

TOS PROTOCOL AND PROCEDURE: SMALL MAMMAL SAMPLING

PREPARED BY	ORGANIZATION	DATE
Sara Paull	FSU	09/17/2019
Katherine M. Thibault	FSU	03/18/2019
Kim Tsao	FSU	10/25/2016
Yuri Springer	FSU	01/15/2015
Liz Knapp	EDU	12/31/2013

APPROVALS	ORGANIZATION	APPROVAL DATE	
Kate Thibault	SCI	01/31/2020	

RELEASED BY	ORGANIZATION	RELEASE DATE	
Anne Balsley	СМ	02/11/2020	

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Change Record

REVISION	DATE	ECO #	DESCRIPTION OF CHANGE
A_DRAFT	07/11/2012	ECO-00469	Draft release
B_DRAFT	01/24/2014	ECO-01181	Draft release. Will finalize in next rev.
с	03/31/2014	ECO-01671	Production release, template change, and other changes as detailed in Appendix C. Merged with rodent-borne pathogen sampling protocol.
D	04/10/2014	ECO-01792	Updated Appendix D with site-specific information. Updated References. Added Appendix D, Bleed Grid Designation.
E	12/05/2014	ECO-02530	Migration to new protocol template
F	03/23/2015	ECO-02644	Decreased sampling bout duration for diversity grids from three nights to one. Changed cold temperature thresholds for trapping. Removed retro-orbital bleeding technique. Removed Heteromyidae from bleeding list and added Muridae. Added prioritization of processing steps. Added equipment and protocol modifications for D04, D19, D20. Added sp codes. Removed datasheet column references due to changes in datasheet; updated datasheet quick references.
G	05/04/2015	ECO-02890	Added IACUC requested language regarding cervical dislocation training and GRSM-specific IACUC instructions. Added back in anesthesia instructions, and added euthanasia instructions per the IACUC-approved protocol.
Н	01/29/2016	ECO-03660	Baseline edits. Effective starting 2016 field season: added tick monitoring to data collection, clarified priority of data collection in decision tree. Revised instructions for pathogen grid selection, added instructions for blood sample processing and intentional voucher collection. Added alternative anesthesia delivery method. Clarified trap cleaning rules and added language to discourage dumping of seed on the ground when pulling a grid. Clean up of SOPs E and H.
J	02/17/2017	ECO-04445	Clarified priorities re: trapping nights per grid when time is limited, and pathogen grid selection guidelines. Alter processing prioritization scheme, including limiting blood samples to 20 per plot. Added additional guidelines for

Author: S. Paull

Date: 02/11/2020

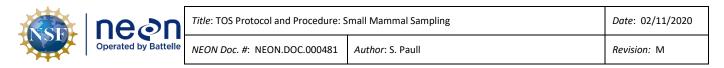
			selecting blood samples for testing (Appendix D, E), and revised blood sample limit based on current budget. Updated dominant genera and species lists in Appendix E. Clairified ear tag replaced field; added date to the untagged voucherID format; ear sample collection using scissors; use of 'X' in trap coordinate to denote uncertainty; decreased seed sterilization temperature; added 'Unknown' option to reproductive fields; updated quick reference to reflect updates to datasheet; added language to accommodate mobile data entry application; updated shipping inventory instructions; changed data entry instruction to NOT enter any data if no traps were set on a given plot. Added guidance for entering identification references info at the level of the individual – no longer being collected at the level of the plot.
к	01/30/2018	ECO-05276	Removed Hawaii, removed Tomahawks from Puerto Rico, modified sample collection instructions, added barcoding language, updated shipping instructions to reflect experience with UNM archive and new shipping application; moved species id up in the processing order, added bait missing as another indicator of trap status 3
L	03/18/2019	ECO-06065	Removed Puerto Rico trapping, increased quantity and method of hair collection, added tar paper covers to traps in Barrow, AK, with option to use at other cold, wet sites, clarified instructions for voucher specimen tagging, updated instruction for DNA barcoding prep based on K. LeVan Knowledge Base article, clarified use of trap status codes and non-target, removed Rattus from priority species for bleeding to keep only to cricetids, fixed error in priority species for JERC, reorganized processing section based on feedback
М	02/11/2020	Eco-06264	Updated to new template (NEON.DOC.050006vJ). Added total tick count binned estimates, eliminated requirement to start sampling bouts within 5 days of the original new moon window in that month, added requirement that a new bout should begin no less than 21 days after the beginning of the previous bout, added new bait sunflower-only bait option for sites with fire ant problems, allowed hair sample collection from all target species, clarified bait measurement by volume not weight, clarified timing of sample collection bouts, clarified instructions for missed bout reporting, updated voucher label size, updated new taxonomy for Callospermophilus and Ictidomys, added workflow diagrams for SOPs and a sampling figure, added 50 g

പ	Title: TOS Protocol and Procedure: S	Date: 02/11/2020	
	NEON Doc. #: NEON.DOC.000481		Revision: M

spring scale option to equipment list, changed trap check
window at TOOL site to 6-8 hours.

TABLE OF CONTENTS

1	0	OVERVIEW1			
	1.1	Background1			
	1.2	Scope1			
	1.	2.1 NEON Science Requirements and Data Products2			
	1.3	Acknowledgments2			
2	RI	ELATED DOCUMENTS AND ACRONYMS2			
	2.1	Applicable Documents			
	2.2	Reference Documents2			
	2.3	Acronyms			
	2.4	Definitions3			
3	Μ	IETHOD4			
	3.1	Sampling Goals4			
	3.2	Trapping design5			
	3.3	Grid types6			
	3.4	Personnel6			
	3.5	Timing of trapping7			
	3.6	Bait7			
	3.7	Processing			
	3.	7.1 Marking8			
	3.	7.2 Animal Care			
4	SA	AMPLING SCHEDULE9			
	4.1	Sampling Frequency and Timing9			
	4.2	Criteria for Determining Onset and Cessation of Sampling12			
	4.3	Timing for Laboratory Processing and Analysis16			
	4.4	Sampling Timing Contingencies16			
	4.5	Missed or Incomplete Sampling17			
	4.6	Estimated Time			
5	SA	AFETY			
	5.1	Working with Small Mammals22			
	5.2	Clothing and PPE22			


6	PE	ERSC	ONNEL24	1
(5.1	Tra	aining Requirements24	4
(5.2	Spe	ecialized Skills	5
	6.	2.1	Trapping2	5
	6.	2.2	Handling	5
7	ST	FANI	DARD OPERATING PROCEDURE20	5
so	ΡA		FLAGGING THE GRID	D
so	ΡB		PREPARING FOR SAMPLING	2
so	РC		FIELD SAMPLING	7
so	P D		POST-FIELD SAMPLING TASKS6	5
so	ΡE		EQUIPMENT CLEANING IN THE LABORATORY6	8
so	ΡF		PROCESSING FOR GENETIC ANALYSIS	Э
so	ΡG		DATA ENTRY AND VERIFICATION	3
so	ΡH		SAMPLE SHIPMENT	1
8	RI	EFER	RENCES	1
AP	PEN	DIX	A QUICK REFERENCES	8
AP	PEN	DIX	B CHECKLISTS	5
AP	PEN	DIX	C GUIDELINES FOR BLOOD SAMPLE SELECTION FOR PATHOGEN ANALYSIS8	3
AP	PEN	DIX	D SITE-SPECIFIC INFORMATION8	Э
AP	PEN	DIX	E EQUIPMENT	8

LIST OF TABLES AND FIGURES

Table 1. Sampling frequency for Small Mammal Sampling procedures on a per SOP per plot type basis.	.10
Table 2. Descriptions and prescriptions of codes used in Notes field of small mammal datasheet and	
Trap Status field of mobile data entry application.	15
Table 3. Contingency decision for small mammal sampling protocol.	16
Table 4. Protocol- specific reasons for Traps Not Set being entered in the Fulcrum application. In the	
event that more than one is applicable, choose the dominant reason sampling was missed	20
Table 5. Estimated staff and labor hours required for implementation of Small Mammal Sampling	
protocol	21
Table 6. Sample types and barcodes used	34
Table 7. Possible scenarios encountered while checking traps in the morning	41

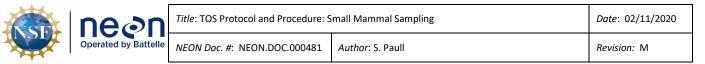


Table 8. List of codes for genus-level identifications	46
Table 9. Codes for identification qualifier entries – only needed if paper datasheets are used.	47
Table 10. Summary of samples to be collected. Note that the frequency per year is a minimum, and	if a
low-yield bout is chosen for sample collection, additional sample collection can be undertaken if tim	ıe
permits	53
Table 11. Approximate blood sample volumes for a range of body weights	60
Table 12. Site-specific species list (HARV)	89
Table 13. Site-specific species list (BART)	91
Table 14. Site-specific species list (SCBI)	93
Table 15. Site-specific species list (SERC)	95
Table 16. Site-specific species list (BLAN)	97
Table 17. Site-specific species list (OSBS)	99
Table 18. Site-specific species list (DISN)	101
Table 19. Site-specific species list (JERC)	103
Table 20. Site-specific species list (UNDE)	107
Table 21. Site-specific species list (STEI)	109
Table 22. Site-specific species list (TREE)	111
Table 23. Site-specific species list (KONZ)	113
Table 24. Site-specific species list (UKFS)	115
Table 25. Site-specific species list (KONA)	117
Table 26. Site-specific species list (ORNL)	119
Table 27. Site-specific species list (GRSM)	121
Table 28. Site-specific species list (MLBS)	124
Table 29. Site-specific species list (TALL)	126
Table 30. Site-specific species list (DELA)	128
Table 31. Site-specific species list (LENO)	130
Table 32. Site-specific species list (WOOD)	132
Table 33. Site-specific species list (DCFS)	134
Table 34. Site-specific species list (NOGP)	136
Table 35. Site-specific species list (CPER)	138
Table 36. Site-specific species list (STER)	140
Table 37. Site-specific species list (RMNP)	141
Table 38. Site-specific species list (CLBJ)	143
Table 39. Site-specific species list (OAES)	145
Table 40. Site-specific species list (YELL)	147
Table 41. Site-specific species list (NIWO)	149
Table 42. Site-specific species list (MOAB)	150
Table 43. Site-specific species list (SRER)	152
Table 44. Site-specific species list (JORN)	154
Table 45. Site-specific species list (ONAQ)	156

Table 46. Site-specific species list (WREF)	158
Table 47. Site-specific species list (ABBY)	160
Table 48. Site-specific species list (SJER)	162
Table 49. Site-specific species list (SOAP)	
Table 50. Site-specific species list (TEAK)	166
Table 51. Site-specific species list (TOOL)	168
Table 52. Site-specific species list (BARR)	
Table 53. Site-specific species list (BONA)	
Table 54. Site-specific species list (HEAL)	
Table 55. Site-specific species list (DEJU)	
Table 56. Equipment list – Flagging the grid, one bout	
Table 57. Equipment list – Trapping, one bout	
Table 58. Equipment list – Checking traps and processing captures, one bout	182
Table 59. Equipment list – Cleaning and sterilization, one bout.	190
Table 60. Equipment list – Cleaning traps, per bout	191
Table 61. Equipment list – Preparing blood samples	192
Table 62. Equipment list – Shipping blood samples	193
Table 63. Equipment list – Genetic analysis	194

Figure 1. Schematic of trapping grids. One Sherman trap is placed at each point in the grid. Where permitted, a permanent marker is placed at coordinate E5, indicated by the red star......5 Figure 2. An example of a sampling schedule for a typical temperate site where weather conditions permit and technician resources are available only from April through October. The days of the month are found at the top of the figure, with the months on the left. Within each month, each site in a domain is listed: C = core site; R1 = relocatable site 1; R2 = the other relocatable site. The hypothetical new moon dates are indicated by the dark blue cells, and the grey cells demarcate the sampling window each month that includes 10 days before and after the new moon. Be sure to use new moon dates estimated for the current year of sampling. The sampling bout durations for the core sites are indicated by the horizontal blue lines. These lines span 5 nights of trapping – an assumed duration to cover 3 nights of trapping on 3 grids and 1 night of trapping on the remaining 3-5 grids. The lines for April and October are dashed, as only one of these bouts is needed to meet the 6-bout minimum. The red and green horizontal lines span 4 nights of trapping at relocatable sites – assuming 3 nights of trapping on 3 grids Figure 3. The documentation to account for a Missed Sampling event depends on the situation for each plot of each bout that is not sampled. Blue rounded boxes represent contingencies, green double line boxes describe the required actions, Orange dotted boxes indicate HQ actions. Required delay and cancellation actions are outlined for each protocol in the 'Scheduled Field Activities – Delays and Cancellations' spreadsheet available on the SSL. Missed Sampling events may also require a Data Quality flag and/or creation of a Site Management record......19

Figure 4. A high level workflow diagram that visually shows how the separate SOPs are sequentially
connected
Figure 5. An expanded diagram of the workflow for the field sampling SOPs. Blue diamonds indicate
decision points when implementing the protocol, gray boxes indicate tasks to be completed. The green
box indicates the starting point for the diagram27
Figure 6. An expanded diagram of the workflow for the laboratory analysis SOPs. Blue diamonds indicate
decision points when implementing the protocol, gray boxes indicate tasks to be completed
Figure 7. A visual diagram of the suite of field-generated samples during small mammal bouts along with
details about collection, labeling and storage29
Figure 8. The grid coordinate system, consisting of 100 trap stations 10 meters apart. Trapping grids are
permanently marked at the E5 trap station during plot establishment, at sites that allow permanent
markers. Grids may also be marked with secondary markers at the corners, if also permitted
Figure 9. An example of a Type I and a Type IV barcode. Type I barcodes should be used on coin
envelopes for hair and whisker samples, and are large-size and field-tolerant with a prefix of 'A' followed
by 11 numbers. Type IV barcodes should be used on all 2mL vials and placed on the back of voucher
labels. Type IV vials have a prefix D followed by 11 numbers
Figure 10. (a) Annotated sampleID example. (b) SampleIDs deployed in the field will have everything
pre-filled but the last four-digits (tagID) and last letter
Figure 11. Schematic demonstrating the placement of an ear punch, an ear tag, and how the ear length
measurement should be made on a lab mouse (Mus)48
Figure 12. Example of the target 5 mg of hair collected from a museum specimen (a) and examples
showing the target range of 5-7 mg of hair (b). Photo credits: Tara Smiley (a) and Tamara Hillman (b)55
Figure 13. Schematic demonstrating where the facial vein and the submandibular vein meet at the rear
end of the mandibular bone on a lab mouse (Mus)
Figure 14. (A) Ideal volume of blood sample (50 microliters). (B) Minimum (20 microliters) and maximum
sample volumes (50 microliters) needed for serological analysis
Figure 15. Example of a completed specimen tag. A barcode label should be affixed to the back
Figure 15. Example of a completed specimen tag. A barcode label should be affixed to the back62Figure 16. Placing tissue in a well.71

NEON Doc. #: NEON.DOC.000481

1 OVERVIEW

1.1 Background

Small mammals are widespread, sensitive to local environmental changes, and known to carry and transmit zoonotic agents; therefore, they have been chosen as sentinel taxa for the Terrestrial Observation System (TOS) of NEON. From NEON's perspective, species-specific demography and population sizes, prevalence of pathogens important to public health, species richness, and relative abundances can be monitored simultaneously and ultimately linked to land use and climate changes, and therefore provide useful metrics of responses in biodiversity to these and other drivers (Kao et al. 2012). Small mammals as primary and secondary consumers interact significantly with plants and ground invertebrates (other NEON sentinel taxa), and generally represent size classes, life histories, and home range sizes that are distinct from the other NEON taxa (Kao et al. 2012). NEON will use mark-recapture methods to assess the dynamics of small mammal diversity and disease across time and space (Ostfeld and Parmenter 2008).

