Illinois State Water Survey Health and Environmental Application Laboratory

Standard Operating Procedure For IPD/CPD Calculations for Atmospheric Deposition Samples

SOP Number: DA.HEAL.0.IPD.4.1

Revision 4.1, 8 October 2024

Illinois State Water Survey 2204 Griffith Drive Champaign, IL 61820-7495

The.B.R.

Prepared by:_

Tom Bergerhouse, Data Manager

Date: _____

me Approved by:

Date: _____12/17/2024

Evan Rea, HEAL Director

Name (printed)	Signature	Date
Name (printed)	Signature	Date

The following individuals (in addition to those listed on the cover) have reviewed this SOP:

Revision History

Starting Revision Number	Ending Revision Number	Revision Date	Revisions Made
3.2	4.0	9/1/23	Added limits for ion and conductivity percentage difference acceptability. Updated Table 3.
4.0	4.1	10/8/24	Updated table 3.

Contents

Page

1.0	Purpose	4
2.0	Scope & Applicability	4
3.0	Summary of Procedure	4
4.0	Definitions	4
5.0	Personnel Qualifications	4
6.0	Procedure	4
7.0	Quality Control and Quality Assurance	9
8.0	References	9

1.0 Purpose

The purpose of this SOP is to have a permanent reference location for calculating the Ion Percent Difference (IPD) and the Conductivity Percent Difference (CPD) used by the HEAL to determine samples needed for reanalysis.

2.0 Scope & Applicability

This SOP is to be used when modifying the data programs used to calculate the IPD and CPD.

3.0 Summary of Procedure

Whenever the IPD or CPD calculations are updated, it is necessary to search for the tables with the original values. This method keeps all the pertinent information needed as well as the references on where to find the information in one place, simplifying all calculations.

4.0 Definitions

CPD	Conductivity Percent Difference
IPD	Ion Percent Difference
ppm	part per million

5.0 Personnel Qualifications

The person updating the IPD and CPD should be familiar with the chemistry and mathematics involved in the calculations. Although this SOP explains the use of the tables, some previous chemistry knowledge is required.

6.0 Procedure

The IPD and CPD are used to determine what precipitation samples are needed for reanalysis. The calculations needed for the IPD can be found in Table 1. Concentrations are converted from mg/L to μ eq/L using the conversion factors in Table 2. All values are measured with the exception of bicarbonate ion (HCO₃⁻). The HEAL uses the 2017 annual mean value of the atmospheric concentration of carbon dioxide found at Mauna Loa Observatory, Hawaii as found in Table 3. The calculations needed for the CPD can be found in Table 4 using the disassociation constants found in Table 5.

Table 1 Ion Percent Difference (IPD)

 $IPD = (Anions - Cations) \times 100$ Anions + Cations

where:

Cations = $(Ca^{2+}) + (Mg^{2+}) + (K^+) + (Na^+) + (NH_4^+) + [H_3O^+ (\mu eq /L) = 10^{(6-pH)}]$ Anions = $(Br^-) + (Cl^-) + (NO_3^-) + (SO_4^{2-}) + (PO_4^{3-}) + (F^-) + (HCO_3^-) + [OH^- (\mu eq /L) = 10^{6(14-pH)}]$

Note: Fluoride (F) is not currently measured by the HEAL for atmospheric deposition samples.

 HCO_3^- is calculated based on solution pH and the annual mean concentration of carbon dioxide (CO₂) in the atmosphere as follows:

HCO₃⁻ (μ eq/L) = $\frac{K_1K_H P_{CO_2} x (10^6)}{10^{-pH}}$

Where: $K_1 = acid dissociation constant for carbonic acid = 10^{-6.35} or 4.467 x 10^{-7} mol/L (reference 8.3)$

 $K_{\rm H}$ = Henry's Law constant for CO_2 = 0.0341 mol/L-atm = (1.5 s/g kg-1 H2O /44.010 g/mol) (Reference 8.1)

 P_{CO_2} = Partial pressure of CO₂ (atmospheres)

Note:

 $\begin{aligned} K_{\rm H} &= \text{solubility of CO}_2 \text{ in water at 1 atmosphere/molecular weight of CO}_2 \\ \text{Where: solubility of CO}_2 \text{ in water at 1 atmosphere} &= 1.50 \text{ g CO}_2/1\text{kg-atm H}_2\text{O} \\ &= 1.50 \text{ g CO}_2/\text{L-atm H}_2\text{O} \end{aligned}$

Molecular weight of $CO_2 = 44.01 \text{g/mol}$

These references are available at https://hbcp.chemnetbase.com/.

