

Aquatic Site Sampling Design – NEON Domain 02

PREPARED BY	ORGANIZATION	DATE
Stephanie Parker	AQU	3/14/2019
Nora Catolico	AQU	5/22/2018
Brandon Jensen	AQU	11/3/2016
Keli Goodman	AQU	5/26/2016

APPROVALS	ORGANIZATION	APPROVAL DATE
Kate Thibault	SCI	04/04/2019
Mike Stewart	PSE	04/06/2019
David Barlow	ENG	05/22/2019

RELEASED BY	ORGANIZATION	RELEASE DATE
Anne Balsley	CM	05/23/2019

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Change Record

REVISION	DATE	ECO #	DESCRIPTION OF CHANGE
Historic changes			Updated reaeration rules from 1 week of no disturbance prior to 2 days; Updated groundwater well IDs; Adding Lewis Creek and rapid habitat assessment; CM updated with new template and changes based on riparian habitat assessment timing; Updated wording for reaeration timing; Updated the groundwater sampling locations and the site access map for POSE; Updated site access map for LEWI; Updated stream morphology timing and other minor edits; Updated LEWI map and sampling locations; Updated bio contingencies
А	05/23/2019	ECO-06095	Initial release

TABLE OF CONTENTS

LIST OF 1	TABLES AND FIGURES II
1 DES	CRIPTION1
1.1	Purpose1
1.2	Scope1
2 REL	ATED DOCUMENTS AND ACRONYMS1
2.1	Applicable Documents
2.2	Reference Documents
2.3	Acronyms2
3 TEN	IPORAL SAMPLING STRATEGY
3.1	Rationale3
3.2	Approach3
4 SAN	/IPLING DATES6
4.1	Sensor Maintenance7
4.2	Water Chemistry Sampling Dates7
4.3	Groundwater Chemistry Sampling Dates9
4.4	Discharge and Reaeration Sampling Dates12
4.5	Biology Bout, Sediment Chemistry Sampling, and Riparian Assessment Dates12
4.5.	1 Suggested Biology and Sediment Chemistry Bout14
4.5.	2 Other Biology Sampling14
5 PRC	DTOCOL DISTURBANCE AND PRIORITIZATION15
5.1	Disturbance Criteria
6 SPA	TIAL SAMPLING STRATEGY17
6.1	General Site Sampling Locations17
6.2	Site-Access and Instrument Locations21
6.3	Riparian Sampling Locations23
7 REF	ERENCES25
APPEND	IX A WADEABLE STREAMS26
APPEND	IX B OBSOLETE LOCATIONS, POSE27
APPEND	IX C OBSOLETE LOCATIONS, LEWI

LIST OF TABLES AND FIGURES

Table 1. Duration, frequency and prioritization of field activities and long term monitoring for NEON
wadeable streams as a function of targeted constraints and driving variables. For associated lab hours,
see Appendix A. (*May be scheduled more frequently if a stochastic event significantly alters channel
morphology.)
Table 2. Rule sets for sampling modules in wadeable streams. Deviations may be allowed with science
approval5
Table 3. Proposed stream water chemistry sampling dates for D02 Posey Creek and Lewis Run for the 14
samples collected to reflect the discharge related strategy7
Table 4. Groundwater Observation Wells at D02 Posey Creek and Lewis Run. Wells for sampling denoted
in bold text10
Table 5. Proposed groundwater chemistry sampling dates for D02 Posey Creek and Lewis Run
Table 6. Proposed Biological sampling windows for D02 Posey Creek and Lewis Run. Fish sampling and
Sediment Chemistry will take place during Bouts 1 and 3. The riparian habitat assessment peak
greenness window may not coincide with the bout windows
Table 7. Disturbance criteria for streams. Impact level: high (4), medium/high (3), medium/low (2), low
(1), none (0). The morphology reach is the entire permitted reach (usually 1 km long). The sensor reach
is the length of stream between S1 and S215
Table 8. Module-specific sampling locations, wadeable streams. *May occur at an alternate location if
necessary
Table 9. POSE Sampling Locations. Proposed coordinates are determined prior to sampling at HQ.
Coordinates are groundtruthed by Field Science in the field and reported to Science. If available in the
table, Field Science coordinates should be used for sampling
Table 10. LEWI Sampling Locations. Proposed coordinates are determined prior to sampling at HQ.
Coordinates are groundtruthed by Field Science in the field and reported to Science. If available in the
table, Field Science coordinates should be used for sampling20

Figure 1. Timing of sample collection for 14 water chemistry samples reflecting the discharge related	
strategy for Posey Creek	. 8
Figure 2. Timing of sample collection for 14 water chemistry samples reflecting the discharge related	
strategy for Lewis Run	.9
Figure 3. Timing of sample collection for 2 groundwater chemistry samples reflecting the discharge	
related strategy for Posey Creek	L1
Figure 4. Timing of sample collection for 2 groundwater chemistry samples reflecting the discharge	
related strategy for Lewis Run	11
Figure 5. Proposed bouts for biological sampling at D02 Posey Creek. Sediment chemistry and fish	
sampling occur during Bouts 1 and 31	L4

Figure 6. Proposed bouts for biological sampling at D02 Lewis Run. Sediment chemistry and fish	
sampling occur during Bouts 1 and 3	15
Figure 7. Generic diagram for an AQU site showing sampling locations in a wadeable stream system.	
Note: the sensor locations are not typically installed as depicted; sediment stations 1 and 2 are divided	b
by the biological reach center not the midpoint between sensors	18
Figure 8. Site access and instrument locations at D02 Posey Creek	21
Figure 9. Site access and instrument locations at D02 Lewis Run.	22
Figure 10. POSE ideal riparian sampling design	23
Figure 11. LEWI ideal riparian sampling design	24

1 DESCRIPTION

1.1 Purpose

The goal of the National Ecological Observatory Network (NEON) is to enable understanding and forecasting of the impacts of climate change, land use change, and invasive species on continental-scale ecology.

