Can only be
applied to
fields of
fieldType
activityStart-
Date,
activityEnd-
Date, and
namedLocation.

4

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

SPLIT_BY Creation The
string to
split by,
generally
a pipe.

[SPLIT_BY(‘|’)] Split a
concatenated field
into multiple
elements.

Currently only
valid for fields
of fieldType
childSample-
Tag,
parentSample-
Tag. Allows
for creating
multiple child
samples in a
single field, or
designating
multiple
parent samples
for a mixture.

SAMPLE_CLASS Creation A
sample-
Group
from the
same
workbook.

[SAMPLE_CLASS(‘fieldSample’)] Populates with
the class of the
sample whose
sampleGroup is
input.

Only valid on
samples
included in the
same data
record.

Sample Existence Rules

There are 3 locations where a sample may occur prior to its upload in a given data table:

1. In the sample table (‘in database’)
2. In another data table in the same upload, with a lower rank number in the sequencing workbook (‘in previous table’)
3. Elsewhere in the same data table, in the same upload (‘in current table’)

EXISTS, DOES_NOT_EXIST, DOES_NOT_EXIST_IN_DB, and MIGHT_EXIST describe which of these occurrences should cause success or
failure of a data upload.

DOES_NOT_EXIST – 1, 2, or 3 all fail

Sample should not be present in the database, in a previous table in the same upload, or anywhere else in the current table. Sample presence in the

5

database or a previous table means upload fails; more than one instance of sample in the current table means upload fails.

DOES_NOT_EXIST is almost always the validation used when a sample is created - when it is first collected in the field, or first subsampled from
another sample. This prevents duplicate samples from being entered into the database.

DOES_NOT_EXIST_IN_DB – 1 or 2 fail, 3 passes

Sample should not be present in the database or in a previous table in the same upload. Multiple instances of sample in the current table are allowed.

DOES_NOT_EXIST_IN_DB is used when samples are first created, but they are created in multiples. For instance, in the mosquito identification
data table, samples are pooled to create a child sample, with a data record created for each parent sample, so the child sample appears in as many
records as it has parents. DOES_NOT_EXIST_IN_DB ensures that all parents of a given child sample are uploaded together, and child sample
identifiers can’t be duplicated between different data uploads.

EXISTS – 1 or 2 passes, 3 is not checked

Sample should be present either in the database or in a previous table in the same upload. If sample is not present in one of these two places, upload
fails. Multiple instances in the current table are irrelevant to pass or fail.

EXISTS is used when samples are referenced again after being created, and ensures sample identifiers match. For example, EXISTS is used to ensure
data returned by analytical facilities matches sample identifiers collected by NEON.

MIGHT_EXIST - 1, 2, or 3 pass

Sample may or may not exist in the database, in a previous table in the same upload, or in multiple instances in the current table. All scenarios pass.

MIGHT_EXIST is used when a sample may be created, or may already be present in the database. For example, in the woody vegetation structure
mapping and tagging data table, a given tree may have already been identified and tagged in a previous year, or it may have grown between sampling
years, in which case it will be a newly recorded sample.

Syntax

Sample existence rules are placed in the workbook in the sample tag field, but they apply to the sample as a whole; i.e., if sample data are uploaded
with only a barcode, and no tag, the existence rules will be applied as usual.

Matching for sample tags is case-insensitive, but all letters are converted to upper case on storage in the database.

2.2 Taxonomy

6

Function

Creation or
validation
function? Inputs Example Description

Special
considerations

ELEMENT_OF Validation Taxonomy type,
taxon value
(taxonID or
scientificName),
filter local (T or
F)

[ELEMENT_OF(‘MOSQUITO’,
‘scientificName’,F)]

Value in field must
match a taxonID or
scientificName in
the taxonomy table
indicated. If
filterLocal=T, the
taxon must be
present at the site
in question.

All inputs are
required.
filterLocal=F can
cause problems in
the transition from
L0 to L1 data, so
use filterLocal=T
unless there is a
compelling reason
not to.

2.3 File paths

Select types of data are stored in cloud storage buckets, instead of being parsed and stored in the database tables. For example, the digital hemispherical
photos can’t be parsed into database tables, so they are stored as files. These functions ensure that data are present in the appropriate buckets, and
provide the URLs to end users to access the data.

