METHOD #: 310.1	Approved for NPDES (Editorial Revision 1978)	
TITLE:	Alkalinity (Titrimetric, pH 4.5)	
ANALYTE:	Alkalinity	
INSTRUMENTATION:	Titration	
STORET No.	00410	

- 1.0 Scope and Application
 - 1.1 This method is applicable to drinking, surface, and saline waters, domestic and industrial wastes.
 - 1.2 The method is suitable for all concentration ranges of alkalinity; however, appropriate aliquots should be used to avoid a titration volume greater than 50 mL.
 - 1.3 Automated titrimetric analysis is equivalent.
- 2.0 Summary of Method
 - 2.1 An unaltered sample is titrated to an electrometrically determined end point of pH 4.5. The sample must not be filtered, diluted, concentrated, or altered in any way.
- 3.0 Comments
 - 3.1 The sample should be refrigerated at 4°C and run as soon as practical. Do not open sample bottle before analysis.
 - 3.2 Substances, such as salts of weak organic and inorganic acids present in large amounts, may cause interference in the electrometric pH measurements.
 - 3.3 For samples having high concentrations of mineral acids, such as mine wastes and associated receiving waters, titrate to an electrometric endpoint of pH 3.9, using the procedure in:Annual Book of ASTM Standards, Part 31, "Water", p 115, D- 067, Method D, (1976).
 - 3.4 Oil and grease, by coating the pH electrode, may also interfere, causing sluggish response.
- 4.0 Apparatus
 - 4.1 pH meter or electrically operated titrator that uses a glass electrode and can be read to 0.05 pH units. Standardize and calibrate according to manufacturer's instructions. If automatic temperature compensation is not provided, make titration at 25 ± 2 °C.
 - 4.2 Use an appropriate sized vessel to keep the air space above the solution at a minimum. Use a rubber stopper fitted with holes for the glass electrode, reference electrode (or combination electrode) and buret.
 - 4.3 Magnetic stirrer, pipets, flasks and other standard laboratory equipment.

4.4 Burets, Pyrex 50, 25 and 10 mL.

5.0 Reagents

- 5.1 Sodium carbonate solution, approximately 0.05 N: Place 2.5 \pm 0.2 g (to nearest mg) Na₂CO₃ (dried at 250°C for 4 hours and cooled in desiccator) into a 1 liter volumetric flask and dilute to the mark.
- 5.2 Standard acid (sulfuric or hydrochloric), 0.1 N: Dilute 3.0 mL conc H₂SO₄ or 8.3 mL conc HCl to 1 liter with distilled water. Standardize versus 40.0 mL of 0.05 N Na₂CO₃ solution with about 60 mL distilled water by titrating potentiometrically to pH of about 5. Lift electrode and rinse into beaker. Boil solution gently for 3-5 minutes under a watch glass cover. Cool to room temperature. Rinse cover glass into beaker. Continue titration to the pH inflection point. Calculate normality using:

$$N = \frac{A \times B}{53.00 \times C}$$

where:

 $\begin{array}{l} A = g \ Na_2 CO_3 \ weighed \ into \ 1 \ liter \\ B = mL \ Na_2 CO_3 \ solution \\ C = mL \ acid \ used \ to \ inflection \ point \end{array}$

- 5.3 Standard acid (sulfuric or hydrochloric), 0.02 N: Dilute 200.0 mL of 0.1000 N standardacid to 1 liter with distilled water. Standardize by potentiometric titration of 15.0 mL 0.05N Na₂CO₃ solution as above.
- 6.0 Procedure
 - 6.1 Sample size
 - 6.1.1 Use a sufficiently large volume of titrant (> 20 mL in a 50 mL buret) to obtain good precision while keeping volume low enough to permit sharp end point.
 - 6.1.2 For < 1000 mg CaCO₃/L use 0.02 N titrant
 - 6.1.3 For > 1000 mg $CaCO_3/L$ use 0.1 N titrant
 - 6.1.4 A preliminary titration is helpful.
 - 6.2 Potentiometric titration
 - 6.2.1 Place sample in flask by pipetting with pipet tip near bottom of flask
 - 6.2.2 Measure pH of sample
 - 6.2.3 Add standard acid (5.2 or 5.3), being careful to stir thoroughly but gently to allow needle to obtain equilibrium.
 - 6.2.4 Titrate to pH 4.5. Record volume of titrant.
 - 6.3 Potentiometric titration of low alkalinity
 - 6.3.1 For alkalinity of <20 mg/L titrate 100-200 mL as above (6.2) using a 10 mL microburet and 0.02 N acid solution (5.3).
 - 6.3.2 Stop titration at pH in range of 4.3-4.7, record volume and exact pH. Very carefully add titrant to lower pH exactly 0.3 pH units and record volume.

7.0 Calculations

7.1 Potentiometric titration to pH 4.5

Alkalinity, mg/L CaCO₃ = $\frac{A \times N \times 50,000}{mL \text{ of sample}}$

where: A = mL standard acid N = normality standard acid

7.2 Potentiometric titration of low alkalinity:

Total Alkalinity, mg/L CaCO₃ = $\frac{(2B - C) \times N \times 50,000}{mL \text{ of sample}}$

where:

 $\begin{array}{l} B = mL \ titrant \ to \ first \ recorded \ pH \\ C = total \ mL \ titrant \ to \ reach \ pH \ 0.3 \ units \ lower \\ N = normality \ of \ acid \end{array}$

- 8.0 Precision and Accuracy
 - 8.1 Forty analysts in seventeen laboratories analyzed synthetic water samples containing increments of bicarbonate, with the following results:

Increment as	Precision as	Accuracy as	
Alkalinity	Standard Deviation	Bias,	Bias,
mg/liter, CaCO ₃	mg/liter, CaCO ₃	%	mg/L, CaCO ₃
8	1.27	+ 10.61	+0.85
9	1.14	+22.29	+2.0
113	5.28	- 8.19	-9.3
119	5.36	- 7.42	-8.8

(FWPCA Method Study 1, Mineral and Physical Analyses)

8.2 In a single laboratory (EMSL) using surface water samples at an average concentration of 122 mg CaCO₃/L , the standard deviation was ± 3 .

Bibliography

- 1. Standard Methods for the Examination of Water and Wastewater, 14th Edition, p 278, Method 403, (1975).
- 2. Annual Book of ASTM Standards, Part 31, "Water", p 113, D-1067, Method B, (1976).