A disparity exists in the scale of organisms and their effects on the global environment (Hargrove & Pickering, 1992). While environmental impacts often occur at the largest scales, small scale biological and physical processes need to be understood in order to document responses of organisms, communities, populations and other small scale phenomena (Keller et al., 2008). Data will be gathered from the level of gene to ecosystem at a local to continental scale using standardized field procedures and sample processing. In order to address this disparity, NEON will approach the Grand Challenge questions through an analysis of processes, interactions and responses occurring across spatial and temporal scales.

The local data collected at NEON sites within the 20 Domains will be integrated with the targeted regional data from NEON airborne instrumentation. This will provide a direct linkage in spatial and temporal scaling from NEON's distributed sensor network and in-situ field measurements, coupled with individual plant or canopy measurements to plot or stand level observations, and ultimately to the continental scale.

1.2 Scope

This document outlines the Domain 02 site-specific sampling strategy proposed for NEON Aquatic field sampling activities and other directly associated activities that will be used to address key data products related to the overarching Grand Challenge questions. It provides the sampling rationale for given parameters.

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

Applicable documents contain information that shall be applied in the current document. Examples are higher level requirements documents, standards, rules and regulations.

AD [01]	NEON.DOC.000001	NEON Observatory Design
AD [02]	NEON.DOC.002652	NEON Level 1, Level 2, Level 3 Data Products Catalog
AD [03]	NEON.DOC.005011	NEON Coordinate Systems Specification

2.2 Reference Documents

Reference documents contain information complementing, explaining, detailing, or otherwise supporting the information included in the current document.

RD [01]	NEON.DOC.000008	NEON Acronym List
RD [02]	NEON.DOC.000243	NEON Glossary of Terms
RD [03]	NEON.DOC.001152	NEON Aquatic Sample Strategy Document
RD [04]	NEON.DOC.001085	AOS Protocol and Procedure: Stream Discharge
RD [05]	NEON.DOC.003162	AOS Protocol and Procedure: Wadeable Stream Morphology
RD [06]	NEON.DOC.000693	AOS Protocol and Procedure: Reaeration in Streams
RD [07]	NEON.DOC.002905	AOS Protocol and Procedure: Water Chemistry Sampling in Surface
		Waters and Groundwater
RD [08]	NEON.DOC.001886	AOS Protocol and Procedure: Stable Isotope Sampling in Surface and
		Ground Waters
RD [09]	NEON.DOC.001199	AOS Protocol and Procedure: Surface Water Dissolved Gas Sampling
RD [10]	NEON.DOC.001193	AOS Protocol and Procedure: Sediment Chemistry Sampling in
		Wadeable Streams
RD [11]	NEON.DOC.003044	AOS Protocol and Procedure: Aquatic Microbe Sampling
RD [12]	NEON.DOC.003045	AOS Protocol and Procedure: Periphyton, Seston, and Phytoplankton
		Sampling
RD [13]	NEON.DOC.003039	AOS Protocol and Procedure: Aquatic Plant, Bryophyte, Lichen, and
		Macroalgae Sampling
RD [14]	NEON.DOC.003046	AOS Protocol and Procedure: Aquatic Macroinvertebrate Sampling
RD [15]	NEON.DOC.003826	AOS Protocol and Procedure: Riparian Habitat Assessment
RD [16]	NEON.DOC.001295	AOS Protocol and Procedure: Fish Sampling in Wadeable Streams

2.3 Acronyms

AQU	Aquatic or reference reach
GDD	Growing degree days
MGC	Multivariate geographic clustering
MODIS	Moderate Resolution Imaging Spectroradiometer
NOAA	National Oceanic and Atmospheric Administration
NCDC (NCEI)	National Centers for Environmental Information
SDRC	Stage-discharge rating curve
S1	Aquatic reach sensor set 1
S2	Aquatic reach sensor set 2

3 TEMPORAL SAMPLING STRATEGY

3.1 Rationale

NEON designed a set of domains based on a statistically rigorous analysis using national data sets for eco-climatic variables, based upon algorithms for multivariate geographic clustering (MGC) (Hargrove & Hoffman, 1999, 2004). The MGC approach identified nine primary climate state variables that could define the domains, allowing for regionalization of primary features within each domain. In order to replicate the strategy used for the large scale spatial design of NEON, Aquatics has adapted this approach and modified the list of the nine variables by identifying variables that were equally pertinent to the large scale temporal design, and by adding critical variables that affect physical, biological and chemical parameters in aquatic environments.

Aquatic ecosystems exhibit physical, chemical and biological variability over a wide range of spatial and temporal scales (Steele, 1978). This has resulted in a movement towards research approaches that utilize concurrent field based, buoy, aircraft, and satellite sampling strategies in order to measure physical, chemical and biological distributions over large areas synoptically and over long time periods. The integration of such sampling strategies across scales is an integral part of NEON's approach to the addressing the Grand Challenge questions (Keller et al., 2008).

NEON must be able to extrapolate relationships between drivers (climate change, land use change, and biological invasions) and ecological consequences to areas that are not sampled by NEON facilities but where partial, extensively sampled, or gridded information is available. In order to obtain this NEON's temporal sampling strategy must be equally designed to detect and quantify trends over time, as well as characterizing the spatial pattern of those trends. The sampling approach at the field scale, hence, must address the temporal.