Author: S. Paull

NEON small mammal sampling will assess the abundance and diversity of the nocturnal small mammal communities of North America, including the population dynamics of species that are competent reservoirs for infectious disease, at dozens of sites (depending on study design and associated logistics) throughout North America for a period of 30 years. This represents a significant increase in the number and diversity of long-term datasets involving small mammals, and will also be unique in the degree of standardization across studies, as well as the availability of the data and archived samples to the scientific community and the public. This will allow NEON and the scientific community to address a diversity of questions, and the associated vouchering of specimens and tissue samples will provide critical resources for external PI-driven research to address an even wider range of questions.

1.2 Scope

This document provides a change-controlled version of Observatory protocols and procedures. Documentation of content changes (i.e. changes in particular tasks or safety practices) will occur via this change-controlled document, not through field manuals or training

materials.

1.2.1 NEON Science Requirements and Data Products

This protocol fulfills Observatory science requirements that reside in NEON's Dynamic Object-Oriented Requirements System (DOORS). Copies of approved science requirements have been exported from DOORS and are available in NEON's document repository, or upon request.

Execution of this protocol procures samples and/or generates raw data satisfying NEON Observatory scientific requirements. These data and samples are used to create NEON data products, and are documented in the NEON Scientific Data Products Catalog (RD[03]).

1.3 Acknowledgments

Many thanks to Jesse Dulberger, who wrote the first version of this protocol. Best practices are based on recommendations in Wilson et al. 1996, as well as the first small mammal abundance and diversity working group established in 2012 (*Guy Cameron, Bob McCleery, Bill McShea, Rebecca Rowe, Rob Swihart, Beatrice Van Horne*).

All procedures described in this document have been reviewed and approved by the NEON's Institutional Animal Care and Use Committee (IACUC), in accordance with the policies and procedures described in the NEON Policies and Procedures for the Care and Use of Animals (AD[08]).

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

Applicable documents contain higher-level information that is implemented in the current document. Examples include designs, plans, or standards.

AD[01]	NEON.DOC.004300	EHS Safety Policy and Program Manual
AD[02]	NEON.DOC.004316	Operations Field Safety and Security Plan
AD[03]	NEON.DOC.000724	Domain Chemical Hygiene Plan and Biosafety Manual
AD[04]	NEON.DOC.050005	Field Operations Job Instruction Training Plan
AD[05]	NEON.DOC.000915	TOS Science Design for Small Mammal Abundance and Diversity
AD[06]	NEON.DOC.004104	NEON Science Data Quality Plan
AD[07]	NEON.DOC.000911	TOS Science Design for Vectors and Pathogens
AD[08]	NEON.DOC.002665	NEON Policies and Procedures for the Care and Use of Animals
AD[09]	NEON.DOC.002979	NEON Animal Care and Use Program: Training Plan for
		Personnel Working with Live Vertebrate Animals

2.2 Reference Documents

Reference documents contain information that supports or complements the current document. Examples include related protocols, datasheets, or general-information references.

Author: S. Paull

NEON Doc. #: NEON.DOC.000481

Revision: M

RD[01]	NEON.DOC.000008	NEON Acronym List
RD[02]	NEON.DOC.000243	NEON Glossary of Terms
RD[03]	NEON.DOC.002652	NEON Level 1, Level 2 and Level 3 Data Products Catalog
RD[04]	NEON.DOC.001271	NEON Protocol and Procedure: Manual Data Transcription
RD[05]	NEON.DOC.001585	Datasheets for TOS Protocol and Procedure: Small Mammal Sampling
RD[06]	NEON.DOC.003282	NEON Protocol and Procedure: Site Management and Disturbance
		Data Collection
RD[07]	NEON.DOC.001907	Field Key to the Small Mammals in NEON Domain 01
RD[08]	NEON.DOC.001908	Field Key to the Small Mammals in NEON Domain 02
RD[09]	NEON.DOC.002167	Field Key to the Small Mammals in NEON Domain 03
RD[10]	NEON.DOC.001909	Field Key to the Small Mammals in NEON Domain 05
RD[11]	NEON.DOC.003136	Field Key to the Small Mammals in NEON Domain 06
RD[12]	NEON.DOC.001910	Field Key to the Small Mammals in NEON Domain 07
RD[13]	NEON.DOC.001911	Field Key to the Small Mammals in NEON Domain 08
RD[14]	NEON.DOC.001912	Field Key to the Small Mammals in NEON Domain 09
RD[15]	NEON.DOC.001913	Field Key to the Small Mammals in NEON Domain 10
RD[16]	NEON.DOC.003137	Field Key to the Small Mammals in NEON Domain 11
RD[17]	NEON.DOC.003138	Field Key to the Small Mammals in NEON Domain 12
RD[18]	NEON.DOC.003139	Field Key to the Small Mammals in NEON Domain 13
RD[19]	NEON.DOC.003140	Field Key to the Small Mammals in NEON Domain 14
RD[20]	NEON.DOC.001914	Field Key to the Small Mammals in NEON Domain 15
RD[21]	NEON.DOC.003143	Field Key to the Small Mammals in NEON Domain 16
RD[22]	NEON.DOC.003141	Field Key to the Small Mammals in NEON Domain 17
RD[23]	NEON.DOC.003142	Field Key to the Small Mammals in NEON Domains 18 & 19

2.3 Acronyms

Acronym	Definition
CDC	Centers for Disease Control and Prevention
NIOSH	National Institute for Occupational Safety and Health
PIT	Passive Implant Transponder
PPE	Personal Protective Equipment
HEPA	High-efficiency particulate air
IACUC	Institutional Animal Care and Use Committee

2.4 Definitions

Small mammal: Any mammal that is (1) nonvolant; (2) nocturnally active; (3) forages predominantly aboveground; and (4) is greater than 5 grams but less than approximately 600 g. In North America, the **target** species include cricetids, heteromyids, small sciurids, and introduced murids. It does not include shrews, large squirrels, pocket gophers, rabbits, or weasels, despite the fact that individuals of these species may be incidentally captured.

Opportunistic vs. Non-target Species (terms and definitions modified from the National Park Service)

Non-target species: Any non-study animals directly or indirectly affected by the research. Examples include the potential to live-capture or kill non-target individuals (e.g., loss of offspring due to taking of one or both parents) or disturb/harass other species during the research activity (e.g., during sampling that employs airplanes and/or boats).

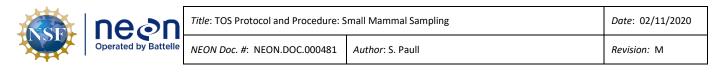
Opportunistic species: Any animal whose capture is accidental or incidental, but whose capture can lead to valuable information. Examples include non-target species of small mammals which, if captured, will be marked and released.

Sampling bout: The three consecutive (or nearly so) nights of trapping per pathogen and the one night of trapping per abundance/diversity grid intended to occur monthly or every other month around the new moon and includes all trapping grids.

3 METHOD

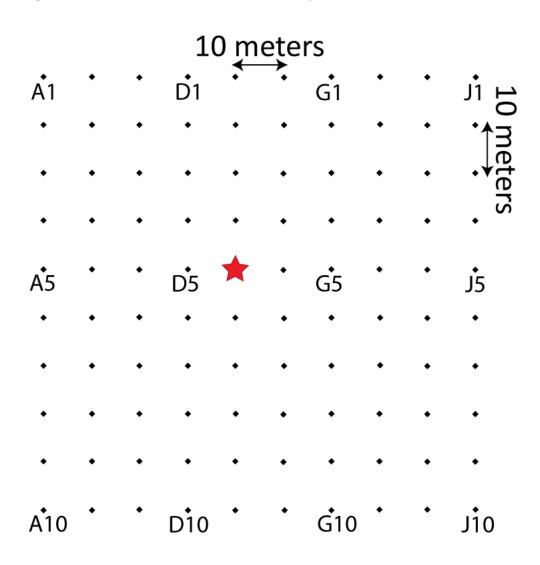
Standard Operating Procedures (SOPs), in Section 7 of this document, provide detailed step-by-step directions, contingency plans, sampling tips, and best practices for implementing this sampling procedure. To properly collect and process samples, field technicians **must** follow the protocol and associated SOPs. Use NEON's problem reporting system to resolve any field issues associated with implementing this protocol.

The value of NEON data hinges on consistent implementation of this protocol across all NEON domains, for the life of the project. It is therefore essential that field personnel carry out this protocol as outlined in this document. In the event that local conditions create uncertainty about carrying out these steps, it is critical that technicians document the problem and enter it in NEON's problem tracking system.


Quality assurance is performed on data collected via these procedures according to the NEON Science Data Quality Plan (AD[06]).

The plan includes:

- Hot checks in the field by HQ staff or contractor, if funding is made available.
- DNA barcoding of a subset of samples to quantify error rates in taxonomic IDs.


3.1 Sampling Goals

NEON requires the study of live organisms in their natural setting to document the diversity, population sizes, and pathogen prevalence of small mammals through time, in relation to such critical drivers as climate change and land-use change. These parameters will be assessed through a mark-recapture live trapping study and associated tissue collection. The NEON sampling design allows for robust estimation of (1) population sizes and species diversity using standard mark-recapture techniques (AD[05]), and (2) inter- and intra-annual changes in pathogen prevalence (AD[07]). All methods conform to standard methods used in the study of wild small mammals (see Wilson et al. 1996, Sikes et al. 2016).

3.2 Trapping design

Sherman live traps (H. B. Sherman, Inc., Tallahassee, FL, folding or non-folding, 3" x 3.5" x 9" or, if kangaroo rats (*Dipodomys spp.*) or rats (*Rattus spp.*) are common, 3" x 3.75" x 12") will be used to capture animals for the study. Trapping grids will be laid out with 100 Sherman live traps (10 m spacing – 10 rows – 10 columns; see Figure 1). Up to eight grids will be trapped during each sampling period, depending on the area of the site and associated logistics. The grids will be distributed proportionally across the dominant vegetation types, collocated with a subset of the TOS Distributed Plots (see TOS Science Design for Small Mammal Abundance and Diversity (AD[05]) for additional details).

Figure 1. Schematic of trapping grids. One Sherman trap is placed at each point in the grid. Where permitted, a permanent marker is placed at coordinate E5, indicated by the red star.

3.3 Grid types

Three grids at each site that occur within any or all of the dominant vegetation type(s) (see Appendix D) will be designated by domain staff as pathogen grids. The remaining grids will be designated as diversity grids.

Guidelines for selecting pathogen grids:

The primary goals in selecting pathogen grids are: 1) long-term sampling of target and opportunistic species, which requires moderate to high **average** capture rates, and 2) representation of the site's dominant vegetation type.

If there are more or fewer than 3 trapping grids that occur within the dominant vegetation type(s) and trapping data from previous years are available, the selected grids should be those with the highest combined abundances of target and opportunistic species. Otherwise, pathogen grids will be chosen at random or based on an educated assessment of habitat quality. Once a grid has been designated as a pathogen grid (after an initial assessment period of two years), that classification will apply for all subsequent trapping seasons for consistent, long-term data collection.

Exceptions: if the majority of captures in the dominant vegetation type at a site are heteromyids, then an alternate habitat type may be preferred (e.g., Moab, UT – see Appendix D). Abundance will vary by season and year, so pathogen grids will not always have the highest abundance relative to the other grids– consistent long-term sampling is more important than always being the grid with the highest number of captures. However, if unusually low numbers of individuals of target and opportunistic species combined are captured on a pathogen grid for two years or more, a problem ticket should be issued. A general rule of thumb for "low numbers of individuals" is 20 (total) per plot per year. High levels of disturbance may also be cause for changing a pathogen grid – when reporting disturbed sites, be sure to specify if the affected grid is a pathogen or diversity grid.

Extended sampling: When capture rates are low and resources permit, collecting blood samples from additional individuals from diversity grids is encouraged. Check Appendix D to ensure the number of animals used does not exceed the number of animals from which you will collect blood.

3.4 Personnel

It is expected that typically two or four (2 teams of 2) personnel will conduct the trap checking at each site, depending on the number of grids at a particular site and the capture rates per grid. Additional personnel can be used as needed. Each team will be comprised of at least one well-trained field ecologist or lead technician who will be responsible for all of the handling procedures. The other technician will assist in trap setting and checking and data recording, and will assist in handling only if experienced in handling small mammals and fully trained according to established NEON training requirements. Best practices in trapping include having the same person set and check specific traps, to decrease the odds of missing any traps during the check. That said, logistics often dictate the use of

distinct teams to perform these temporally disjunct tasks. Under these circumstances, traps shall be counted and re-counted each morning to prevent traps from being missed.