Note that because data are placed in cloud storage directly, they bypass many validation steps. The validations described here only confirm that the
files exist and are of the correct type. Because of this serious limitation, this option is used only when the file size and/or data structure are not
compatible with the OS data model.

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

URI Creation Concatenated
string to
create file path

[URI(‘https://s3.data.neonscience.org/
neon-dhp-images’) + ‘/’ +
fulcrumFilePath]

Create URL
where data can
be found.

This function
only makes
the URL
string, it
doesn’t put
any data
there.

7

https://s3.data.neonscience.org/neon-dhp-images
https://s3.data.neonscience.org/neon-dhp-images

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

VERIFY_URL Validation NA [VERIFY_URL] Check that the
URL works.

Used in
combination
with
MIME_TYPE,
see next line.

MIME_TYPE Validation Valid mime
types

[MIME_TYPE(‘image/nef’ OR
‘image/jpg’ OR ‘image/jpeg’)]

Check that the
data found at
the URL
match one of
the mime
types.

S3_DATA_FRAME_URL Creation NA [S3_DATA_FRAME_URL +
dnaSampleID + ‘_16S_’ + [NOW] +
’.csv’]

Create base
URL and
concatenate
with other
strings to
generate full
URL where
data are to be
put.

The data
frame process
is
complicated,
to use this
workflow
consult the
data frame
instructions
document.

GROUP_BY_SAMPLE Creation A
sampleGroup

[GROUP_BY_SAMPLE(‘sample’)] Define the
grouping
variable for
data frame
creation.

The data
frame process
is
complicated,
to use this
workflow
consult the
data frame
instructions
document.

8

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

TO_DATA_FRAME_COLUMN Creation The field to
group by and
the name to
give it in the
data frame

[TO_DATA_FRAME_COLUMN(
sampleID, ‘sampleID’)]

Write the
grouping
variable to the
data frame.

The data
frame process
is
complicated,
to use this
workflow
consult the
data frame
instructions
document.

2.4 Other

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

DEFAULT_TO Creation Value to
default to -
can be a
string,
number,
date, or
fieldName

[DEFAULT_TO(‘active’)] Populates with
the value
indicated, if
the field is
blank when
uploaded.

Does not change
the value of a
field that is
already
populated.

” Creation Value to
populate
with - can
be a string,
number,
date, or
fieldName

[‘active’] Populates with
the value
indicated.

Overwrites
value if the field
is already
populated.

9

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

DEFAULT_TO_LAB_LOGGED_IN Creation NA [DEFAULT_TO_LAB_LOGGED_IN] Populates with
the name of
the lab
uploading data
- selected from
dropdown
menu in
upload UI.

Does not change
the value of a
field that is
already
populated. Do
not have the lab
pre-populate
this field, lab
names need to
match exact
strings in the
NEON
database.

CREATE_UID Creation NA [CREATE_UID] Populates with
a randomly
generated
unique
identifier, used
to create the
unique
identifier for
the record of
data.

Currently only
used for
fieldName=uid.

10

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

NAMED_LOCATION_TYPE Validation One or
more
NEON
named
location
types

[NAMED_LOCATION_TYPE(‘OS
Plot - mam’ OR ‘AOS buoy named
location type’)]

Checks that
the value is a
valid named
location of one
of the
indicated
types.

This validation
should be
applied to ALL
named location
fields, including
named location
fields populated
via DE-
RIVE_FROM_SAMPLE_TREE.
Can be applied
to named
location fields
even if they are
not
fieldType=namedLocation.

REQUIRE Validation NA [REQUIRE] Field must be
populated.

Populating with
an empty string
or NA fails as if
the field were
blank.

REQUIRE_NULL Validation NA [REQUIRE_NULL] Field must be
blank.

Typically used
as the outcome
of a conditional,
e.g.
[IF(fieldName=‘active’),
RE-
QUIRE_NULL].
See guidelines
for conditionals
in Section 7.

11

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

IS_BLANK Validation Optional:
either no
input, or a
fieldName.

[IS_BLANK] or
[IS_BLANK(fieldName)]

Checks
whether a field
is populated.