3.2 Approach

Sampling strategies must cover a range of temporal scales and must address issues of duration and frequency of sampling activities. The design of the temporal strategy for NEON Aquatics addresses both the duration and frequency of the field activities as well as the small scale but long-term continuous monitoring data collection. In addition, prioritization of the physical, biological and chemical parameters needs to be identified. The general layout of a NEON wadeable stream site is presented in Section 6.

NEON Aquatics has proposed the following approach in order to determine the sampling duration and frequency that will yield the best estimate of composition and/or concentration of the physical, biological and chemical parameters (Table 1).

Physical/Chemical: Flow regime has been identified as the main variable defining the timing and frequency of sampling for the physical and chemical parameters.

Biological:Degree-days, water temperature, and riparian greenness are the primary
variables identified for defining the timing and frequency of sampling of most
biological parameters.

A large number of the sampling protocols are, in addition, constrained by other given variables. The overwhelming constraint for Aquatics is discharge related.

Flow Regime: The characteristic annual flow curves for a given stream.

Discharge: The volume of water flow through a given cross-sectional area per given unit of time.

Sampling modules may also have specific rule sets that dictate the order and timing of collection, as well as time constraints on laboratory work to maintain viable samples. The rule sets below (Table 2) have been identified for specific sampling modules.

Table 1. Duration, frequency and prioritization of field activities and long term monitoring for NEON wadeable streams as a function of targeted constraints and driving variables. For associated lab hours, see Appendix A. (*May be scheduled more frequently if a stochastic event significantly alters channel morphology.)

Sampling Module	Sampling Duration (hrs)	Sampling Frequency (x per year)	Constraints on Sampling	Driving Metrics for Sampling	Priority
Sensor Maintenance					
Surface water	1-2	26	Water Temperature Discharge	None	High
Meteorological	1-2	26	Weather	None	High
Groundwater (light)	1-2	26	Weather	None	High
Groundwater (full)	2-4	4	Weather	None	High
Well redevelopment	4	1	Weather	None	High
Physical					
Discharge	1-2	24	Flow	Flow Regime Precipitation	High
Reaeration	4-8	6	Flow	Flow Regime	High
Stream morphology	10-120	1 per 5 yrs*	Discharge Temperature	Flow Regime	Low to Medium
Rapid habitat assessment	4-8	1	Flow	Flow Regime	Medium
Biological					
Surface microbes	2-4	12	Discharge	Flow Regime Water Temperature	High
Aquatic Plants, Bryophytes, Lichens, and Macroalgae	3-8	3	Discharge	Flow Regime Light (PAR)	High
Macroinvertebrates	4	3	Discharge	Flow Regime Water Temperature	High
Periphyton and seston	3	3	Discharge	Flow Regime Light (PAR)	High
Benthic microbes	3	3	Discharge	Flow Regime Riparian greenness	High

Fish	8-40	2	Discharge	Flow Regime Water Temperature	Medium
Riparian habitat assessment	4-8	1	Discharge	Riparian greenness	Low
Chemical					
Surface water	1 0	26	Dischargo	Flow Regime	High
chemistry	1-5	20	Discharge	Water Temperature	пign
Dissolved app	1	26	Dischargo	Flow Regime	Modium
Dissolved gas	1	20	Discharge	Water Temperature	wiedlum
Isotopos	n	26	Procinitation	Flow Regime	High
isotopes	2	20	Frecipitation	Water Temperature	ingli
Sodimont chomistry	4-8	2	Dischargo	Flow Regime	Low to
seament chemistry	4-8	2	Discharge	Water Temperature	medium
Groundwater	6.20	2	Sufficient Water in	Elow Pogimo	Medium
chemistry	0-20	2	Well	riuw kegime	to High

Table 2. Rule sets for sampling modules in wadeable streams. Deviations may be allowed with science approva	al.
---	-----

Protocol	Rule set	
	Should be completed first to reduce the risk of contamination. However, if completing multiple	
	protocols that could take more than a few hours, collect chemistry samples last to reduce the	
	time between collection and processing/shipping.	
Water chemistry discolued	Collect recurrent samples on Tuesdays, when possible.	
gas and isotones	Alkalinity/ANC lab processing must begin within 24 hours of collection, or the sample must be	
gas, and isotopes	flagged.	
	If the sensor location cannot be sampled due to drying, ice, etc., collect samples from an	
	alternative location within the permitted reach and report the GPS coordinates and coordinate	
	uncertainty in the field data.	
	Sample in conjunction with recurrent (usually Tuesday) water chemistry.	
	Filters must be flash-frozen in the field, and kept frozen until storage in -80 °C freezer. If	
Surface water microbes	processing in the domain lab, freeze at -80 °C within 4 hours of collection.	
	Cell counts must be preserved in the field. Maximum time to preservation if bad weather = 4	
	hours.	
Paparation	Sediments must not be majorly disturbed 1 hour prior to sampling within the sensor reach.	
Reaciation	Must complete discharge on days when reaeration is measured.	
	Lab processing must begin within 48 hours of collection, or the sample will be flagged. AFDM	
	samples may be dried and placed in desiccators until enough room is available in the muffle	
Aquatic plants, bryophytos	furnace.	
lichens and macroalgae	If a flood occurs or water returns to a dry channel, wait a minimum of 5 days after water level	
inclients, and macroalgae	drops below 3x median discharge to allow for macroalgal recolonization.	
	Biomass collection (clip harvest) only occurs during Bout 2.	
	Minimize biomass collection within sensor reach.	
	If a flood occurs or water returns to a dry channel, wait a minimum of 5 days after water level	
	drops below 3x median discharge to allow for recolonization.	
Macroinvertebrates	Must be preserved within 1 hour of collection.	
	Preservative change must occur within 12-72 hours of collection.	
	Minimize sampling within sensor reach.	
Parinhutan sastan	If a flood occurs or water returns to a dry channel, wait a minimum of 14 days after the water	
	level drops below 3x median discharge to allow the periphyton community to recolonize.	