3.5 Timing of trapping

Each pathogen grid will be trapped for 3 consecutive nights within a sampling period, while the remaining grids (i.e., diversity grids) will be sampled for only one night within a sampling period. Sampling will occur year-round at a monthly (at core sites only) or approximately every other month frequency (at relocatable sites), if resources are available and winter weather conditions permit (see section 4 for further details). If possible, trapping should occur as close as possible to the new moon, as small mammal activity is thought to be restricted under high light conditions when predation risk is presumed higher (but see Prugh and Brashares 2010). Within a sampling period, timing of trap setting is generally managed so that the last trap is set as the sun is setting and the first trap is checked the following morning, as soon as it is light enough to process animals (i.e., within 30 minutes of civil twilight). Local conditions can necessitate deviations from this general plan; these deviations will be specified in the site-specific appendices for this document, if necessary. The animals to be studied are nocturnal, and this routine ensures that traps are not set longer than necessary – particularly during the hottest parts of the year. Where possible, between consecutive nights of trapping, traps will remain in situ but closed during the day to prevent diurnal animals entering and becoming heat-stressed. Furthermore, when temperatures will be extremely high even in the early morning (i.e., 27°C (80°F) by 10:00 am) and all traps are not shaded, one team will focus solely on checking traps and placing traps with captured individuals under the protection of shade and a heat shield, until they can be processed by the second team. This procedure reduces the amount of time animals spend in direct sunlight, which can result in lethal heat stress.

3.6 Bait

Sherman traps are to be set and baited with a seed mixture (sunflower seeds – 35% and millet – 65%) that has been sterilized to prevent germination of these introduced species at NEON sites. Seeds are high quality resources utilized by most target small mammal species. In cold weather conditions, polyester or wool batting for nesting will be placed in the traps, except at sites dominated by rodents in the family Heteromyidae (e.g., Central Plains Experimental Range (CPER), Jornada Experimental Range (JORN)). These are burrowing rodents which are known to urinate on batting, thereby reducing its insulating properties, rather than building nests, and who will not consume peanut butter (see below). At sites where shrews (*Soricomorpha: Soricidae*) comprise more than 20% of the captured individuals on average (e.g., Harvard Forest), a teaspoon of freeze-dried mealworms should also be added to the trap. For sites with high variability of shrew capture rates across trapping grids, mealworms can be added only to particular grids of concern. Additional, high-calorie bait, such as peanut butter can also be added in the event of extremely cold conditions at many sites, except where not permitted (see site-specific appendices), where medium- to large- mammal (e.g., raccoons, bears) disturbance of traps has occurred, or where fire ants occur (e.g., Jones Ecological Research Center (JERC), Ordway-Swisher

Biological Station (OSBS)). Starting in 2019, sites with high fire ant activity can use 100% sunflower seeds as bait to eliminate the spillage of the smaller millet seeds which can attract ants to the trapping area.

3.7 Processing

All processing will take place in the field, to allow for quick release of captured individuals at the point of capture and to provide adequate ventilation for the field staff. Upon capture, individual small mammals will be processed according to their classification as target, opportunistic, or non-target species (see 2.4 and Appendix D. for detailed species lists). Processing includes:

- Marking with a unique tag (target and opportunistic species).
- Assessing age, sex, and reproductive condition, and taking standard measurements (i.e., hind foot length and weight; target and opportunistic species).
- Identification to species where possible (all captures). Additional measurements (e.g., ear length, tail length, and/or total length) shall be taken when relevant to species identification (target and opportunistic species).
- Presence of ticks by life stage (target and opportunistic species).
- Total number of ticks present on the head and neck within bins (1-5, 6-20, >20).
- Blood collection for pathogen analyses (target species in appropriate condition).
- Fecal sample collection for physiological analyses (target and opportunistic species).
- Ear tissue for genetic analyses (target and opportunistic species).
- Clipped whiskers and hair for potential isotopic analyses (target and opportunistic species).

Some of these data may be omitted in cases of high capture rates posing time constraints. These are outlined in SOP C.4.

3.7.1 Marking

Individuals are marked to allow for the study of population dynamics, reproductive condition, timing of colonization of new individuals, longevity and movement, and a variety of other aspects of life history that require permanent individual marking.

3.7.2 Animal Care

This protocol has been reviewed and approved by NEON's Institutional Animal Care and Use Committee (IACUC). Any deviations from this protocol that may impact the well-being of a capture are not permitted.

During the trapping period, it is important to do everything possible to ensure the well-being of all potential captures. This includes providing adequate bait and batting under cold conditions (outlined below) and keeping traps in the shade under hot conditions. In addition, animals should not be kept in the traps for excessive periods of time, not to exceed 16-18 hours. If capture rates are high and there is a risk of approaching this threshold, perform only the highest priority tasks during handling (see SOP C.4 for further details).

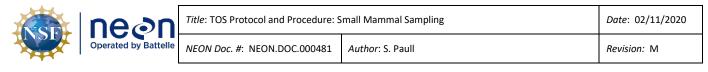
PIT tags are injected under the skin on the back of the animal and do not impede movement. Ear tags are small, metal, and do not cause unnecessary pain when applied quickly and with sharp and correct application (using provided tool and placed in cartilage at base of external pinnae). In rare cases, if tagging is deemed undesirable considering the condition of an animal (e.g., highly stressed, female that gave birth in the trap), an animal may be released without tagging.

Handling time per individual will be 15 minutes or less, using techniques to reduce injury, stress, and pain. While handling, the condition of all captured individuals must be monitored closely. Specifically, the rodent's rate of respiration, spontaneous movements, responses to tactile stimulation, and ability to retain sternal recumbency will be monitored, in order to gauge both the state of anesthetization (when relevant) and general condition of the animal. A small vial of 10% sugar water will always be available to revitalize stressed, dehydrated, hypothermic or heat-stressed captures; this solution should be replaced regularly (e.g., monthly) to inhibit the growth of mold. Stressed individuals will be placed in a secure container containing bait and, in the case of hypothermia, a disposable hand warmer and batting. If conditions are particularly cold (< 65° F/ 18° C) overnight and into the morning, a hand warmer can be started while driving to the site and placed on the defroster vents of the work vehicle so that it is warm by the time of arrival. These individuals will be monitored every 15 minutes and released only when the animal exhibits normal behavior. If no signs of recovery are observed by the time processing a grid is complete, the animal will be euthanized with a lethal dose of isoflurane. Death will be confirmed via cervical dislocation (see Vertebrate Euthanasia tile in online Training Center). The specimen will then be tagged on the foot, bagged, and placed on ice as soon as possible, with ultimate disposition in a curated collection (see SOP C.8 for additional details).

4 SAMPLING SCHEDULE

4.1 Sampling Frequency and Timing

Small mammal sampling shall occur in bouts, with a bout comprised of three consecutive (or nearly) nights of trapping on pathogen grids and one night of trapping on the diversity grids. Sampling frequency, or the number of bouts per year, is determined by whether or not the trapping grid is located at a core or relocatable site (Table 1). Sampling shall occur year-round, where personnel resources and weather conditions permit, with a minimum of four bouts per year for all grids at relocatable sites and a minimum of 6 bouts per year for all grids at core sites (Table 1). Any expected deviations from this schedule are indicated in the site-specific appendices.


If the sampling schedule must be altered, the priority is to sample each grid for fewer nights (2-night minimum for pathogen grids) rather than missing entire grids. Prioritize relocatable site grids over core site grids, since relocatable sites are sampled for only four bouts per year. If site conditions (e.g., flooding) prevent trapping of all grids in a bout, a minimum of 3 plots is needed to constitute a bout. A minimum of 75 traps per plot is needed to constitute a plot-night.

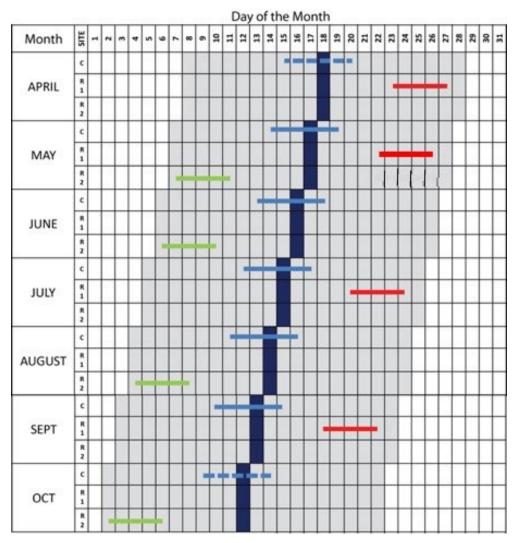


 Table 1. Sampling frequency for Small Mammal Sampling procedures on a per SOP per plot type basis.

SOP	Plot Type	Bout Duration	Bouts Per Year	Bout Interval	Remarks
SOP C	Core Pathogen	3 nights	6	Monthly	Sampling must be completed within 10 days of new moon during weather- appropriate times (see <i>Figure 2</i> ; Section 4.2)
	Core Diversity	1 night	6	Monthly	
	Relocatable Pathogen	3 nights	4	Monthly or Every Other	
	Relocatable Diversity	1 night	4	Monthly or Every Other	

* Some sites will likely not be able to adhere to these guidelines given limited snow-free windows for sampling. These deviations are captured in the site-specific appendices

Figure 2. An example of a sampling schedule for a typical temperate site where weather conditions permit and technician resources are available only from April through October. The days of the month are found at the top of the figure, with the months on the left. Within each month, each site in a domain is listed: C = core site; R1 = relocatable site 1; R2 = the other relocatable site. The hypothetical new moon dates are indicated by the dark blue cells, and the grey cells demarcate the sampling window each month that includes 10 days before and after the new moon. Be sure to use new moon dates estimated for the current year of sampling. The sampling bout durations for the core sites are indicated by the horizontal blue lines. These lines span 5 nights of trapping – an assumed duration to cover 3 nights of trapping on 3 grids and 1 night of trapping on the remaining 3-5 grids. The lines for April and October are dashed, as only one of these bouts is needed to meet the 6-bout minimum. The red and green horizontal lines span 4 nights of trapping at relocatable sites – assuming 3 nights of trapping on 3 grids and 1 night of trapping on 4 grids.

Scheduling Considerations

1. Field Work: Bouts should be scheduled to occur within 10 days of the new moon (before or after-see Figure 2)

Date: 02/11/2020

- a. Traps should be set in the evening no more than 3 hours before sunset and collected at dawn. Traps should not be set if there is any doubt that they can be accessed the following morning. Avoid scheduling bouts during times of the year when the weather criteria described in Section 4.2 below are not likely to be met.
- b. Blood samples should be collected during every bout. Ear, fecal, hair and whisker samples are collected at 3 bouts per year per site. These should be collected only when capture rates are likely to be high enough to yield at least 5 samples per grid per day. Suggested bouts include 2, 4, and 6 at core sites and 2, 3, and 4 at relocatable sites to ensure a wide temporal range.
- 2. Laboratory Processing: The evening after samples are collected:
 - a. Sort all samples according to SOP D. Store ear, fecal, and blood samples in an ultralow (-80°C) freezer upon return from the field.
 - b. Store voucher specimens in an individual labeled plastic bag in a standard -20°C freezer.
 - c. Store coin envelopes containing hair and whisker samples in labeled small plastic bags at ambient temperature and low humidity.
 - d. At the end of the field season, a subset of ear samples will be selected for DNA barcoding according to SOP F

4.2 Criteria for Determining Onset and Cessation of Sampling

Sampling bouts should occur as close as possible to the new moon. The timing of sampling at each site should remain as consistent as possible with respect to the new moon over the course of NEON operations, and it is preferable to sample the same month each year. Prior to 2020, once a sampling schedule was established, acceptable variation around this timing for the initiation of sampling from one sampling bout to the next (and year to year) was 1-5 days (relative to the new moon) within a particular month. Starting in 2020 the within-month sampling constraint is replaced by the requirement to schedule sampling bouts at least 21 days after the beginning of the previous bout. Trapping at core and relocatable sites should still occur within a 21-day window centered on the new moon (i.e., 10 days before the new moon – 10 days after). This schedule assumes a logistical constraint of trapping 3-4 grids at one site at one time. An example of a sampling schedule for an average temperate site is shown in Figure 2. However, there is no scientific requirement to schedule the trapping in this way, if sufficient personnel are available to sample more grids simultaneously. These details are left to the discretion of the Field Operations Manager to be approved annually by Science Operations.

Small mammal sampling can be performed under a variety of weather conditions. Weather conditions are recommended to be sourced from weather.gov. Care must be taken, however, to prevent conditions such that the trapped individual cannot thermoregulate properly, either in hot or cold conditions. Such conditions will result in the death of the trapped individuals. Each mortality must be reported to the Field Operations Manager within 24 hours of processing, to help ensure that all state- and site-specific

permit requirements are followed. Please be aware that there are state- and site-specific permitting requirements detailed on permits provided by NEON Permitting for reporting both live captures, as well as mortalities, of vertebrates captured, including either all species or, in some case, just the species with state status. It is imperative that the staff conducting the small mammal trapping are familiar with the guidelines detailed in the permits for the sites and states in their jurisdiction.

If, for any reason, \geq 5 individuals (regardless of species) on any given trapping grid during a single night die, either in the trap or in hand, the trapping on that grid should be discontinued until the next scheduled sampling bout, and a problem ticket should be issued detailing the locations, species, sex, and ages of the mortalities. If weather or any other circumstances cause one night of trapping within the sampling bout to be missed, consult section 4.4.

Given acclimation and regional variation in the conditions that threaten the survival of trapped rodents, guidelines for preventing mass mortality in cold and hot conditions will be provided in the site-specific appendices, as necessary. The following guidelines are generally applicable across sites, and can also be found as a Quick Reference in Appendix A.