Table 2 Conversion of Ion Concentrations (mg/L) to Micromoles (µmol/L) and Hydrogen Microequivalents (µeq/L)

1 mg/L hydronium H₃O⁺ (MW = 19.02333 g/g-mol) =	52.56705	µmol/L	=	52.56705	µeq/L
1 mg/L ammonium NH4 ⁺ (MW = 18.03876 g/g-mol) =	55.4362	µmol/L	=	55.4362	µeq/L
1 mg/L calcium Ca ²⁺ (MW = 40.078 g/g-mol) =	24.9513	μmol/L	=	49.90269	µeq/L
1 mg/L magnesium Mg ²⁺ (MW = 24.305 g/g-mol) =	41.1438	μmol/L	=	82.2876	µeq/L
1 mg/L potassium K ⁺ (MW = 39.0983 g/g-mol) =	25.5766	µmol/L	=	25.57656	µeq/L
1mg/L sodium Na⁺ (MW = 22.98977 g/g-mol) =	43.4976	μmol/L	=	43.49761	µeq/L
1 mg/L hydroxide OH ⁻ (MW = 17.00738 g/g-mol) =	58.7980	μmol/L	=	58.79802	µeq/L
1 mg/L bicarbonate HCO ₃ ⁻ (MW = 61.01678 g/g-mol) =	16.3889	μmol/L	=	16.38894	µeq/L
1 mg/L chloride Cl ⁻ (MW = 35.452 g/g-mol) =	28.2076	μmol/L	=	28.20855	µeq/L
1 mg/L fluoride F ⁻ (MW = 18.9984 g/g-mol) =	52.636	μmol/L	=	52.636	µeq/L
1 mg/L sulfate SO4 ²⁻ (MW =96.0651 g/g-mol) =	10.4096	µmol/L	=	20.81922	µeq/L
1 mg/L nitrate NO3 ⁻ (MW = 62.00506 g/g-mol) =	16.1288	µmol/L	=	16.12770	µeq/L
1 mg/L phosphate PO4 ³⁻ (MW = 94.97136 g/g-mol) =	10.5295	µmol/L	=	31.58847	µeq/L
1 mg/L bromide Br ⁻ (MW = 79.904 g/g-mol) =	12.5150	µmol/L	=	12.51502	µeq/L

Molecular weights calculated based on "Standard Atomic Weights", *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 1. All values are expressed to the full precision in the reference.

Table 3Atmospheric Concentration of Carbon Dioxide at Mauna Loa Observatory,
Hawaii. (See reference 8.2)

Note: The 2017 value is currently used in IPD/CPD calculations. CO2 values prior to and including 2017 have not been updated in this table, which serves as a record of values used in IPD calculations at HEAL.

Year	Mean CO ₂	Partial Pressure,
	concentration, ppm	atm
1997	363.71	363.71 * 10 ⁻⁶
1998	366.65	366.65 * 10 ⁻⁶
1999	368.33	368.33 * 10 ⁻⁶
2000	369.52	369.52 * 10 ⁻⁶
2001	371.13	371.13 * 10 ⁻⁶
2002	373.22	373.22 * 10 ⁻⁶
2003	375.77	375.77 * 10 ⁻⁶
2004	377.49	377.49 * 10 ⁻⁶
2005	379.80	379.80 * 10 ⁻⁶
2006	381.90	381.90 * 10 ⁻⁶
2007	383.76	383.76 * 10 ⁻⁶
2008	385.59	385.59 * 10 ⁻⁶
2009	387.37	387.37 * 10 ⁻⁶
2010	389.85	389.85 * 10 ⁻⁶
2011	391.63	391.63 * 10 ⁻⁶
2012	393.82	393.82 * 10 ⁻⁶
2013	396.48	396.48 * 10 ⁻⁶
2014	398.61	398.61 * 10 ⁻⁶
2015	400.83	400.83 * 10 ⁻⁶
2016	404.21	404.21 * 10 ⁻⁶
2017	406.53	406.53 * 10 ⁻⁶
2018	408.72	408.72 * 10 ⁻⁶
2019	411.65	411.65 * 10 ⁻⁶
2020	414.21	414.21 * 10 ⁻⁶
2021	416.41	416.41 * 10 ⁻⁶
2022	418.53	418.53 * 10 ⁻⁶

Year	Mean CO ₂ concentration, ppm	Partial Pressure, atm
2023	421.08	421.08 * 10 ⁻⁶

Table 4. Conductance Percent Difference (CPD)

CPD = <u>(Calculated Conductance - Measured Conductance)</u> x 100 Measured Conductance

where: Calculated Conductance = \sum (Ion Concentration, μ eq/L) x Λ_{\pm} x 10⁻³

where: (Ion Concentration, μ eq/L) are measured concentrations of Ca²⁺, Mg²⁺, K⁺, Na⁺, NH₄⁺, [H₃O⁺ (μ eq/L) = 10^(6-pH)], Br⁻, Cl⁻, NO₃⁻, SO₄²⁺, PO₄³⁻, *F*⁻, *HCO*₃⁻, and [OH⁻ (mol/L) = 10^(ph-8)] with HCO₃⁻ calculated as indicated in Table 1. Conversion factors are listed in Table 2.