	Sample in conjunction with benthic microbes.	
	Lab processing must begin within 24 hours of collection. AFDM samples may be dried and	
	placed in desiccators until enough room is available in the muffle furnace. Minimum lab	
	processing time spans 2 days.	
	Sample must be kept cool (~4 °C) and dark until processing at the domain lab.	
	Chlorophyll filters must be shipped to the external facility within 7 days of collection.	
	If a flood occurs or water returns to a dry channel, wait a minimum of 14 days after the water	
	level drops below 3x median discharge to allow the benthic microbe community to recolonize.	
Benthic microbes	Sample in conjunction with periphyton.	
	Samples must be flash-frozen in the field, and kept frozen until storage in -80 °C freezer. If	
	processing in the domain lab, freeze at -80 °C within 4 hours of collection.	
	If a flood occurs or water returns to a dry channel, wait 5 days before sampling to allow	
	sediments to settle. If water clarity improves and the presence of depositional zones occur in	
Sediment chemistry	less than 5 days, sediment sampling may resume.	
	Start field collection after biology sampling (but before fish) to minimize disturbance.	
	Schedule within 2 weeks of macroinvertebrate collection (biology bouts 1 and 3). Contingency	
	situations may cause this time to be greater than 2 weeks.	
	In a contingency situation, fish sampling may occur before other biological sampling. A two	
	week recolonization period must be observed after fish and before other biological sampling.	
Fich	If a flood occurs, wait a minimum of 3 days after the water level drops below 3x median	
	discharge to allow the fish assemblage to redistribute. If conditions do not allow for fish	
	sampling during bout 1, then sample when safe conditions allow up to 2 weeks before the start	
	of bout 2. If conditions do not allow for fish sampling to occur during bout 3, then sample when	
	safe conditions allow up to 30 days beyond the end of bout 3.	
	Should be sampled after other biology modules because disturbance to stream bottom is high.	
Stream morphology	Stream morphology should occur near baseflow conditions and when the riparian canopy is	
Stream morphology	senesced.	
Riparian habitat assessment	Riparian habitat assessment must occur during peak greenness.	
Groundwater chemistry	Completed within ± 1 day of water chemistry (contingency situations may necessitate 2 days).	
Well redevelopment	Must not occur in the 2 weeks prior to groundwater chemistry sampling.	
	Ensure that wading or other activities in the stream do not interfere with flow or bias discharge	
Discharge	measurements during collection.	
Discillarge	A wide range of flow conditions should be targeted for measurement throughout the water	
	year given safety considerations.	
Panid habitat accossment	Occurs between Biology/Sediment Chemistry Bouts 1 and 2, when conditions are safely	
napiu nabitat assessment	wadeable and after riparian vegetation has leafed-out.	

4 SAMPLING DATES

The surface water sampling strategy for the D02 Posey Creek and Lewis Run sites are based on hydrological data collected from a nearby USGS hydrological monitoring location in a much larger stream. Thus, our sampling strategy may not accurately represent the hydrologic condition at the NEON site, and will need to be updated following annual data collections. Given the lack of long-term historical data at this site, Domain 02 staff need to have the leeway to adjust sampling dates based on actual site conditions.

The following Tables and Figures indicate proposed sampling dates for all sample protocols to be undertaken at Domain 02 over the course of a year.

4.1 Sensor Maintenance

Sensor preventative maintenance for in-stream sensors and the meteorological station is scheduled every other week. Groundwater well maintenance includes light sensor maintenance every other week (confirm that the cables have not slipped, check for ice accumulation on the solar panel, remotely monitor the data stream), full maintenance quarterly (visually inspect the sensor, check the desiccant, check water clarity with bailers, check for roots in wells known to have that issue), and well redevelopment once per year. Additional details may be found in the preventative maintenance documents for each sensor.

4.2 Water Chemistry Sampling Dates

Water chemistry includes sampling for water chemistry, aquatic stable isotopes, and dissolved gas in surface waters. These protocols should be completed on the same day as each other.

Standard recurrent sampling should take place one Tuesday per month, 12 times per year, in coordination with atmospheric chemistry sampling. The remaining 14 samples should be taken based on the cumulative discharge of the stream representing the increasing and decreasing periods of annual peak flow (Table 3, Figure 1, and Figure 2). The 14 samples should be collected within 2-3 days of all proposed sampling dates, when possible. If circumstances dictate that you have to miss one of your flow-weighted sampling events and cannot reschedule within the 2-3 day window, you may re-schedule another sampling event up to 14 days from the proposed date. If one of the 14 flow-weighted samples falls on the same day (± 2 days) as a monthly Tuesday sample, adjust the flow-weighted sample by ± 7 days.

Account for missed sampling events during zero-flow periods by adding weekly water sample collections to the schedule once the flow has returned. Continue with weekly water samples until the number of samples missed is equal to the number of weekly samples collected. Total sample numbers should not exceed 26 times per year.

POSE Proposed sampling dates	LEWI Proposed sampling dates
January 25 th	January 27 th
February 11 th	February 13 th
February 28 th	March 3 rd
March 14 th	March 17 th
March 24 th	April 1st
April 5 th	April 19 th

Table 3. Proposed stream water chemistry sampling dates for D02 Posey Creek and Lewis Run for the 14 samples collected to reflect the discharge related strategy.