Cold conditions

- Bedding (i.e., polyester or wool batting) should be used when low temperatures are expected to be < 18°C (65°F), except at sites where heteromyids dominate. In areas that heat up quickly, bedding may be removed prior to processing.
- Extra bait should be added to traps on nights when temperatures are expected to be < 7°C (45°F).
- Trapping should not occur on nights when **both** very cold temperatures (< 5.5°C (42°F)) and

 (a) precipitation in the form of rain are expected (>20% chance at sites with bedding; >5% chance at sites that cannot use bedding) or (b) dew is expected (i.e., if humidity is >75% and the projected minimum temperature is below the dew point).
- At sites that are cold and wet either consistently or in the shoulder seasons (but still meet the above criteria) and have a history of high mortality during these conditions, traps can be covered with tar paper, as described for the Barrow, AK, site in 8E.44.
- Due to the added logistical burden, trapping should not occur when snow cover exceeds 15 cm (6 inches) at the time of trap setting. Snowfall is not inherently problematic for trapping; therefore, a few inches (<=6 inches) of snow already fallen or predicted to fall during the trapping bout should not prevent trapping. Do not set traps if >6 inches of snow are predicted to fall overnight, as this will significantly increase the effort required to locate and check traps.
- If there are smaller individuals (as detected from the weight of the trap), process these first, as they will typically have a harder time thermoregulating under cold conditions.

When ambient temperatures are expected to exceed 80 degrees Fahrenheit by 10 a.m.:

- Extra effort must be made to ensure that all traps containing captured individuals are processed or placed in the shade as soon as possible. Work can continue past 10 a.m. or when temperatures exceed 80 degrees Fahrenheit, but care should be taken to ensure the well-being of the captures. Ice packs can be placed with the shaded traps in exceptionally hot conditions.
- If you are unable to arrive at a site due to unforeseen circumstances prior to 8 9 am, field technicians should open all traps to release animals and avoid heat-induced mortality. The trap night should be repeated the subsequent night by resetting the traps.
- Heat-stressed individuals can be cooled by wetting them down, particularly around their head and inguinal regions.
- If there are larger individuals (as detected from the weight of the trap), process these first, as they will typically have a harder time thermoregulating under hot conditions.

All conditions

If there is any chance (i.e., >0%) that traps cannot be checked the following morning at dawn, traps shall not be set. For example, if trap locations are accessed via dirt roads that become impassable when wet, do not set traps if there is a possibility of rain overnight.

Windy conditions

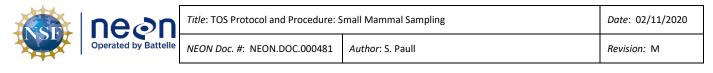
If winds are very strong (> 35 mph) – either consistently or gustily – and there is little vegetation to protect the traps, trapping is not recommended. A mechanism to secure traps could prove useful for moderately windy conditions. For example, bending wire to fit snuggly over traps has proven effective at some sites (Denise Stetson, pers. comm.).

Predators

If predators destroy (i.e., damage beyond repair) >15 traps on a single grid on any given night, traps should be removed from the grid and that sampling bout terminated prematurely for that grid. The Field Operations Manager shall be informed as soon as possible, and a problem ticket should be issued.

If predators disturb (i.e., not damaging but closing trap doors, moving traps, etc.) > 30 traps on a single grid on any given night (or the combination of destroyed and disturbed traps > 30), traps should be removed from the grid and that sampling bout terminated prematurely for that grid. The Field Operations Manager shall be informed as soon as possible, and a problem ticket issued.

Cattle


If cattle disturbance is significant, issue a problem ticket. A mechanism to secure traps could prove useful (see Windy Conditions above).

Documentation of Issues

- Data from animals that die during the course of handling or trapping should be recorded, with a 'D' marked on the datasheet or 'dead' selected in the mobile application in the appropriate field (fate). The 'D' supersedes the Non-target (N) option for the fate field.
- 2. If traps are not set on a particular grid as scheduled AND the trap night cannot be rescheduled, a traps not set entry should be made in the trap setting app for each grid and night for which a sampling event is missed. The user should select the best explanation for why the night was missed from the drop-down menu. The intent is to generate records for all intended grid-nights of trapping per bout, with remarks explaining why a given trap-night was missed and unable to be rescheduled. Even if the bout would technically (e.g. per protocol) be considered "complete" without that grid-night of sampling, traps not set should still be used to assist the end user in assessing data completeness. In the case where the minimum number of bouts will still be completed, but an 'extra' scheduled bout will be missed, traps not set need not be completed for this missed "extra" bout. Traps not set can also be used on a trap by trap basis, if there is variation within the grid (trapStatus =1).
- 3. When large-scale disturbances such as a hurricane, flood or fire happen at a site, these should be reported in the Site Management app, regardless of whether they disrupted sampling or not.
- 4. If no individuals are captured, this should also be noted on the datasheet. Electronic data devices (e.g., Fulcrum) automatically default to set and empty (trapStatus=6).
- 5. If traps are damaged or disturbed overnight, note trap locations and code the nature of the disturbance on the datasheet in the NOTES field or in the mobile application in the trapStatus field (**Table 2**), with any other known details described in the 'add'l notes' cell (or remarks field in the mobile application).
- 6. If a trap is discovered to have been set too tightly to successfully capture an animal overnight, a trap status of 2 should be used.

Table 2. Descriptions and prescriptions of codes used in Notes field of small mammal datasheet and Trap Statusfield of mobile data entry application.

Definitions	Application Rules	
1 – traps not set	Used at the level of the entire trapping grid, or, if some traps on a grid were set and others were not, can be used to indicate which ones were not set. This can also be used in the extremely rare event that a set trap goes missing due to predator disturbance.	

Definitions	Application Rules
2 – trap disturbed/door closed but empty – no animal sign	Used per trap coordinate, when necessary. Also used if a trap is discovered to have been set too tightly to successfully capture an animal overnight.
3 – trap door open or closed with feces left behind or bait missing	Used per trap coordinate, when necessary.
4 – >1 capture per trap	Used per trap coordinate; in the rare event of multiple captures per trap; enter this note code for each individual
5 – single capture in trap	Used per trap coordinate, when necessary
6—no captures	Used ONLY at the per grid level; there is no need to write down every trap that has been set but is empty

Bout Completion Criteria

- A minimum of 3 plots sampled is needed to constitute a bout
- A minimum of 75 traps per plot is needed to constitute a plot-night

4.3 Timing for Laboratory Processing and Analysis

Process all frozen samples immediately upon returning to the lab according to SOP D: Post-Field Sampling Tasks. Once samples are frozen, they must remain frozen; plan accordingly. A subset of the ear tissue samples will be used in SOP G.

4.4 Sampling Timing Contingencies

If weather or any other circumstances cause a night of trapping within the sampling bout to be missed, trapping may be resumed and continued as normal within 5 days of the latest night of trapping (even if trapping extends outside of the new moon window). If this is not possible, sampling should be resumed as soon as possible, while maintaining the timing of trapping relative to the new moon for the sites.

Delay	Action	Outcome for Data Products
Hours	If traps are set, the traps must be checked and any captured individuals processed or released without processing AS SOON AS	Trapping-induced mortality violates the assumptions of the mark-recapture

Table 3. Contingency decision for small mammal sampling protocol.

Author: S. Paull

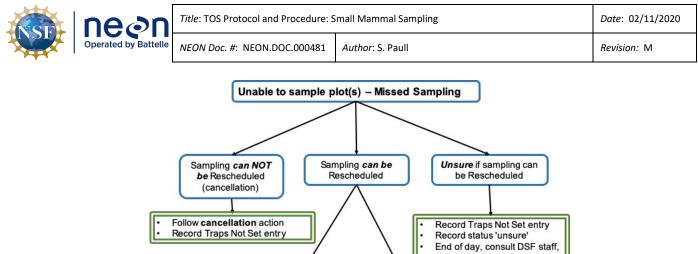
NEON Doc. #: NEON.DOC.000481

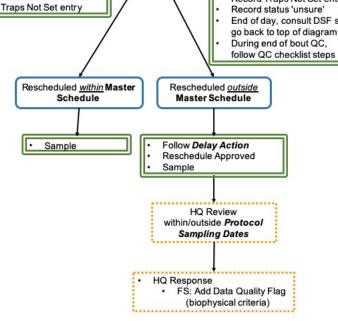
	POSSIBLE. Do whatever it takes (within safety limitations) to prevent mortality of study animals.	models that are used to estimate density. In addition, high mortality rates from trapping threaten the scientific and ethical integrity of the study.
		Fewer sampling points could result in less precise estimation of richness, diversity, or density. Capture-recapture models require recapture data from >1 night of sampling per bout to estimate densities.
1-10 days	Add additional days of sampling as soon as possible to sample all points. Submit an incident ticket to document delayed sampling.	If additional time is not available, fewer samples will be collected. Although densities cannot be calculated if recapture data are insufficient, any night of trapping produces valuable data regarding relative abundances of species, reproduction and persistence of local populations, and species presence/absence.
11 or more days	Do not sample. Resume sampling as scheduled during the next month. If resources are available, missed nights of sampling may be rescheduled to occur during an additional bout later in the year. Submit an incident ticket to document missed sampling	1. Species richness or demography due to changes in seasonal phenology could be influenced by significant changes in temporal sampling window. 2. Not completing sampling on all plots impacts diversity metrics and target sample size.

4.5 Missed or Incomplete Sampling

Sampling according to the schedule is not always possible, and multiple factors may impede work in the field at one or more plots or sampling locations in a given bout. For example:

- Logistics e.g., insufficient staff or equipment
- Environment e.g., deep snow, flooding, inclement weather, or
- Management activities e.g., controlled burns, pesticide application


Instances such as those listed above must be documented for scheduling, tracking long-term plot suitability, and informing end users of NEON data availability. Some types of missed sampling are due to events that should be recorded in the Site Management App; refer to the Site Management and Event Reporting Protocol for more detail (RD[06]).


Missed or Incomplete Sampling Terms

Terms that inform Missed or Incomplete Sampling include:

- Protocol Sampling Dates: Bout-specific sampling dates.
- **Scheduled Sampling Dates**: Bout-specific sampling dates scheduled by Field Science and approved by Science. These dates coincide with or are a subset of the Protocol Sampling Dates.
- **Missed Sampling**: Incidence of *scheduled sampling* that did not occur. Missed Sampling is recorded at the same resolution as data that are ordinarily recorded.
- Traps Not Set: This takes the place of the Sampling Impractical field found in other data
 products for explaining a Missed Sampling event. It is the field name associated with a
 controlled list of values that is included in the data product to explain a Missed Sampling event –
 i.e., why sampling did not occur.
- **Rescheduled**: Missed Sampling is rescheduled for another time within the *protocol sampling dates*, resulting in no change to the total number of sampling events per year.

The documentation that must accompany missed sampling depends on the timing, subsequent action, and the audience appropriate for numerous scenarios (**Figure 3**).

Figure 3. The documentation to account for a Missed Sampling event depends on the situation for each plot of each bout that is not sampled. Blue rounded boxes represent contingencies, green double line boxes describe the required actions, Orange dotted boxes indicate HQ actions. Required delay and cancellation actions are outlined for each protocol in the 'Scheduled Field Activities – Delays and Cancellations' spreadsheet available on the SSL. Missed Sampling events may also require a Data Quality flag and/or creation of a Site Management record.

To Report Missed or Incomplete Sampling

- 1. Missed or Incomplete Sampling must be communicated to Science by a Service Now Incident.
 - a. For Missed Sampling that is Rescheduled outside the Master Schedule, approval by Science and Operations is required (Figure 3, Table 3).
 - b. The lead Field Ecologist should consult the <u>Delayed or Cancelled Activities table</u> to best determine when reporting is required.
- Create a Fulcrum record for each Missed Sampling event in the field using "All Traps Not Set" button in the MAM: Trap Setting app. If you indicate that all traps were not set, you will be required to provide a reason in the "Sampling Impractical" field.

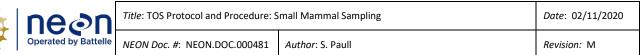

- a. Note that this *must* be done *while* connected to wi-fi. If a setting record is created off-line the collection records will not be created even after the tablet is synced. In most cases, this means that the record of missed sampling must be made after returning to the lab.
- Example app usage: if a grid-night of sampling could not be completed or rescheduled on a pathogen grid, the MAM: Trap Setting application should be used to create a Traps Not Set entry for all 100 traps on that grid. In the Sampling Impractical field choose a reason why sampling was impractical from the drop-down menu of choices (Table 4).
- c. It is not necessary to record missing data in downstream applications (e.g., the MAM: Trap Collection or Lab apps).
- 3. For each Missed Sampling record, a Traps Not Set entry should be made in the MAM: Trap Setting application to indicate that sampling was impractical (**Table 3**).
- 4. In the MAM: Trap Setting application mark "yes" if rescheduled sampling events occur outside of the 21 day new moon window. This will auto-generate the remark "Sampling outside 21 day new moon sampling window" (Figure 3).

Table 4. Protocol- specific reasons for Traps Not Set being entered in the Fulcrum application. In the event that more than one is applicable, choose the dominant reason sampling was missed.

Traps Not Set reason	Description
Other	Sampling location inaccessible due to other ecological reason described in the
Other	remarks
Location flooded	Standing or flowing water too deep to complete sampling
Temperature high	Ambient temperature exceeds sampling requirements specified in protocol
Temperature low Ambient temperature lower than requirements specified in protocol	
Logistical	Site or plot access compromised, staffing issues, errors (e.g., equipment not
Logistical	available in the field)
Disturbance	Used when a grid must be closed early due to predators, bears, or mortality
Distuibance	events.
Management Management activities such as controlled burn, pesticide applications, etc.	
Too windy	Used when high winds would make trapping impossible.
Extreme weather Events (e.g., thunderstorms, hurricanes) that compromise safety and access	

4.6 Estimated Time

The time required to implement a protocol will vary depending on a number of factors, such as skill level, system diversity, environmental conditions, and distance between sample plots. The timeframe provided below is an estimate based on completion of a task by a skilled two-person team (i.e., not the time it takes at the beginning of the field season). Use this estimate as framework for assessing progress. If a task is taking significantly longer than the estimated time, a problem ticket should be submitted. Please note that if sampling at particular locations requires significantly more time than expected, Science may propose to move these sampling locations.