Typically used
as input to a
conditional, e.g.
[IF(IS_BLANK(fieldName)),
REQUIRE].
When used
without a
fieldName, the
current field is
evaluated. Do
not use with the
current
fieldName as
input; function
will not work.

IS_NOT_BLANK Validation Optional:
either no
input, or a
fieldName

[IS_NOT_BLANK] or
[IS_NOT_BLANK(fieldName)]

Checks
whether a field
is populated.

Typically used
as input to a
conditional, e.g.
[IF(IS_NOT_BLANK(fieldName)),
fieldName +
otherField-
Name]. When
used without a
fieldName, the
current field is
evaluated. Do
not use with the
current
fieldName as
input; function
will not work.

12

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

LOV Validation NA [LOV] Field must
match an
element in a
pre-
determined list
of values.

The validation
takes no input,
but the name of
a list of values is
required in the
lovName column
of the workbook,
to identify the
list of values to
validate against.
Match is
case-insensitive.

3. Logical functions

Function

Creation or
validation
function? Inputs Example Description Special considerations

= Validation Two values to be
compared

[IF(fieldName=0),
REQUIRE]

Check for equality of two
values.

Typically used as input to a
conditional. See guidelines
for conditionals in Section 7.

NOT NA Logical value to be
reversed

[IF(NOT(fieldName=0)),
REQUIRE]

Convert TRUE to
FALSE and vice versa.

Typically used as input to a
conditional.

AND Validation Two values to be
compared

[IF(fieldName=0 AND
otherFieldName=‘Yes’),
REQUIRE]

Compare two logical
values and return TRUE
if both are TRUE

Typically used as input to a
conditional.

OR Validation Two values to be
compared

[IF(fieldName=0 OR
otherFieldName=‘Yes’),
REQUIRE]

Compare two logical
(TRUE/FALSE) values
and return TRUE if
either is TRUE

Typically used as input to a
conditional.

13

4. Numeric functions

In addition to validating numeric values, Nicl can perform basic arithmetic and a few simple functions.

Negative numbers are indicated by a - sign following, rather than preceding, the number. See details under GREATER_THAN/LESS_THAN.

Function

Creation or
validation
function? Inputs Example Description Special considerations

GREATER_THAN;
GREATER_THAN_OR_EQUAL_TO

Validation Value to compare
to, can be a
number or a
fieldName

[GREATER_THAN(5)] Check if value
exceeds a
minimum
threshold.

Syntax for comparison to a
negative number:
[GREATER_THAN(5-)]

LESS_THAN;
LESS_THAN_OR_EQUAL_TO

Validation Value to compare
to, can be a
number or a
fieldName

[LESS_THAN(5)] Check if value
falls below a
maximum
threshold.

Syntax for comparison to a
negative number:
[LESS_THAN(5-)]

+-*/ˆ Creation Numbers and/or
fieldNames

[((fieldName +
5)*otherFieldName)ˆ2]

Standard
arithmetic
functions.

Note that blanks behave
differently in these
functions than in SUM,
MEAN, etc. See null
handling guidelines in
Section 8.

COUNT Creation FieldName(s) [COUNT(fieldName,
otherFieldName)]

Counts the
number of
non-blank values
in the fields
indicated.

SUM Creation FieldName(s) [SUM(fieldName,
otherFieldName)]

Sums the values
in the fields
indicated.

MEAN Creation FieldName(s) [MEAN(fieldName,
otherFieldName)]

Calculates the
arithmetic mean
of the values in
the fields
indicated.

14

Function

Creation or
validation
function? Inputs Example Description Special considerations

STDDEV Creation FieldName(s) [STDDEV(fieldName,
otherFieldName,
thirdFieldName)]

Calculates the
standard
deviation of the
values in the
fields indicated,
using n-1 in the
denominator.

PSTDDEV Creation FieldName(s) [STDDEV(fieldName,
otherFieldName,
thirdFieldName)]

Calculates the
‘population’
standard
deviation of the
values in the
fields indicated,
using n in the
denominator.

5. String functions

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

+ Creation Two or more
strings
and/or
fieldNames

[fieldName + otherFieldName] Concatenate
two values.