Title: Aquatic Site Sampling Design -	Date: 05/23/2019	
NEON Doc. #: NEON.DOC.003601	Author: S. Parker	Revision: A

April 17 th	May 8 th
May 5 th	May 23 rd
May 22 th	June 12 th
June 13 th	July 5 th
August 9 th	August 5 th
October 5 th	September 12 th
November 12 th	October 21 st
December 8 th	December 1 st

Figure 1. Timing of sample collection for 14 water chemistry samples reflecting the discharge related strategy for Posey Creek.

NSF	Decon Operated by Battelle	Title: Aquatic Site Sampling Design -	Date: 05/23/2019
		NEON Doc. #: NEON.DOC.003601	Author: S. Parker

Figure 2. Timing of sample collection for 14 water chemistry samples reflecting the discharge related strategy for Lewis Run.

4.3 Groundwater Chemistry Sampling Dates

Groundwater chemistry includes sampling for water chemistry and aquatic stable isotopes (²H and ¹⁸O- H_2O only). These protocols should be completed on the same day as each other.

Groundwater samples will be collected twice per year from a subset of 4 wells per site (Table 4). The wells will be specified prior to sampling and will remain the same between bouts. The four sampling wells are selected in attempt to cover all of the following categories: upstream, downstream, right bank, and left bank. Preference is also given to wells that are closer to the surface water chemistry sampling locations. This strategy enables the study of surface-groundwater interaction in the hyporheic zone and allows for more direct comparison to surface water chemistry data.

Sampling will occur between 20-30% and 70-80% of the historically available cumulative discharge curve. Dates are summarized in Table 5 and shown in relation to the cumulative discharge in Figure 3 and Figure 4 below. Groundwater sampling should be timed to occur on the same day (preferred) or within 1-2 days (preferably 1 day) of the surface water collection. Dates will be refined after the first few years of site-specific water table data are available for analysis.

sampling denoted in bold text.
Posey Creek and Lewis Run. Wells for
Table 4. Groundwater Observation Wells at D02

POSE Well ID	Latitude	Longitude
D02-POSE-OW-01	38.89427	-78.147146
D02-POSE-OW-02	38.894226	-78.147365
D02-POSE-OW-03	38.894312	-78.147506
D02-POSE-OW-04	38.894542	-78.147318
D02-POSE-OW-05	38.894426	-78.147435
D02-POSE-OW-06	38.89498	-78.147378
D02-POSE-OW-07	38.895251	-78.147832
D02-POSE-OW-08	38.895244	-78.147955
LEWI Well ID	Latitude	Longitude
D02-LEWI-OW-01	39.095598	-77.982952
D02-LEWI-OW-02	39.095452	-77.983057
D02-LEWI-OW-03	39.094955	-77.982426
D02-LEWI-OW-04	39.094998	-77.982159
D02-LEWI-OW-05	39.095399	-77.982409
D02-LEWI-OW-06	39.094123	-77.981458
D02-LEWI-OW-07	39.094342	-77.982258
D02-LEWI-OW-08	39.094302	-77.981350

 Table 5. Proposed groundwater chemistry sampling dates for D02 Posey Creek and Lewis Run.

POSE Well Bout	Start Date	End Date
1	February 27	March 19
2	June 30	October 5
LEWI Well Bout	Start Date	End Date
LEWI Well Bout 1	Start Date March 2	End Date March 24

NSF	ne⊘n	Title: Aquatic Site Sampling Design -	Date: 05/23/2019
	Operated by Battelle	NEON Doc. #: NEON.DOC.003601	Author: S. Parker

Figure 3. Timing of sample collection for 2 groundwater chemistry samples reflecting the discharge related strategy for Posey Creek.

Figure 4. Timing of sample collection for 2 groundwater chemistry samples reflecting the discharge related strategy for Lewis Run.

4.4 Discharge and Reaeration Sampling Dates

Stream discharge must be measured at aquatic sites with wadeable streams a minimum of twenty-four (24) times in order to establish a stage-discharge rating curve (SDRC) followed by twelve (12) times per year to validate and refine the rating. After the first year of sampling, the SDRC will be reviewed and approved by NEON Science. If the SDRC is not approved by Science, then Science will request that field operations staff schedule additional sampling bouts to fill in data gaps needed to improve the SDRC.

Discharge should be conducted when it is safe to wade in the stream. Once a discharge-rating curve is established, discharge conditions will be targeted to fill in underrepresented points along the rating curve. Discharge sampling requirements will represent annual flow conditions and be constrained by zero-flow days.

Reaeration measurements should initially be completed 10x/year and then 6x/year thereafter, in conjunction with discharge measurements. Sites that are high risk sites for flooding resulting in changes in stream morphology may be requested to continue to collect reaeration 10x/year. Sampling events should be spread out throughout the year so as to collect a range of flows. Reaeration measurements may be completed more frequently (up to 10x/year) if major changes in stream flow alter reaeration parameters and a new curve must be established. Discharge must be completed on the same day that reaeration is conducted.

Do not schedule discharge or reaeration during time periods when the stream is known to freeze over or freeze solid. If reaeration and discharge are scheduled and the stream is frozen, the sampling event(s) will need to be moved in the schedule.

4.5 Biology Bout, Sediment Chemistry Sampling, and Riparian Assessment Dates

The biology bout windows for wadeable streams are based on a combination of parameters at each site. Using USGS streamflow data from nearby "proxy" sites, mean daily air temperature (NOAA NCDC [NCEI] datasets) to calculate growing degree days (centering around 10%, 50%, and 90% gdd) and the MODIS dataset to estimate riparian greenness (green-up and brown-down; Figure 5, Figure 6), 1 month sampling windows were pre-determined for all sites. Sampling windows may be adjusted with stream flow as all biological sampling (except for surface water microbes) is based on actual conditions at the site. The riparian assessment will be conducted during the site-specific peak greenness window defined by the MODIS dataset which may or may not coincide with the biological and sediment sampling bout dates (Table 6).