An experienced two-person team will require approximately 30 - 60 minutes to set and bait one trapping grid (100 traps), depending on the difficulty of the terrain and the visibility of trap markers, if allowed at a given site. Checking the grid for disturbance and captures and transporting these traps to the processing station will require approximately 45 – 90 minutes per trapping grid per experienced two-person team. Processing time per trapping grid will vary with the number of captures on a grid. Each capture must be processed in less than 15 minutes; however, most captures should be able to be processed in less than 5 minutes. The final step in the process is to return captures to the point of capture, which should require approximately 45 – 90 minutes per trapping grid per experienced two-person team.

SOP	Estimated time	Suggested staff	Total person hours
SOP C.1 Setting Traps	0.5 – 1 h per grid	2	1-2 h per grid
SOP C.2 Checking Traps	0.75-1.5 h per grid	2	1.5-3 h per grid
SOP C.3-9: Processing Captured Animals	1 – 6 h per grid	2	2 – 12 h per grid
SOP D Equipment Cleaning	0.5 – 1 h per grid	1	0.5 – 1 h per grid
SOP E Laboratory Sampling and Analysis	2 – 3 h per bout	1	2 – 3 h per bout
SOP F Processing for Genetic Analysis	3 – 5 h per season	1	3 – 5 h per season
SOP G Data entry and Validation	0.5 h per grid	1	0.5 h per grid
SOP H Sample Shipment	3 – 9 h per season	1	3 – 9 h per season

 Table 5. Estimated staff and labor hours required for implementation of Small Mammal Sampling protocol.

5 SAFETY

This document identifies procedure-specific safety hazards and associated safety requirements. It does not describe general safety practices or site-specific safety practices.

Personnel working at a NEON site must be compliant with safe field work practices as outlined in the Operations Field Safety and Security Plan (AD[02]) and EHS Safety Policy and Program Manual (AD[01]). Additional safety issues associated with this field procedure are outlined below. The Field Operations Manager and the Lead Field Technician have primary authority to stop work activities based on unsafe field conditions; however, all employees have the responsibility and right to stop their work in unsafe conditions.

NEON Doc. #: NEON.DOC.000481 A

5.1 Working with Small Mammals

Personnel working with small mammals should familiarize themselves with the Zoonotic Diseases section of AD[02]. The incidence of these diseases in humans is extremely rare, with the exception of Lyme disease in certain regions of the country, and is typically associated with working outside in vegetated areas. Although rodents and other small mammals and their ectoparasites (e.g., ticks and fleas) are critical to the lifecycle of many of these disease-causing organisms, there is no evidence that the handling of small mammals significantly increases risk of exposure to many of these diseases beyond other types of field work. One possible exception to this is Hantavirus Pulmonary Syndrome (HPS), which is believed to result from inhalation of contaminated, aerosolized urine and feces, as well as through bites. Most of the known cases of HPS have resulted from inhalation of aerosolized virus present in cabins and other remote buildings in which small mammals are nesting (Kelt et al. 2007, 2010).

There are a number of Hantavirus species in North America, and most of the cricetid rodents in North America appear to be competent reservoirs for these pathogens. Of these cricetids, *Peromyscus maniculatus* is the primary reservoir for the Sin Nombre virus, the hantavirus most often linked to HPS. This species is widespread throughout North America, but, according to Centers for Disease Control and Prevention (CDC) data, HPS cases are more numerous in western states. The highest incidence of HPS is found in California, Arizona, New Mexico, and Colorado. Consequently, NEON is using a tiered approach to personal protective equipment (PPE) that reflects HPS incidence reported by the CDC (AD[02]).

Leptospirosis is a zoonotic disease found worldwide, and is particularly common in tropical and subtropical climates of the United States and in Puerto Rico. It is commonly carried by rats, which may show no signs or symptoms of the disease and which may continue to spread the disease for months or years.

According to the CDC, humans can become infected through:

- Contact with urine (or other body fluids, except saliva) from infected animals.
- Contact with water, soil, or food contaminated with the urine of infected animals.
- The bacteria can enter the body through skin or mucous membranes (eyes, nose, or mouth), especially if the skin is broken from a cut or scratch.
- Person to person transmission is rare.

5.2 Clothing and PPE

According to the NEON Operations Field Safety and Security Plan (AD[02]), whenever directly handling small mammals or working with equipment/supplies that have been in contact with small mammals, personnel are required to wear, at a minimum:

- Eye protection
 - o Safety glasses with ventilation to minimize fogging up in humid environments

- Intended to discourage rubbing of the eyes with potentially contaminated hands and protect from the unlikely occurrence of extreme splashes during blood collection
- o At all NEON sites
- Gloves
 - Latex and/or nitrile disposable to provide a barrier against infectious excreta and body fluids during small mammal handling
 - NEON Safety strongly recommends that reusable cloth gloves with rubber-tipped fingers be worn for handling to provide additional protection from bites (latex/nitrile gloves must be worn over these to allow for effective decontamination).
 - Reusable cloth gloves with rubber-tipped fingers should be worn when checking traps
 - At all NEON sites
- Clothing
 - Long-sleeved shirt
 - o Long pants
 - Close-toed shoes with socks
 - Optional: a disposable or reusable (cotton) laboratory coat or apron
 - At all NEON sites
- Respiratory protection
 - Disposable respirators with N95 (HEPA-equivalent) particulate filter
 - Required: all sites in CO, NM, AZ, CA
 - Recommended: all sites in KS, TX, UT, MT, NV, ID, OR, and WA
 - Optional at all other sites
 - \circ $\,$ Optional half-face disposable dust mask with P100 filters at all sites
 - Please note that a NEON safety fit test and medical evaluation by licensed provider is required prior to wearing a respirator.

Any items of clothing that have or may have been in contact with small mammal excreta or bodily fluids should be sterilized to ensure safety. According to the Centers for Disease Control and Prevention, decontamination can be accomplished by exposing contaminated clothing to UV (i.e., sunlight) for 4-6 hours or laundering in a washing machine using hot water and any commercially available laundry detergent. Spot treatment of personal attire or protective equipment using a spray bottle filled with quat cleaner should be performed in the field during sampling. Contaminated clothing should not be washed with other personal or with family laundry. If decontamination cannot be performed immediately, potentially contaminated clothing should be stored in a closed bag.

Other personal protective equipment will be cleaned throughout each sampling day. Eye protection and shoes will be wiped down with disinfectant, quat cleaner or 70+% alcohol. Gloves will be cleaned and

disinfected. Disposable gloves and respirators will be discarded if they become torn or damaged while sampling. Care should be taken not to fold or crush respirators. At a minimum, gloves should be replaced after captures from each sampling grid have been processed. If used, half-face respirators will be fully cleaned in accordance with the NEON EHS Safety Policy and Program Manual (AD[03]).

Safety Data Sheets (SDS) shall be reviewed prior to use and readily available for chemicals used in this protocol (Isoflurane, Dry Ice, Ethanol, etc.)

6 PERSONNEL

6.1 Training Requirements

All technicians must complete required safety training and protocol-specific training for safety and implementation of this protocol as required in the Field Operations Job Instruction Training Plan (AD[04]) and the NEON Animal Care and Use Program: Training Plan for Personnel Working with Live Vertebrate Animals (AD[09]).

The training plan for small mammal abundance and diversity will include the following components:

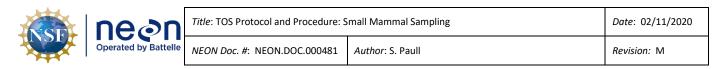
- A classroom session will be conducted prior to the field sampling to provide an overview of the procedure and the goals of the sampling.
- Within each domain, the lead mammal ecologist will provide a review of the sampling equipment and the small mammal species of each site within that domain to seasonal staff.
- Personnel performing cervical dislocation <u>must be properly trained</u> and qualified in vertebrate cervical dislocation.
- Domains in the first year of sampling (i.e., while in construction) will receive laboratory-based training in handling and bleeding techniques prior to the onset of sampling.
- Prior to the start of operational field sampling, technicians new to small mammal trapping will gain experience with these techniques in the field with wild-captured mammals through a trapping exercise on 1-2 training grids (depending on availability), led by the domain's lead mammal ecologist. All methods will be the same as proposed for operational sampling, except for the potential for additional voucher specimen collection (see SOP C.8), but will occur off of the long-term trapping grids and does not need to be organized with respect to the new moon. Each training grid will be sampled a maximum of four nights per month, yielding approximately 20 100 individuals (reflecting capture rates between 5 and 25%) per grid. Training grids will be sampled up to a maximum of 3-4 times per year, to provide opportunities for training whenever a new technician joins the study.
 - Please note that data from training grids should only be captured on paper datasheets and do not get entered into the NEON database. Samples, but not voucher specimens, collected from these grids should be discarded. Voucher data should be entered into the mobile data

entry application designed for vouchers (Mammal and Herptile: Off Grid Voucher application) – not the small mammal sampling application.

• NEON HQ or domain staff or contractor will perform hot checks of species ID on the NEON technicians involved in the data collection, if funding is available.

All of the technicians will have access to the following materials:

- Field guide to Mammals of North America
- Electronic field guide to mammals of each particular domain
- Dichotomous keys for small mammal species at each site (see RD[07] through RD[23]).
- Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research (Sikes et al. 2016)


6.2 Specialized Skills

6.2.1 Trapping

Technicians responsible for setting and checking traps must be willing and able to carry traps in bundles up to 40 pounds and wear the mandatory personal protective equipment (PPE) described in the NEON Operations Field Safety and Security Plan (AD[02]). Technicians who are responsible for checking traps but not handling captured animals must also be willing and able to (1) record data in neat, legible handwriting or, preferably, use a mobile data recording device (e.g., tablet), and (2) assist the mammal handler in any way (e.g., preparing tags for marking, handling or labeling blood samples after collection).

6.2.2 Handling

The technicians employed to handle and process the small mammals must have prior experience handling wild small mammals or receive sufficient training prior to sampling, and must be able to correctly identify and safely process all small mammals potentially found within the domain. An identification key based on external features and summary description of species expected in the study area will be available for technicians for reference. All personnel shall thoroughly review the Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research (Sikes et al. 2011) prior to field sampling.

7 STANDARD OPERATING PROCEDURE

SOP Overview

Workflow All SOPs

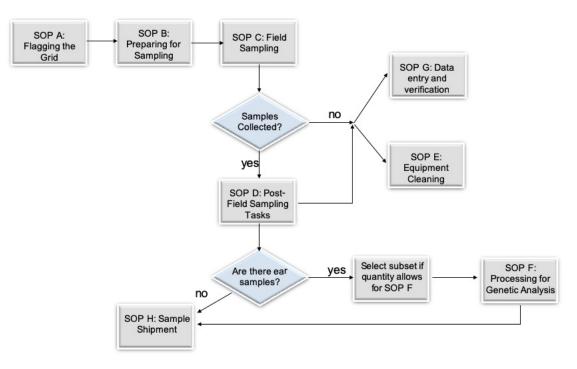
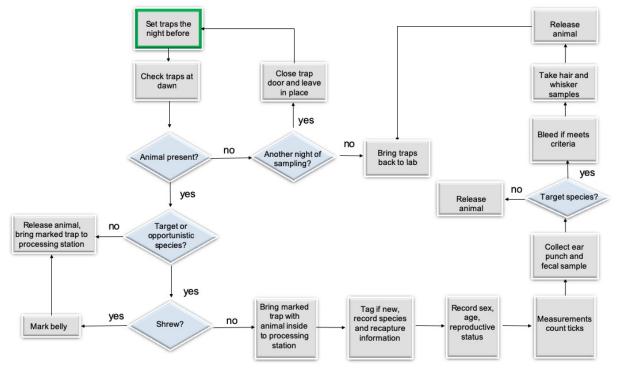
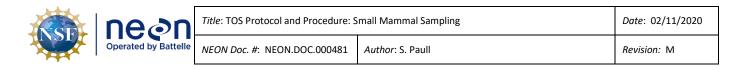
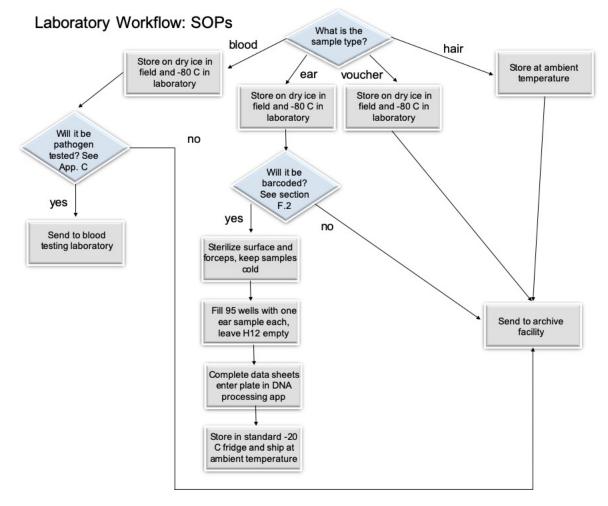



Figure 4. A high level workflow diagram that visually shows how the separate SOPs are sequentially connected.


- SOP A: Instructions for initial grid set up.
- SOP B: Gathering the necessary paperwork and equipment for sampling
- SOP C: Describes how to set and collect traps and process animals in the field
- SOP D: Provides instructions for processing samples and recording missed trapping after returning from the field
- SOP E: Explains the method for cleaning dirty traps
- SOP F: Describes the steps involved in preparing ear punch samples for genetic analysis
- SOP G: Explains methods for data entry
- SOP H: Gives guidance on sample shipment


NSF	Decon Operated by Battelle	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
		NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Field Workflow: SOPs

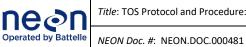
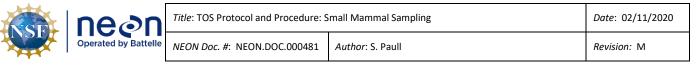

Figure 5. An expanded diagram of the workflow for the field sampling SOPs. Blue diamonds indicate decision points when implementing the protocol, gray boxes indicate tasks to be completed. The green box indicates the starting point for the diagram.