MATCH_REGULAR_
EXPRESSION

Validation A regular
expression to
be validated
against

[MATCH_REGULAR_
EXPRESSION(‘WDP.[A-
Z]{4}.20[0-9]{2}(0[1-9]|1[012])(0[1-
9]|1[0-9]|2[0-9]|3[01]).(0[0-9]|1[0-
9]|2[0-4])[0-5][0-9]’)]

Validate that
the value in
the field
matches the
regular
expression.

15

Function

Creation
or valida-
tion
function? Inputs Example Description

Special
considerations

NOT_MATCH_REGULAR_
EXPRESSION

Validation A regular
expression to
be validated
against

NOT_MATCH_REGULAR_
EXPRESSION(‘N/A|NA’)]

Validate that
the value in
the field does
not match the
regular
expression.

STARTS_WITH Validation A string or a
fieldName

[STARTS_WITH(fieldName)] Validate that a
string value
starts with the
exact string in
another field.

ENDS_WITH Validation A string or a
fieldName

[ENDS_WITH(fieldName)] Validate that a
string value
ends with the
exact string in
another field.

ASCII Validation NA [ASCII] Validate that
the field
contains only
ASCII
characters.

It’s generally
useful to
apply this
validation to
every free
text field.

6. Date functions

Function

Creation or
validation
function? Inputs Example Description

Special
considerations

NOW Creation NA [NOW] The current
date and time,
to the
millisecond, in
UTC.

16

Function

Creation or
validation
function? Inputs Example Description

Special
considerations

UPLOAD_DATE Creation NA [UPLOAD_DATE] The date and
time of the data
upload, to the
millisecond, in
UTC.

Typically used to
set the activity
start and end
dates for
lab-specific files.

CONVERT_TO_UTC Creation Either
‘namedLocation’ or a
fieldName that
contains a named
location

[CONVERT_TO_UTC(
namedLocation)] or
[CONVERT_TO_UTC(
laboratoryName)]

Converts the
input date, in
local time, to
UTC. Uses the
named location
to determine the
time zone of
local time.

DAYS; HOURS; MINUTES;
SECONDS

Creation NA [ovenEndDate -
collectDate][DAYS]

Indicate the
units for a
calculated time
interval

6.1. Date formats

Date formats in input data can be in the following formats, and will be interpreted as indicated.

The first column is a date or date/time example as would be expected to be seen within a csv cell. The second column is the canonical interpretation
of the date/time (that is, what the OS Parser sees). The third column tells whether the parser recognizes that there is a time component in this date,
and the fourth column indicates whether the parser recognizes the time zone.

Input date Time in CSV Cell Parser Interpretation Has Time? Has Time zone?
2016-05-05T22:59:38Z 2016-05-05T22:59:38Z Yes Yes
2016-10-12 09:08MST 2016-10-12T09:08-06:00[America/Denver] Yes Yes
2009-11-15T 2009-11-15 No No
2009-11-15 3:42 am 2009-11-15T03:42 Yes No
2009-11-15 03:42:45.55234 PM 2009-11-15T15:42:45.552340 Yes No
2009-11-15 03:42:45.55234P 2009-11-15T15:42:45.552340 Yes No
2009-11-15 2009-11-15 No No
2009-11-15 03:42:45 AM 2009-11-15T03:42:45 Yes No