- Surface water microbes in wadeable streams should be sampled in conjunction with the standard recurrent water chemistry sampling, once per month, 12 times per year.
 - Surface water DNA microbe samples collected during July should be marked for metagenomics analysis.

 Sampling for all other biological modules (aquatic plants/macroalgae, macroinvertebrates, seston/periphyton) follow pre-determined sampling windows presented in Table 6. Sediment chemistry and Fish are sampled twice per year during Bouts 1 and 3.

- The biology/sediment chemistry bout windows may be adjusted to start 3 days earlier or and/or end 3 days later than the dates listed in Table 6 to allow for more flexibility in scheduling. Any sampling outside of the bout window plus the 3-day buffer will require an entry in NEON's problem-tracking system.
- Sampling for each module at a site must occur within one day, with the exception of fish which may take up to 5 days at a site.
- Benthic microbe samples collected during Bout 2 should be marked for metagenomics analysis.
- If weather or flooding dictates changes to the sampling schedule, the following contingencies may be applied:
 - Periphyton/phytoplankton, benthic microbes, aquatic plants, macroinvertebrates, and sediment chemistry sampling may be pushed later following flooding criteria in Table 2.
 - Sediment chemistry may be moved ahead of periphyton sampling as long as a 14 day re-colonization period is allowed prior to periphyton collection.
 - All biology/sediment chemistry and Bout 1 fish sampling may occur up to 2 weeks prior to the start date of the next sampling bout.
 - Bout 3 fish sampling may occur up to 30 days past the end of the Bout 3 window, if conditions allow (i.e., flowing water is present and it is safe to sample). Fish sampling should be scheduled within the bout windows, however sampling may be pushed later using this contingency as weather dictates.
- The riparian habitat assessment will occur within the dates provided in Table 6.
- The rapid habitat assessment (an SOP in the Wadeable Stream Morphology protocol) should take place between Bouts 1 and 2 to allow for water to resume to near-baseflow conditions and allow riparian areas to green-up.
 - If a stream morphology survey has recently occurred (within the same year), contact science to confirm that the rapid habitat survey is necessary.

Table 6. Proposed Biological sampling windows for D02 Posey Creek and LewisRun. Fish sampling and Sediment Chemistry will take place during Bouts 1 and3. The riparian habitat assessment peak greenness window may not coincidewith the bout windows.

POSE Bio Bout	Start Date	End Date	
1	March 19 April 16		
2	July 5	August 2	
3	October 18 November 15		
Riparian	May 7	September 23	
LEWI Bio Bout Start Date End Date		End Date	

1	1 March 19	
2	July 5	August 2
3	3 October 18 November 15	
Riparian	April 29 August 6	

4.5.1 Suggested Biology and Sediment Chemistry Bout

- 1. Aquatic plants, macroinvertebrates, periphyton/benthic microbes (in any order)
- 2. Sediment chemistry (Bouts 1 and 3 only)
- 3. Fish (Bouts 1 and 3 only)

4.5.2 Other Biology Sampling

- Surface water microbes 1st water chemistry bout of each month (likely Tuesday)
- The riparian habitat assessment can be scheduled anytime within the peak greenness window
- Rapid habitat assessment should be completed between Bouts 1 and 2 if flow conditions allow

Figure 5. Proposed bouts for biological sampling at D02 Posey Creek. Sediment chemistry and fish sampling occur during Bouts 1 and 3.

ne@n	Title: Aquatic Site Sampling Design –	Date: 05/23/2019	
Operated by Battelle	NEON Doc. #: NEON.DOC.003601	Author: S. Parker	Revision: A

Figure 6. Proposed bouts for biological sampling at D02 Lewis Run. Sediment chemistry and fish sampling occur during Bouts 1 and 3.

5 PROTOCOL DISTURBANCE AND PRIORITIZATION

5.1 Disturbance Criteria

Each aquatic protocol has its own unique sensitivity to disturbance and perturbations (Table 7). These sensitivities should dictate the order in which protocols are completed.

Table 7. Disturbance criteria for streams. Impact level: high (4), medium/high (3), medium/low (2), low (1), none (0). The morphology reach is the entire permitted reach (usually 1 km long). The sensor reach is the length of stream between S1 and S2.

Sample	Requirements	Impact	Disturbance
		Level	
Sensor maintenance	None	0	Wading near sensor sets
Discharge	None	1	Wading only at established cross-sections
Reaeration	2 days - no major substrate disturbance, 1 hour with no disturbance to stream	0	Salt/SF6 addition to sensor reach
Stream morphology	None	4	Wading through and displacing rocks in <i>morphology reach</i> (H)
Aquatic plants	5 days- no scouring or trampling of substrate; low turbidity during sampling	3	Wading and collection at established cross-section transects
Invertebrates	5 days- no scouring or trampling of substrate	3	Wading and disturbance of substrate in <i>morphology</i> reach

<i>Title</i> : Aquatic Site Sampling Design – NEON Domain 02		Date: 05/23/2019
NEON Doc. #: NEON.DOC.003601	Author: S. Parker	Revision: A

Periphyton, seston, and	2 weeks- no scouring or	2	Wading and substrate disturbance in morphology
benthic microbes	trampling of substrate		reach
Sediment chemistry	1 week- no physical	2	Wading and substrate disturbance in morphology
	disturbance to depositional		reach
	zones		
Fish	6 hours- no disturbance that	4	Wading extensively throughout morphology reach
	causes turbid conditions		
Surface water chemistry,	Allow stream to clear before	1	Wading above S2
dissolved gas, isotopes, and	sampling minutes, no wading		
surface microbes	upstream		
Groundwater chemistry	None	0	Groundwater Removal
Riparian habitat assessment	None	2	Wading and substrate disturbance in morphology
			reach
Rapid habitat assessment	None	2	Wading and substrate disturbance in morphology
			reach

6 SPATIAL SAMPLING STRATEGY

6.1 General Site Sampling Locations

The stream sampling reach is ideally 1000 (\pm 50) m long. Locations provided in the "proposed" columns in Table 9 and Table 10 are estimates. Field personnel should measure the 1000 m reach, taking care to stay within the permitted boundaries of the site and record coordinates. Specific coordinates at each site will be used for the life of the site.