Figure 6. An expanded diagram of the workflow for the laboratory analysis SOPs. Blue diamonds indicate decision points when implementing the protocol, gray boxes indicate tasks to be completed.



Author: S. Paull

Revision: M

	Hair and whisker samples	HARV.2016 BE/F/H	Ear punch samples	Fecal samples	Tor A9 20140727 SoHA W000-001
Species:	Target and opportunistic spp.	Target spp.	Target and opportunistic spp.	Target and opportunistic spp.	opportunistic
Yearly Frequency	3 bouts/yr	All bouts	3 bouts/yr	3 bouts/yr	opportunistic
Per Individual Frequency	1 per bout per individual	1 per bout per individual	1 per life of individual	1 per day per individual	N/A
Limits	10/sp/grid/bout	20/grid/day	10/sp/grid/bout	10/sp/grid/bout	opportunistic
Labels	Type I barcode	Type IV barcode	Type IV barcode	Type IV barcode	Acid-free archival tag with Type I barcode on back
Storage Temp.	Ambient	Dry ice / -80 C	Dry ice / -80 C	Dry ice / -80 C	Dry ice / standard freezer
Reminders	Full 5 mg amount	Barcode & human readable cryolabels			

Figure 7. A visual diagram of the suite of field-generated samples during small mammal bouts along with details about collection, labeling and storage.

SOP A Flagging the Grid

Small mammal traps are arrayed in a 10 x 10 grid, with 10 meter spacing (**Figure 8**). Plot establishment for small mammal trapping grids as described in RD[06] must be completed prior to or concurrently with this procedure. During plot establishment, a primary marker is placed at the E5 trapping station and secondary markers at the corners, if permitted. Placing pin flags marked with the corresponding trap coordinate at each trapping location immediately prior to each sampling season or bout (depending on permitting guidelines for each site) is critical to ensure timely and accurate trap setting and checking. If permitted, permanent markers suited to domain-specific conditions can be used in place of pin flags.

		Α	В	С	D	E	F	G	Н	I	J
	1	A1	B1	C1	D1	E1	F1	G1	H1	11	J1
	2	A2	B2	C2	D2	E2	F2	G2	H2	12	J2
	3	A3	B3	C3	D3	E3	F3	G3	H3	13	J3
•	4	A4	B4	C4	D4	E4	F4	G4	H4	14	J4
个 NORTH	5	A5	B5	C5	D5	E5	F5	G5	H5	15	J5
NORTH	6	A6	B6	C6	D6	E6	F6	G6	H6	16	J6
	7	A7	B7	C7	D7	E7	F7	G7	H7	17	J7
	8	A8	B8	C8	D8	E8	F8	G8	H8	18	J8
	9	A9	B9	C9	D9	E9	F9	G9	H9	19	J9
	10	A10	B10	C10	D10	E10	F10	G10	H10	110	J10

Figure 8. The grid coordinate system, consisting of 100 trap stations 10 meters apart. Trapping grids are permanently marked at the E5 trap station during plot establishment, at sites that allow permanent markers. Grids may also be marked with secondary markers at the corners, if also permitted.

PROCEDURE

- 7. Using a recreational GPS, navigate to either the permanent plot marker at E5, or, if available, to a secondary marker at one of the corners.
 - **Remember** that foot traffic should be restricted to paths along the North South lettered traplines and along traplines 1 and 10, as much as possible.
- 8. Stretch a 50 or 100-meter tape along the trapline from a previously marked point, heading due south or due north from the marked point. Use chaining pins or similar stake at each end to hold the tape in place.
 - Use one of the high accuracy marked points (A1, J1, A10, J10 or preferably E5; see **Figure 8**) from plot establishment to begin flagging.
 - In areas of dense vegetation, it is recommended to first build the 5 line from E5 and then use 2 x 50m tapes going north and south from each 5 flag to build the lines.
 Please note that this technique should only be used in dense environments, as it requires traversing the plot E-W – rather than the preferred N-S.

- The tape-based grid and the corners established during plot establishment will only agree in a perfectly flat environment. Unlike in other protocols, the tape-based measurements should take priority over the established points, although variation between these will most often be within several meters.
- The TruPulse 360R Laser Range Finder can be used as an alternative to the measuring tape in dense habitats where stretching tape is onerous.
 - See RD[06] for details on using the TruPulse rangefinder.
 - Using the TruPulse to meter out the 10m spacing between traps in dense or steep environments requires measuring both azimuth and distance with the rangefinder to maintain the straight line measurement (RD[06]).
- 9. **Place a pin flag** every ten (10) meters along the trapline. Traps will be set within 1 m of these pin flags during each sampling bout.

- For easier navigation in low light conditions, alternate flag colors along trapline rows (e.g., use orange flags in Rows A, C, E, G, I and blue flags for the remaining rows).
- 10. Write the trap coordinate (e.g., A2) with a permanent maker on each pin flag.

SOP B **Preparing for Sampling**

B.1 Technician Readiness

Field technicians should be prepared to identify all small mammal species in the area, but should also carry the appropriate dichotomous keys, lists of state and federally listed species, and the specified field guide in the event of the capture of a rare species. Technicians also need to be very familiar with the grid coordinate system, so that capture locations are accurately documented.

Author: S. Paull

B.2 Preparing for Data Capture

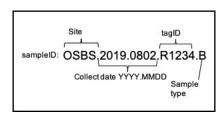
Mobile applications are the preferred mechanism for data entry. Mobile devices should be fully charged at the beginning of each field day, whenever possible.

However, given the potential for mobile devices to fail under field conditions, it is imperative that paper datasheets are always available to record data. Paper datasheets should be carried along with the mobile devices to sampling locations at all times.

B.3 Field Equipment and Materials

A significant amount of specialized equipment is required to conduct surveys of small mammals. Therefore, all field personnel must be familiar and comfortable with using all the equipment before heading into the field. See Appendix E for a list of equipment necessary to complete this SOP.

B.4 Labels and Identifiers


- 1. Prepare final sample containers by affixing one Type I adhesive barcode label to each coin envelope vial and/or one Type IV adhesive barcode label to each 2 mL vial used to contain each sample. Adhesive barcode labels should be applied to dry, room temperature containers in advance of their use in the field (at least 30 minutes prior, but may be applied at the start of the season).
 - a. If vials are used, barcode labels should be oriented such that it is possible to scan them; the scanner will not work on a curved surface. This means aligning the barcode lengthwise along a vial, *not* horizontally wrapping around a vial.

b. Barcode labels must be associated with a unique sample and each barcode must be mapped to one sample in the database. Barcodes are unique, but are not initially associated with a particular sample, so you are encouraged to adhere barcode labels to needed containers in advance.

	ne⊘n	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020
Operated by Battel		NEON Doc. #: NEON.DOC.000481 Author: S. Paull		Revision: M
		Type I barcode	Type IV barcode	

Figure 9. An example of a Type I and a Type IV barcode. Type I barcodes should be used on coin envelopes for hair and whisker samples, and are large-size and field-tolerant with a prefix of 'A' followed by 11 numbers. Type IV barcodes should be used on all 2mL vials and placed on the back of voucher labels. Type IV vials have a prefix D followed by 11 numbers.

Figure 10. (a) Annotated sampleID example. (b) SampleIDs deployed in the field will have everything pre-filled but the last four-digits (tagID) and last letter.

About barcode uses and placement

This protocol generates samples from field-caught small mammals that are then sent to external facilities for pathogen analysis, DNA barcoding, or archiving.

Although it is always acceptable to use barcodes, in some cases barcodes are absolutely required. **Table 5** provides a quick reference to the types of sample that require barcodes. The rule of thumb is that the primary field sample will ALWAYS need a barcode due to its importance in generating future samples. Likewise, the final disposition of all vialed samples must have a barcode affixed to assist in the shipping and receipt of samples destined for the Biorepository or an external laboratory.

 Table 6. Sample types and barcodes used.

Sample Type	Description	Example Identifier	Fulcrum App	Container Type	Barcode Used	Barco de Requi red?	Bar code Qty
Hair and whisker samples	Hair samples cut from trapped small mammals	OSBS.20130714.R1357.H (SiteCode.collectDate.Ta glD.sampleType)	MAM: Trap Collection	Coin envelope	Type I	Required	1 per individual
Blood samples	Blood samples from trapped small mammals	OSBS.20130714.R1357.B (SiteCode.collectDate.Ta gID.sampleType)	MAM: Trap Collection	2 mLcryo vial	Type IV	Required but human readable labels also needed	1 per individual
Fecal samples	Fecal samples from trapped small mammals	OSBS.20130714.R1357.F (SiteCode.collectDate.Ta gID.sampleType))	MAM: Trap Collection	2 mL cryovial	Type IV	Required	1 per individual
Ear punches	Ear tissue samples from trapped small mammals	OSBS.20130714.R1357.E (SiteCode.collectDate.Ta gID.sampleType)	MAM: Trap Collection	2 mL cryovial	Type IV	Required	1 per individual
Voucher	Whole voucher specimens collected opportunistic ally	OSBS.20130714.R1357.V (SiteCode.collectDate.Ta gID.sampleType)	Mammal and Herptile: Off Grid Voucher	Plastic bag	Type IV	Required	opportunistic

B.5 Equipment and Supplies Readiness

A checklist version of this list can be found in Appendix B.

- ☑ Ensure **traps** and sampling equipment are functioning and sanitized.
- ☑ Ensure safety gear (**PPE**) is available in sufficient quantities, clean, and functioning.
- ☑ Prepare pre-printed barcode **labels** and labels and materials for handwriting on the sample containers in the field.

☑ Prepare a small vial of **10% sugar** in water to revitalize stressed, hypothermic or heat-stressed captures. Change solution often to prevent mold growth.

A clean eye drop bottle works well to administer the sugar solution.

☑ Ensure that all necessary field **datasheets** (RD[05]), **permits, identification keys,** and equipment (use Domain Lab checklist) are packed.

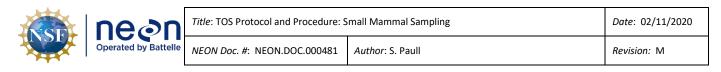
Dichotomous keys are the fastest and most reliable means for in-the-field identification. Knowing how to use one is critical for ecological field work.

Copies of permits and dichotomous keys should be stored in a field datum and never removed.

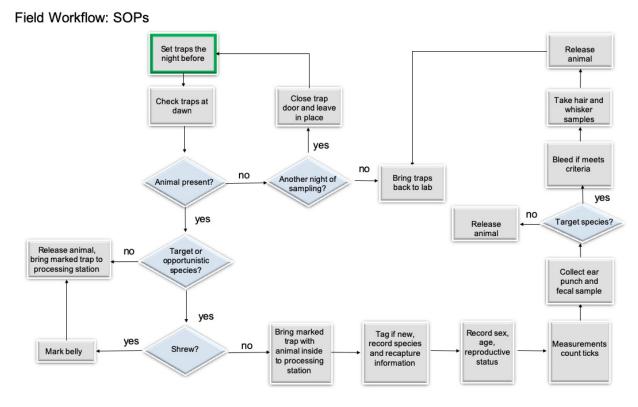
- ☑ Sterilize (bake in a thin layer for 60 minutes at 135°C; Dahlquist et al. 2007) and mix a sufficient amount of millet (65% of seed mix) and sunflower seeds (35%). To maintain consistency across domains, mixing should be done by volume rather than by weight.
- ☑ When extremely cold temperatures are anticipated, and if appropriate for the site, prepare peanut butter between 2 unbleached paper towels and cut into 1-inch squares.
- Prepare and maintain a list of individuals already bled (including those in which an unsuccessful bleed attempt was made) within the current sampling bout to ensure that no individuals are bled twice within a bout. Also note any individuals with missing data that can be collected if recaptured in this bout, and a running total of the number of feces, ear, and hair samples taken.
- ☑ Prepare **quat**: if necessary, mix a batch of quat stock solution in the lab (follow manufacturer guidelines for dilution). Fill up the spray bottle(s) and field stock bottles.
- ☑ Prepare **isoflurane** in a fume hood or well-ventilated outdoor location. Fill up the glass bottle with rubber dropper bulb and glass bottle with screw top with isoflurane.

1-3 ounces should suffice for both blood sample collection, if needed, and/or in the event that an animal needs to be euthanized due to a serious trapping-related injury.

Always wear gloves whenever handling isoflurane.


Please note that pregnant women may want to use a respirator when handling isoflurane.

☑ Pack bleeding supplies: bring enough supplies for processing at least twice as many individuals as you expect.



Date: 02/11/2020

Obtain **dry ice**: this should be done as close to departure for the field as possible and stored in a dry ice cooler (e.g., Yeti or Thermosafe) prior to use.

SOP C Field Sampling

Data Entry Information:

Data collection should be completed using the MAM: Trap Setting app and MAM: Trap Collection app in fulcrum (see associated <u>fulcrum manual</u>). Any voucher specimens collected from training grids or in between bouts can be entered into the Mammal and Herptile: Off Grid Voucher app.

C.1 Setting traps

Trapping grids consist of 100 Sherman traps. However, in the event that conditions prevent setting of all traps on a given night, a minimum of 75 traps should be set to constitute a night of trapping.

TIMING

• Traps are set in the evening, not more than 2.5 to 3 hours before sunset.

Setting traps too early will increase the possibility of catching opportunistic, diurnal species such as chipmunks and ground squirrels; these captures could be subjected to heat stress if not shaded.

• Time sampling so that the last trap is set as the sun is setting.

TIPS & TRICKS

- Each person should carry enough traps at one time for at least two traplines (i.e., 20 traps plus a few extra), for efficiency.
- Always walk the traplines along the N-S axis, except when moving to the next trapline. This will constrain vegetation disturbance to narrow trails within the grids over time. Consistency is the key; E-W travel can be used if strongly preferable for a given plot.
- Whenever possible, place traps near shrubs, downed logs, burrows, or other microsites that offer shelter or potential runways. When placing traps next to runways (e.g., rocks, downed logs), set trap parallel to the runway. Be aware of drainage issues that may cause flooding of the localized area around the trap overnight.
- Use additional flagging if trap is hidden from view.
- Make sure trap is on level ground (using your foot to level an area, if necessary), and the door remains open after placement. If necessary, adjust trap sensitivity by gently pulling or pushing catch.
- Count and double count your traps, when setting or checking traps always know how many traps you brought out to the plot and how many you removed.