17

Input date Time in CSV Cell Parser Interpretation Has Time? Has Time zone?
2009-11-15 03:42 2009-11-15T03:42 Yes No
2009-11-15 1:42 2009-11-15T01:42 Yes No
2009-11-15 15:42 2009-11-15T15:42 Yes No
2009-11-15T14:12:12 2009-11-15T14:12:12 Yes No
2009-11-15T14:12:12.3449 2009-11-15T14:12:12.344900 Yes No
2009-11-15T14:12:12Z 2009-11-15T14:12:12Z Yes Yes
2009-11-15T14:12:12UTC 2009-11-15T14:12:12Z[UTC] Yes Yes
2009-11-15 14:12:12 EDT 2009-11-15T14:12:12-05:00[America/New_York] Yes Yes
2009-11-15T14:12:12+01:00 2009-11-15T14:12:12+01:00 Yes Yes
2009-11-15T14:12:12-07:30 2009-11-15T14:12:12-07:30 Yes Yes
20091115 2009-11-15 No No
20091115T 2009-11-15 No No
20091115 3:42 am 2009-11-15T03:42 Yes No
20091115 03:42:45.55234 PM 2009-11-15T15:42:45.552340 Yes No
20091115 03:42:45.55234P 2009-11-15T15:42:45.552340 Yes No
20091115 03:42:45 AM 2009-11-15T03:42:45 Yes No
20091115 03:42 2009-11-15T03:42 Yes No
20091115 1:42 2009-11-15T01:42 Yes No
20091101 15:42 2009-11-01T15:42 Yes No
20091115T14:12:12 2009-11-15T14:12:12 Yes No
20091115T14:12:12Z 2009-11-15T14:12:12Z Yes Yes
20091115T14:12:12UTC 2009-11-15T14:12:12Z[UTC] Yes Yes
20091115 14:12:12 EDT 2009-11-15T14:12:12-05:00[America/New_York] Yes Yes
20161012 09:08MST 2016-10-12T09:08-06:00[America/Denver] Yes Yes
20091115T14:12:12+01:00 2009-11-15T14:12:12+01:00 Yes Yes
20091115T14:12:12-07:30 2009-11-15T14:12:12-07:30 Yes Yes
20091115 14:42am 2009-11-15T14:42 Yes No

This table lists some values that may look like valid dates but actually are not

Incorrect input date Time What’s the matter?
2016-05-05T22:59:38ZQAA Trash at the end of the date
16-10-05T22:59 Two-digit years are so last

millennnium
2009-9-31 30 days hath September
2009-11-15 T Floating “T”

18

Incorrect input date Time What’s the matter?
2009-11-15 14:42 AM 14:42 is not in the AM
2009-11-15 10:42 am Lowercase am
2016-13-15 10:42 AM Thirteen months in a year

may sound like a good idea,
but no parsing for you.

06/29/2016 Sorry. . .
29/06/2016 . . . I don’t even. . .
14-May-2016 . . . nope. . .
2016-JUN-30 . . . also nope. . .
2016JUN30 . . . nor this. All dates and

date times must start with
the “yyyy-MM-dd” or
“yyyyMMdd” format.

7. IF statements

Any Nicl function with a logical output can be used in an IF statement. But, many Nicl functions behave slightly differently in an IF statement than
outside of one. In an IF statement, a function’s output will be interpreted as a logical value, whereas outside an IF statement, a TRUE silently passes
the field’s original value, and a FALSE fails data ingest.

IF can be used in both creation and validation functions. In validations, it is most frequently used to make certain fields required or un-required,
depending on the contents of other fields.

The table below contains examples; see Null handling in Section 8 below for additional considerations.

Function Description
[GREATER_THAN(5)] Validation fails and data are not ingested unless input value is greater than 5
[IF(LESS_THAN(5)), 0] If the input value is less than 5, it is overwritten by 0
[IF(fieldName < 5), ‘belowThreshold’] If the value in fieldName is less than 5, this field is populated by the string ‘belowThreshold’
[IF(fieldName = ‘Yes’), REQUIRE] If the value in fieldName is Yes, this field must be populated
[IF(IS_BLANK(fieldName)), REQUIRE] Either this field or fieldName must be populated

19

8. Null handling

A few Nicl functions (REQUIRE, REQUIRE_NULL, IS_BLANK, IS_NOT_BLANK) are explicitly about whether a field is populated or not. Other
Nicl functions handle null values according to the following rules:

Validation functions carry an implicit IF(IS_NOT_BLANK), e.g., LESS_THAN(fieldName) will pass validation if either fieldName or the field being
compared to it is blank.

Inside an IF statement, a blank returns FALSE, i.e., the -then part of the if-then will not be carried out. When combining logical functions,
e.g. IF(fieldName=0 AND otherFieldName=10), a blank is still FALSE.

In parser math, functions like SUM, MEAN, etc will ignore blank fields and carry out their calculations on however many populated fields are available
from their inputs. In contrast, arithmetic expressions like + - * / will output a blank if there is a blank in any of their inputs.

20

	Table of Contents
	1. General principles
	2. NEON functions
	3. Logical functions
	4. Numeric functions
	5. String functions
	6. Date functions
	7. IF statements
	8. Null handling