Stream sampling protocols reference several locations within the site, including the sensor locations for the aquatic site (S1, S2). Other locations provided to the field ecologists include the location of the streamside meteorological station and riparian transects. Benthic biological samples may be taken throughout the entire sampling reach, with locations chosen by the field ecologists at the time of sampling. Minimize benthic sampling in the sensor reach if possible (i.e., no more than 3 replicates for any benthic sampling module). See Table 8 for module-specific sampling locations and rule sets, and Figure 7 for the generic site layout.

Sampling module	Location
Surface water chemistry*	S2 and groundwater wells
Dissolved gas*	S2
Isotopes*	S2 and groundwater wells
Surface water microbes*	S2
Seston*	S2
Discharge	Location chosen by field ecologists/HQ, return to transect unless
	morphology or flow changes significantly
Reaeration	Injection site upstream of S1, 4 sampling stations spread evenly
	between S1 and S2
Riparian habitat assessment	Transects determined by HQ and provided to domain staff
Benthic microbes	Same location as periphyton samples
Periphyton	Locations determined by field ecologists within habitat types
	determined by morphology map; locations may vary from bout to bout
Aquatic plants, bryophytes, lichens, and	Transects determined on first sampling bout by field ecologists; return
macroalgae	to transects on subsequent bouts
Macroinvertebrates	Locations determined by field ecologists within habitat types
	determined by morphology map; locations may vary from bout to bout
Fish	Full 1 km permitted reach. Reaches determined on first sampling bout
	by field ecologists; return to reaches on subsequent bouts
Sediment chemistry	Two 250 m stations are established with in the 500 m sediment
	sampling reach. Sediment is collected from depositional zones within
	each station which may change bout to bout
Groundwater wells	Locations determined by HQ
Rapid habitat assessment and Stream morphology	From BOT to TOP marker (1 km sampling reach)

Table 8. Module-specific sampling locations, wadeable streams. *May occur at an alternate location if necessary.

	Title: Aquatic Site Sampling Design – NEON Domain 02		Date: 05/23/2019
9	NEON Doc. #: NEON.DOC.003601	Author: S. Parker	Revision: A

WADEABLE STREAMS

Figure 7. Generic diagram for an AQU site showing sampling locations in a wadeable stream system. Note: the sensor locations are not typically installed as depicted; sediment stations 1 and 2 are divided by the biological reach center not the midpoint between sensors.

Table 9. POSE Sampling Locations. Proposed coordinates are determined prior to sampling at HQ. Coordinates are
groundtruthed by Field Science in the field and reported to Science. If available in the table, Field Science coordinates should
pe used for sampling.

		Proposed	Proposed	Field Sci	Field Sci
Location ID	Description	Latitude	Longitude	Latitude	longitude
01 - Riparian	Riparian coordinates*	38.896917	-78.148725	38.896900	-78.148733
02 - Riparian	Riparian coordinates*	38.896053	-78.148570	38.896078	-78.148481
03 - Riparian	Riparian coordinates*	38.895300	-78.147938	38.895505	-78.147966
04 - Riparian	Riparian coordinates*	38.894581	-78.147245	38.894720	-78.147522
05 - Riparian	Riparian coordinates*	38.893735	-78.146849	38.894043	-78.147021
06 - Riparian	Riparian coordinates*	38.892867	-78.146584	38.893320	-78.146625
07 - Riparian	Riparian coordinates*	38.892041	-78.146958	38.892507	-78.146972
08 - Riparian	Riparian coordinates*	38.891294	-78.147528	38.891742	-78.147218
09 - Riparian	Riparian coordinates*	38.890615	-78.146866	38.891062	-78.147314
10 - Riparian	Riparian coordinates*	38.890066	-78.145958	38.890380	-78.146732
permitted top	Top of permitted reach**	38.889810	-78.145480		
permitted bottom	Bottom of permitted reach**	38.897370	-78.148730		
ТОР	Top of sampling reach***	38.889810	-78.145480	38.889798	-78.145611
вот	Bottom of sampling reach***	38.897370	-78.148730	38.897299	-78.148653
S1	S1 sensor location from SCR	38.894520	-78.147384		
S2	S2 sensor location from SCR	38.895222	-78.147786		
Discharge	Discharge location, decided by Field Science			38.894394	-78.147237

*Riparian coordinates should be approximately evenly spaced throughout the sampling reach, approximately every 100 m starting 50 m from the top and bottom of the sampling reach.

**Do not sample outside of this boundary

***Should be 1000 m unless permitting restricted

Table 10. LEWI Sampling Locations. Proposed coordinates are determined prior to sampling at HQ. Coordinates are
groundtruthed by Field Science in the field and reported to Science. If available in the table, Field Science coordinates should
pe used for sampling.