PROCEDURE

11. Upon arrival at a grid location, place at least 2" of batting in the back of the trap, ensuring the pan is visible, if batting is needed.

When overnight lows will be <18°C (65°F), place approximately 5 cm (2 in; slightly smaller than a tennis ball) of batting into trap (except at sites dominated by heteromyids - see site-specific appendices).

- 12. Place trap within a 1-meter radius around marked point.
 - a. At sites with red imported fire ants (*Solenopsis* spp.) or ants that may cause small mammal mortality, application of granulated insecticide (e.g., Talstar brand) is required, if permitted. Place immediately around the trap on flat ground or both under and around the trap when in a grassy area. Reapply after heavy rains.

- 13. Toss bait into trap.
 - a. Use about 1 TBSP of the seed mix (all sites) and 1 TSP of freeze-dried mealworms (at select plots/sites where shrews comprise more than 20% of the captured individuals on average (as determined over the previous 12 months of trapping).
 - b. Use more bait if nighttime temperatures will be $< 7^{\circ}C/45^{\circ}F$.
 - c. Toss so as to distribute seed from front to back of trap.
- 14. Peanut butter can also be added in the event of extremely cold conditions at many sites, except where not permitted (see site-specific appendices), where medium- to large- mammal (e.g., raccoons, bears) disturbance of traps has occurred, or where fire ants occur (e.g., Jones Ecological Research Center (JERC), Ordway-Swisher Biological Station (OSBS)).
- To minimize the mess associated with the opportunistic use of peanut butter, place peanut butter between 2 unbleached paper towels and cut into 1-inch squares (R. Rowe, pers. comm.)

C.2 Checking traps the following morning

TIMING

Begin checking traps the following morning at dawn, within 30 minutes after civil twilight (where applicable).

In very hot climates or if ants are causing significant disturbance to a trapping grid, trap checking can begin up to an hour before dawn.

Check all traps in grid before processing captures.

Counting the traps along a trapline is the best way to ensure that all traps are checked.

At the end of the sampling bout, know precisely how many traps are being retrieved from the grid, as well as any extras that may have been brought to the processing area. A final count will then indicate whether all traps have been removed from the grid.

Any trap that is accidentally left open during the day or at the end of a sampling bout will likely result in the capture and subsequent death of an animal.

TIPS AND TRICKS

- Keep in mind that the liberal use of quat on tools and gloves, the one-time use of processing bags, and the bagging of traps prior to processing are critical to minimizing transmission of pathogens between small mammals, as well as to technicians.
- Keep in mind that very small individuals can crawl under the treadle at the back of the trap and therefore are hidden from view. Be careful handling any trap with a closed door until this possibility has been ruled out. Gentle shaking and tapping of trap should encourage the individual to surface.
- If a non-target animal is difficult to remove from the trap, the sides of the trap can be bent to allow the door to open outwards to facilitate removal. As a last resort the pin of the trap can be pulled to open it flat.
- Marking traps:
 - Be sure to cross out any previous markings, if present.
 - If conditions are very dry, use a wet-erase marker directly on the trap.
 - Assigning different colors of marker to the technicians facilitates resolution of any legibility or other issues that may arise in trap marking.
 - \circ $\;$ Wet erase can be easily wiped off with alcohol wipes or during the trap cleaning process.
 - If conditions are damp, use a dry erase marker directly on the trap or a permanent marker on the plastic bag into which the trap is placed.
 - If conditions are very wet, a #3 pencil or bath crayons can be used directly on the trap.

PROCEDURE

- 15. Put on PPE as specified in NEON Operations Field Safety and Security Plan.
- 16. If trap door is closed, **gently** shake the animal to the opposite end of the trap and QUICKLY peek inside to verify there is a capture and that it is not a shrew.
 - Be quick or the animal may escape.
 - Hold the trap upside down at eye level, and open the door just enough to check if feet are visible and that the tail is not of a shrew.
 - If you discover a female that has given birth in the trap while you are still at or near the trap station, release the mother immediately and either 'pour' the newborns out of the trap into a pile or remove them with nitrile-gloved hands and place in a nearby (ideally <2m away) soft and protected spot. Note the trap coordinate and species ID of the mother, to the lowest resolution possible, on the trap and return the empty trap to the processing station. The individual should be recorded as a pregnant female, with a remark about the female giving birth in the trap. If the newborns are not discovered until the trap is being processed

back at the processing station, process the mother as usual and then immediately return her and the newborns to a protected spot near the original location of capture.

17. There are a variety of possible scenarios involving a closed trap (Table 13).

 Table 7. Possible scenarios encountered while checking traps in the morning.

Trap contents	Marking the trap	Fate of the capture	Fate of the trap
Live capture of a target or opportunistic species or dead specimen of any species	Trap coordinate	Processing station	Processing station
Live capture of a shrew	Trap coordinate, species ID, sex, fate (Released)	Mark the belly with a colored permanent marker, if not previously marked, and release*	Processing station
Live capture of a non-target, non-mammal species, e.g., a bird or reptile	Trap coordinate, species (species ID, if known)	Immediate release (trapStatus = 2 on mobile device or datasheet)	Processing station
Live capture of a non-target, mammal species, e.g., a weasel or squirrel	Trap coordinate, species (species ID, if known)	Immediate release (trapStatus = 5)	Processing station
No capture, but feces present or bait missing	Trap coordinate	NA (trapStatus = 3)	Processing station
No capture and no feces but door closed	NA, but trap coordinate should be recorded on datasheet with appropriate code in the Notes column	NA (trapStatus = 2)	Remain at trap station

*To minimize handling of *Blarina spp.*, particularly by inexperienced personnel, transfer individuals to a plastic bag and then reach into the bag with the permanent marker (rather than a hand) to mark the back or belly.

- 18. For all traps to be removed from grid, label trap with trap coordinate and place trap in plastic bag and place in tree-planting bag.
 - Trap and bait can be re-used if there is no evidence (i.e., no feces or other sign) that an animal visited. Consult with permit regulations regarding whether 'clean' traps need to be washed between sites; this is not a science requirement.

- If feces are present in an open trap, mark and bag trap for removal to the processing station. If feces are present in a closed trap with no animal, pour the bait, feces and batting into a plastic bag, and collapse and remove the trap.
- 19. Continue checking and bagging traps in the grid.
- 20. Bring bagged traps to processing station once tree-planting bag is full or all traps are checked.
- 21. Close empty traps for the day IF another day of sampling is scheduled.
- 22. Remove all traps if it is the last day of sampling in a bout.
 - a. Avoid dumping seeds onto the ground, within reason. Uneaten seeds can be collected into a plastic bag for disposal or re-use, per the discretion of the domain mammal lead.
 - b. If bait is re-used, it is recommended that the bait is re-baked at a low oven temperature (65 degrees C for 1 hour) to prevent mold growth and to prevent transfer of live invertebrates from one site to another. If conditions in a domain are dry and seed is only used at one site, re-baking is not necessary.

C.3 Setting up processing station

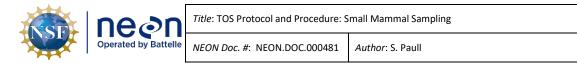
- Divide tasks between two-person team:
 - Handler: Handles captures, makes measurements, and collects blood and tissue samples.
 - Recorder: Prepares equipment and consumables, processes samples, and records data.

PREPARATION FOR PROCESSING

- 23. Select location for processing station that is:
 - a. Immediately adjacent to, but not within, the trapping grid
 - b. Upwind of staging area for animal processing, where possible
 - c. Shaded, for keeping sun off of the traps in hot weather
- 24. Unpack and set up processing station for data collection, animal marking/tagging, anesthetization, tissue and blood sampling, and sterilization.
- 25. If working directly on the ground, line the area with trash bags, plastic sheeting, or a plastic tray to allow for spraying with quat and wiping clean in between individuals.
- 26. Prepare a small tray filled with quat to sterilize instruments between individuals.
- Put on the additional PPE specified in the NEON Operations Field Safety and Security Plan (AD[02]) for handling animals. Sample animals for population and pathogen data, as directed below.
- 28. Once processed, return captures to their respective traps and release at the sites of capture while wearing the PPE required for handling animals.

- 29. Replace dirty traps with clean traps, either prior to or during the trap setting effort in the evening. Bring all used traps back to the lab for cleaning.
- 30. Reset and re-bait all traps the following dusk. Clean traps that have been baited on previous trap nights will require a smaller amount of bait, particularly on the trap door. Please note that too much bait or batting can cause the trap to malfunction.

PRIORITIZATION OF PROCESSING STEPS


In the event of very high capture rates, lower priority tasks may be left out of processing. **The goal is to** avoid situations where captures are released without any processing.

For simplicity, guidelines are provided according to captures per grid. If grids predictably vary in capture rates, reduced processing can be implemented on grids that do not exceed the thresholds given below, to enable increased processing on high-capture grids being processed on the same day. Please keep in mind that these are intended to be used as a guideline only; use professional discretion.

Suggested Modifications to Processing:

- >20 <30 Captures Per Grid:
 - Blood samples stop after 20 samples have been collected**
 - Recaptures only eliminate size measurements
 - Hair and whisker samples stop after 10 samples have been collected
 - Fecal samples stop after 10 samples have been collected
 - Ear punches stop after 10 samples have been collected***
 - Reduce or eliminate tick count estimates
- 30 + Captures Per Grid:
 - Blood samples stop after 20 samples have been collected**
 - All captures eliminate size measurements
 - \circ Hair and whisker samples stop after 10 samples have been collected
 - Fecal samples stop after 10 samples have been collected
 - Ear punches stop after 10 samples have been collected***
 - Eliminate records of tick life stage presence/absence

**When blood sample collections are limited, attempt to distribute the 20 samples among the priority species if possible (provided in Appendix D). Please do not spend additional time counting captures per species prior to processing. The simplest, acceptable implementation of this guidance is to stop collecting blood samples once 10 samples have been collected for a given priority species, if a site has >1 priority species. For sites with priority species that are difficult to

distinguish (e.g., PEMA vs. PELE), collect up to 20 samples from individuals of these species, regardless of species ID.

**For maximum time savings, include unsuccessful bleeding attempts in the count to 20.

***If possible, without expending additional effort to review captures, prioritize individuals with uncertain species IDs for ear punch collection.

C.4 Processing captured animals

The small mammal field datasheet is provided separately (RD[05]), but a key to the fields on the datasheet and in the mobile application can be found in Appendix A.

TRANSFERRING CAPTURE FROM TRAP

- 31. Record grid ID, trap ID, and trapStatus (see Table 2).
 - If the pointID is missing from or illegible on the trap, use 'X' in the recorded trapID to indicate the uncertainty. For example, if the trapID is missing, record the trap coordinate as 'XX'. If only half of the trapID is illegible, use the 'X' only for the illegible half (e.g., 'AX', 'X6').
- 32. Transfer capture to resealable plastic bag by slipping bag over end of trap that opens and then turning trap over.
 - Use standard (2mL) thickness gallon resealable plastic bag for species < 100 g
 - Use 4 mil gallon resealable plastic bag for species > 100 g
 - For particularly large or aggressive individuals:

- Cloth or mesh wash bags can be used instead of a resealable plastic bag, if desired. Keep in mind that these bags must be decontaminated, via laundering or UV, before re-use on another individual.
- The animal should spend no more than 3-5 minutes in the bag.
- 33. Immediately observe the animal for signs of stress, and continue to do so throughout the handling period. Each animal should be handled for no more than 15 minutes. However, average time to collect all data should be no more than 5 minutes.
 - If the animal appears dead, check for rigor and for respiration within the bag. If the animal is clearly dead, collect the animal as a voucher specimen (see Section C.8).

- If there is no rigor and the animal may be overheated or dehydrated, wet the belly and administer sugar water via dropper. Remember to sterilize dropper between uses on multiple individuals.
- If the animal appears hypothermic, place the animal in a secure container containing a disposable hand warmer, batting and bait. Check the animal every 15 minutes, if possible, and release at the point of capture, when the animal exhibits normal behavior.

- 34. Place bag on handling surface and maneuver the animal so the head is in the corner prior to pinning the animal behind the neck. Check capture for existing marking (ear tag or PIT tag).
- 35. After scruffing or otherwise securing the individual with one hand, remove animal from bag for all processing except anesthetization.

- a. When necessary, provide a thick, cotton-gloved hand for the animal to bite on as distraction during handling.
- b. Cover the animal's head with a piece of material to help calm the animal during the procedure, if necessary.
- c. A proper scruff should immobilize the individual's head and forearms. It is recommended that the tail and/or hindlegs are also secured with the remaining fingers on your scruffing hand.
- d. For species that prove challenging to effectively scruff (e.g., jumping mice, chipmunks, flying squirrels), a "bander's grip" can be used as an alternative to secure the individual for processing. This grip involves holding the animal's back against the palm of one hand, with the neck held between the bases of the index and middle fingers. If done correctly, the fingers are safely out of the way of the capture's teeth and can be used to hold flailing limbs in place.

If during processing you notice a hole in your glove, stop, put on a new glove, and discard the used glove.