 Λ_{\pm} = Ionic conductivity, 10⁴m²S-mol⁻¹ as listed in Table 5.

Note: Expressing ion concentrations in units of μ eq/L converts the ion charge into the correct molar units for the factors in Table 5.

Table 5. Ion conductivity values at 25°C

lon	<u>Λ_±, 10⁻⁴m²S/mol</u>
1/2 Ca ²⁺	59.47
H⁺	349.65
K⁺	73.48
1/2 Mg ²⁺	53.0
NH_4^+	73.5
Na⁺	50.08
Cl-	76.31
F ⁻	55.4
HCO ₃ -	44.5
NO ₃ -	71.42
OH-	198
1/3 PO4 ³⁻	92.8
1/2 SO4 ²⁻	80.0
Br⁻	78.1

From "Ion Conductivity and Diffusion at Infinite Dilution," *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 5.

7.0 Quality Control and Quality Assurance

7.1 Acceptance criteria for ion balance depends on the total ion concentration:

<60 µeq/L, IPD ± 60% 50 to 100 µeq/L, IPD ± 30% >100 µeq/L, IPD ± 15%

7.2 Conductivity percent difference has an acceptable range of -40% to 10%.

8.0 References

- 8.1 "Aqueous Solubility and Henry's Law Constants of Organic Compounds" *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 5. https://hbcp.chemnetbase.com/documents/30_02/30_02_0001.xhtml?dswid=8856
- 8.2 "Annual Atmospheric Concentration of Carbon Dioxide and Methane" *CRC Handbook of Chemistry and Physics*, 105th Ed., 2023, Section 10. Accessed 10/9/2024 at https://hbcp.chemnetbase.com/documents/30_09/30_09_0004.xhtml?dswid=7852.
- 8.3 "Disassociation Constants of Inorganic Acids and Bases," *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 5. https://hbcp.chemnetbase.com/documents/04_12/04_12_0001.xhtml?dswid=-9341
- 8.4 "Ion Conductivity and Diffusion at Infinite Dilution," *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 5.
- 8.5 "Standard Atomic Weights," *CRC Handbook of Chemistry and Physics*, 99th Ed., 2018-2019, Section 1.
- 8.3 Central Analytical Laboratory Quality Assurance Report, 2017, Section C.

DA.HEAL.0.IPD.4.1

Final Audit Report

2024-12-18

Created:	2024-12-17 (Central Standard Time)
By:	Evan Rea (erea@illinois.edu)
Status:	Signed
Transaction ID:	CBJCHBCAABAAPEclaTLJLz5sr7lqAFa5n9RPZzDkTbn7
Number of Documents:	1
Document page count:	9
Number of supporting files:	0
Supporting files page count:	0

"DA.HEAL.0.IPD.4.1" History

- Document created by Evan Rea (erea@illinois.edu) 2024-12-17 - 5:57:33 PM CST- IP address: 130.126.105.85
- Document emailed to Evan Rea (erea@illinois.edu) for signature 2024-12-17 - 5:58:44 PM CST
- Agreement viewed by Evan Rea (erea@illinois.edu) 2024-12-17 - 5:58:45 PM CST- IP address: 130.126.105.85
- Evan Rea (erea@illinois.edu) authenticated with Adobe Acrobat Sign. 2024-12-17 - 5:58:53 PM CST
- Document e-signed by Evan Rea (erea@illinois.edu) Signature Date: 2024-12-17 - 5:58:53 PM CST - Time Source: server- IP address: 130.126.105.85
- Document emailed to Thomas Bergerhouse (bergerho@illinois.edu) for signature 2024-12-17 - 5:58:54 PM CST
- Email viewed by Thomas Bergerhouse (bergerho@illinois.edu) 2024-12-18 - 1:01:55 AM CST- IP address: 172.225.66.15
- Agreement viewed by Thomas Bergerhouse (bergerho@illinois.edu) 2024-12-18 - 9:38:03 AM CST- IP address: 130.126.105.232
- Thomas Bergerhouse (bergerho@illinois.edu) authenticated with Adobe Acrobat Sign. 2024-12-18 - 9:38:24 AM CST

Document e-signed by Thomas Bergerhouse (bergerho@illinois.edu)
 Signature Date: 2024-12-18 - 9:38:24 AM CST - Time Source: server- IP address: 130.126.105.232

Agreement completed. 2024-12-18 - 9:38:24 AM CST