		Proposed	Proposed	Field Sci	Field Sci
Location ID	Description	Latitude	Longitude	Latitude	longitude
01 - Riparian	Riparian coordinates*	39.093958	-77.979382	39.094001	-77.979434
02 - Riparian	Riparian coordinates*	39.094017	-77.980487	39.094088	-77.980472
03 - Riparian	Riparian coordinates*	39.094277	-77.981542	39.094263	-77.981463
04 - Riparian	Riparian coordinates*	39.094901	-77.982176	39.094919	-77.982213
05 - Riparian	Riparian coordinates*	39.095421	-77.982866	39.095477	-77.982916
06 - Riparian	Riparian coordinates*	39.096105	-77.983399	39.096115	-77.983372
07 - Riparian	Riparian coordinates*	39.096800	-77.983860	39.096796	-77.983821
08 - Riparian	Riparian coordinates*	39.097529	-77.983788	39.097490	-77.983792
09 - Riparian	Riparian coordinates*	39.098290	-77.983275	39.098323	-77.983258
10 - Riparian	Riparian coordinates*	39.099137	-77.983146	39.099108	-77.983152
Permitted top	Top of permitted reach**	39.099701	-77.983267		
Permitted bottom	Bottom of permitted reach**	39.093820	-77.978928		
ТОР	Top of sampling reach***	39.099701	-77.983267	39.099728	-77.983269
вот	Bottom of sampling reach***	39.093820	-77.978928	39.093857	-77.978935
S1	S1 sensor location from SCR	39.095569	-77.983068		
S2	S2 sensor location from SCR	39.094214	-77.981427		
Discharge	Discharge location, decided by Field Science			39.095569	-77.983068

*Riparian coordinates should be approximately evenly spaced throughout the sampling reach, approximately every 100 m starting 50 m from the top and bottom of the sampling reach.

**Do not sample outside of the permitted boundary

***Should be 1000 m unless permitting restricted

6.2 Site-Access and Instrument Locations

NEON sites will be visited by field ecologists on a regular basis. To protect the environment near sites, several access points have been established to minimize local disturbance over the life of the project for locations that are accessed frequently (e.g., sensors; Figure 8, Figure 9). Field ecologists must use established paths and access points when possible to avoid causing disturbance to the site.

Figure 8. Site access and instrument locations at D02 Posey Creek.

NEON is sponsored by the National Science Foundation and operated under a cooperative agreement by Battelle

Figure 9. Site access and instrument locations at D02 Lewis Run.

<i>Title</i> : Aquatic Site Sampling Design – NEON Domain 02		Date: 05/23/2019
NEON Doc. #: NEON.DOC.003601	Author: S. Parker	Revision: A

6.3 Riparian Sampling Locations

Riparian coordinates are determined prior to sampling at HQ. Coordinates are groundtruthed by Field Science in and reported back to Science to update Table 9 and Table 10. If available in the table, Field Science coordinates should be used for riparian sampling. Riparian transects are numbered from 1-10 starting at the downstream end of the sampling reach (Figure 10, Figure 11).

Figure 10. POSE ideal riparian sampling design

Figure 11. LEWI ideal riparian sampling design

7 REFERENCES

- Keller, M., D. S. Schimel, W. W. Hargrove, and F. M. Hoffman. 2008. A continental strategy for the National Ecological Observatory Network. Frontiers in Ecology and the Environment. 6: 282-284.
- Hargrove, W. W. and J. Pickering. 1992. Pseudoreplication: a sine qua non for regional ecology. Landscape Ecology 6: 251-258.
- Hargrove, W. W., and F. M. Hoffman. 1999. Using multivariate clustering to characterize ecoregion borders. Computers in Science and Engineering. 1: 18-25.
- Hargrove, W. W., and F. M. Hoffman. 2004. Potential of Multivariate Quantitative Methods for Delineation and Visualization of Ecoregions. Environmental Management, 34: S39–S60.
- Steele, J. H. 1978. Some comments on plankton patches. In Spatial pattern in plankton communities. Edited by J.H. Steele. Plenum Press, New York. pp. 1–20.

APPENDIX A WADEABLE STREAMS

WADEABLE STREAM TEMPORAL SAMPLING STRATEGY

APPENDIX B OBSOLETE LOCATIONS, POSE

Groundwater chemistry samples were initially collected at wells both near and far from the instream sensor sets, and have since been narrowed to 4 wells based on the strategy described above.

POSE Obsolete Locations			
Station	Latitude	Longitude	
1	38.896192°	-78.148585°	
2	38.895843°	-78.148395°	
3	38.895542°	-78.147994°	
4	38.895138°	-78.147734°	
5	38.894737°	-78.147493°	
6	38.894352°	-78.147221°	
7	38.893941°	-78.147039°	
8	38.893533°	-78.146752°	
9	38.893132°	-78.146531°	
10	38.892745°	-78.146762°	
S1	38.894520	-78.147384	
S2	38.895222	-78.147786	
Discharge	38.894394	-78.147237	
TOP of Reach	38.889810	-78.145480	
BOT of Reach	38.897370	-78.148730	

APPENDIX C OBSOLETE LOCATIONS, LEWI

Groundwater chemistry samples were initially collected at wells both near and far from the instream sensor sets, and have since been narrowed to 4 wells based on the strategy described above.

LEWI Obsolete Locations			
Station	Latitude	Longitude	
1	39.100193°	-77.983427°	
2	39.099338°	-77.983138°	
3	39.098423°	-77.983325°	
4	39.097583°	-77.983710°	
5	39.096783°	-77.983837°	
6	39.096007°	-77.983338°	
7	39.095311°	-77.982656°	
8	39.094703°	-77.981979°	
9	39.094146°	-77.981096°	
10	39.093958°	-77.979864°	
S1	39.095569°	-77.983068°	
S2	39.094214°	-77.981427°	
Discharge	39.095569°	-77.983068°	
TOP of Reach	39.099701°	-77.983267°	
BOT of Reach	39.09382°	-77.978928°	