IDENTIFYING TO SPECIES

- 36. The individual should be identified to genus or species to assess whether a blood sample should be taken. If species-level identification requires additional measurements to be taken (as described in section C.5), collect the blood sample and mark the individual before taking measurements. Domain-specific lists of species codes are found on the domain-specific paper datasheets and in the drop-down menus on the mobile data entry application.
 - The full list of mammal species codes can be found on the NEON intranet in the Sampling Support Library.
 - Note that this list includes codes for instances where you cannot make an identification below genus (e.g., *Peromyscus sp.*):

taxonID	scientificName	taxonID	scientificName
AMSP	Ammospermophilus sp.	PESP	Peromyscus sp.
BLSP	Blarina sp.	RASP	Rattus sp.
CHSP	Chaetodipus sp.	RESP	Reithrodontomys sp.
CYSP	Cynomys sp.	SNSP	Scapanus sp.
DPSP	Dipodomys sp.	SCSP	Sciurus sp.
GESP	Geomys sp.	SISP	Sigmodon sp.
GLSP	Glaucomys sp.	SOSP	Sorex sp.
LESP	Lemmus sp.	SMSP	Spermophilus sp.
LPSP	Lepus sp.	SLSP	Sylvilagus sp.
MISP	Microtus sp.	SYSP	Synaptomys sp.
MUSP	Mustela sp.	TMSP	Tamias sp.
MYSP	Myodes sp.	TSSP	Tamiasciurus sp.
NESP	Neotoma sp.	THSP	Thomomys sp.
ONSP	Onychomys sp.	ZASP	Zapus sp.
PGSP	Perognathus sp.	ICSP	lctidomys sp.
CASP	Callospermophilus sp.		

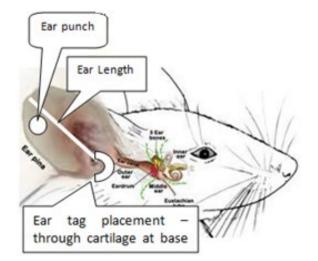
Table 8. List of codes for genus-level identifications.

- 37. If there is any uncertainty in the species identification, please note this in the idQ (i.e., identification qualifier) field using one of the codes below (**Table 9**). Leave blank if there is not uncertainty.
 - a. Species in the genus, *Peromyscus*, are often hard to distinguish in the field. This is especially true of *P. maniculatus* and *leucopus*. In the case of these and other known cryptic species:
 - In the field, if you are leaning towards assigning one of the cryptic species to a
 particular individual, record appropriately and also include a 'CS' in the
 identification qualifier. Otherwise, you can select the corresponding cryptic species
 pair code (if available) or one of the generic-level codes (e.g., PESP), and no
 additional entry in identification qualifier is needed.
 - If a desired cryptic species pair code is not available, issue a request to modify the taxon table for small mammals.

Table 9. Codes for identification qualifier entries – only needed if paper datasheetsare used.

idQ	Identification Qualifier Description*
CS	cf. species
AS	aff. species
CG	cf. genus
AG	aff. genus
CF	cf. family
AF	aff. family

* cf. roughly equals "not sure"; aff. roughly equals "similar to, but is not"


38. If the identification of the individual to species required consultation of a guidebook or key, please indicate this either (a) as a comment on the paper data sheet, or (b) select from the **Identification References** drop-down menu in the mobile data entry application. If the reference is not available in the drop-down menu, please note the reference in the remarks and issue a problem ticket upon return to the lab.

C.5 Collecting individual data

Recaptures are processed the same way as new captures. Repeated measurements of the same individual are valuable. However, if time is limited during periods of unusually high capture rates, repeated size-related measurements of recaptures can be skipped (see Appendix A). If measurements are not taken on a particular capture instance, do not enter measurements from a previous capture instance into that record.

MARKING ANIMAL

Figure 11. Schematic demonstrating the placement of an ear punch, an ear tag, and how the ear length measurement should be made on a lab mouse (Mus).

- 39. Check capture for existing marking (ear tag or PIT tag).
- 40. **Mark** the individual (if needed) with ear tag or PIT tag. Mode of tagging will be based on the length of the external pinnae, as some species, such as voles (e.g., *Microtus spp., Myodes spp.*) and pocket mice (e.g., *Chaetodipus spp., Perognathus spp.*), do not have sufficient external pinnae for securing ear tags. Discretion can be used by field personnel to select the appropriate tagging method. For example, technicians have found that ear-tagging is effective in *Myodes gapperi* and *Microtus pennsylvanicus*. Jumping mice (*Napeozapus spp., Zapus spp.*) can be marked using either method, as technicians have reported varying success with both techniques.
 - Shrews will not be permanently marked, but will be temporarily marked using a permanent marker.
 - Use ear tag if pinnae are of sufficient size. Attach to right ear (preferred) or left ear, if needed.
 - If an animal appears to have a torn ear due presumably to the loss of an ear tag, attach a new ear tag to the intact ear.
 - If an animal has an ear tag that was not properly attached (e.g., attached in the outer margin of the pinna), remove old tag and attach a new ear tag to the other ear.
 - Ear tags **must** be unique within a domain.
 - Be sure that new shipments of ear tags do not have the same numbers as previous shipments.
 - The quality of the mark-recapture data is compromised when duplicate tagIDs are used within a domain.
 - Use PIT tag if pinnae too small for ear tag. All PIT tags and needles must be sterile.
 - This is often the case with voles and pocket mice.
 - PIT tags should be inserted close to the rear of the animal, inserting the needle pointed towards the head.
 - Suggested technique: Place animal flat on processing surface, with the two middle fingers of one hand securing the back of the head, while the fur is pinched with the thumb and forefinger of the same hand. Use the other hand to insert the needle into the tent of fur. Be careful not to pierce through the skin again (you should feel the tag being released from the applicator as it is inserted).

- The point of needle insertion can be sutured using veterinary tissue adhesive to reduce PIT tag loss rates.
- After spraying with quat, dispose of used PIT tag needle in sharps container. To prevent needle sticks, needles should not be recapped prior to discarding into the sharps container.
- PIT tag reader should be kept in a sealed plastic bag, to facilitate disinfection (i.e., the bag can be sprayed with quat and wiped clean after each use).
- 41. **Record** the tag number on mobile device or datasheet in tagID fields.
 - Format for ear tag is LXXXX for left ear or RXXXX for right ear (preferred).
 - Ear tags that do not have 'NEON' laser-etched on them should be indicated by adding an 'O' for Other in front of the ear tag id (e.g., OL1001).
 - PIT tags:
 - Note that some PIT tags have two different serial numbers one labeled decimal and the other hexadecimal. Please confirm which one the reader reads and please record that one.
 - If using a paper datasheet, write down last six digits of serial number for PIT tags and place one bar code sticker on the back of the datasheet.
 - If using a mobile device, record the last six digits of serial number for PIT tags.
 - It is recommended that you keep track of the PIT tags used in a given bout until after data QA/QC has been completed, by either organizing the empty envelopes or the barcode stickers provided.
 - If the PIT tag reader stops working, do not collect samples, since you will not be able to assign an appropriate tagID.
 - If an individual has a ripped or punched ear indicative of a lost tag or the individual's tag was intentionally replaced (due to poor initial placement):
 - If an ear tag has apparently been ripped out of the ear:
 - Record the previously marked ear (L or R) in the Ripped Ear/Tag Replaced column
 - It is optional to record the ripped ear every time the individual is captured.
 - If an ear tag has been intentionally replaced:
 - Record the previously marked ear (L or R) in the Ripped Ear/Tag Replaced column and note the ID of the removed tag either (a) in this same field on the mobile device or (b) on the back of the datasheet.
 - If an animal has evidence of an ear punch but not clearly a torn ear tag:
 - Record the punched ear (L or R) in the Ripped Ear/Tag Replaced column

Page **49**

- If an individual escapes after a sample is collected but prior to tagging, use the convention described for untagged voucher specimens below (SOP C.8).
- 42. **Record** the recapture status for all captures.
 - Available options are Yes, No, and Unknown
 - For individuals that have had a tag lost or intentionally replaced:
 - If the previous tagID is known: mark the individual as a recapture when replacing the tag.
 - If the previous tagID is unknown: mark the individual as unknown (i.e., record 'U' in the Recapture field), if the animal is clearly a recapture.
 - If the animal escapes prior to assessment of whether it has a tag, record 'U' for 'unknown'.
 - If an individual with a visible tag escapes after seeing an ear tag but before the tag can be read, the recapture can be marked as Yes, and the no tag: not bled option should be selected
- 43. Once the individual is successfully marked, **label** all sample vials with the unique individual ID, as described below.

ASSESSING SEX, REPRODUCTIVE CONDITION, AND AGE

44. Note sex and reproductive condition and enter codes on mobile device or datasheet. If the data below do not capture the observed condition sufficiently, please add remarks with any additional details you deem pertinent.

Males

- Scrotal (S): testes may be descended (obvious bulging under the tail)
- Non-scrotal (N): testes not descended (abdominal)
- Unknown (U): testes not able to be assessed due to unusual circumstances (e.g., botfly)

Females

- Nipples
 - Enlarged (E)
 - Not enlarged (N)
 - Unknown (U): nipples not able to be assessed due to unusual circumstances (e.g., botfly) – recommend adding remarks to explain why it is unknown
- Pregnant (P)
 - Pregnancy can be determined by palpating the abdomen for fetuses or by assessing the width of the pubic symphysis
- Vagina
 - Swollen (S) indicates estrous (should also be used if menstruation is observed)

Page **50**

NEON Doc. #: NEON.DOC.000481

- Plugged (P) some use the term Perforate
- Neither (N) some use the term Non-perforate
- Unknown (U): vagina not able to be assessed due to unusual circumstances (e.g., botfly) recommend adding remarks to explain why it is unknown

Unknown

• If an individual escapes or needs to be released before you can examine the reproductive condition, or the taxon is difficult to assess (e.g., shrews), please be sure to denote 'U' for unknown.

Note animal age: juvenile, sub-adult, or adult on mobile device or datasheet (see also quick reference in Appendix A). If it is difficult to determine whether an individual is a subadult or an adult, reproductive status should be used as the deciding factor.

TAKING MEASUREMENTS

Take and record standard measurements to the nearest millimeter, using standard rounding guidelines:

- 45. Right hind foot: Using the 6-inch flexible ruler, measure the distance from the back of the heel to the end of the longest claw (beyond the fleshy toe).
- 46. Take additional measurements, at your discretion, if useful for species discrimination. **Refer to the domain-specific dichomotous key for guidance.**
 - **Ear length:** Insert the end of the ruler in the notch at the base of the ear and measure the maximum length to the distal portion of the pinna (medial aspect), excluding hairs that project beyond the fleshy portion.
 - **Tail length:** Pin the animal onto the handling surface, belly down. Bend the tail up at a right angle. Use the 6-inch ruler to measure from the bend on the back at the base of the tail to the tip of the fleshy part of the tail, excluding projecting hairs.
 - **Total length**: Place animal, belly down, on the 12-inch rigid plastic ruler and hold it so that the body and tail are straight and taut, but not stretched. Measure the distance from the tip of the nose to the tip of the fleshy part of the tail, excluding any hairs that project beyond the tip.

CHECKING FOR ATTACHED TICKS

Check **only** the mammal's head and neck area for attached ticks, gently blowing in a steady stream and using fine-tipped forceps to part the fur where necessary. Some individuals readily produce fecal samples when blown on, so these data may be collected simultaneously (see below). If wearing a

respirator, just use forceps to part the fur. Common tick attachment locations are on the edges of and behind the ears, at the base of the neck, and at the roots of the whiskers. The scruff grip may need to be adjusted to check the neck – for mice, holding the tail while adjusting can reduce escapes. Tick life stages are identifiable by size:

- Larvae are approximately the size of a poppy seed, and only slightly larger when engorged.
- Nymphs are approximately the size of a sesame seed, and somewhat larger when engorged.
- Adults are approximately the size of a grain of rice, but broader and flatter, and can be up to jelly bean-sized when engorged.

On pathogen grids, the total number of ticks attached to the head and neck of the individual should be recorded into the appropriate bin. Bin sizes include 1-5, 6-20, >20. Spend no more than 60 seconds estimating the number of attached ticks, which cannot be brushed off. Unattached ticks crawling on the fur should not be recorded, but should be added in the remarks as "unattached tick". Other ectoparasites such as fleas and botflies should also be noted in the remarks.

Any tick life stages attached to the individual L(arvae), N(ymphs), and A(dults), or Z(ero) should be circled on the datasheet or selected in the mobile application. If an individual was not examined, do not circle anything on the datasheet and select 'Unknown' in the mobile application.

If any other ectoparasites are observed, please note this in the remarks, estimating parasite type, quantity, and location to the best of your ability – e.g., 2 botflies on throat; orange mites on both ears; etc.

C.6 Collecting samples

If possible, use different forceps for each sample. In between processing individuals, all tools that came into contact with an individual should be cleaned with quat.

SPECIMEN LABEL AND STORAGE REQUIREMENTS

- Adhesive barcode labels should be applied to cryovials and coin envelopes prior to heading out into the field, as described in section B.5. This is required if conditions are expected to be damp. Adhesion is further enhanced if the labels are placed on containers at least 30 minutes prior to introducing to dry ice or -80C.
- If barcode labels are not available:
 - Site Code (e.g., RMNP)
 - Date (Year YYYY, month MM, day DD)
 - Tag ID (RXXXX or last 6 digits of PIT tag)
 - Sample Type (B for blood; E for ear; F for feces; H for hair and whiskers, V for vouchers)

OSBS.20130714.R1357.B

EXAMPLE:

Revision: M

Note: For hand-written labels, it is recommended that cryovial labels be used, with some information pre-printed. Use fine point permanent marker (Sharpie or equivalent) for writing on cryovial labels, coin envelopes, or directly on the cryovials.

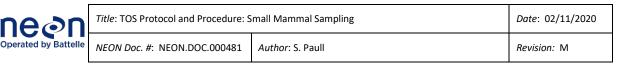
Recommended sample management

- Process animals in order of trap coordinate, from A1-J10, and place vials in boxes in order of processing to assist in error resolution.
- Place sample in type-specific columns in the cryovial box in the field and all the samples collected from one animal in the same row. Skip spaces if a sample wasn't collected for a given animal.
- Back in the lab, transfer sample types to separate cryovial boxes while conducting quality assurance for storage and shipment.

47. For all target and opportunistic species during only 3 bouts per year per site:

- a. Collect any fresh, uncontaminated feces from the animal using either forceps or scooping the sample directly with the cryovial, then label. Limit collection to 10 samples per species per plot per bout.
 - Do not collect feces from the trap.
 - Collect as much fecal material as possible, but note that any amount of material is still valuable.
 - Store cryovial on dry ice for transport back to the lab.
 - Indicate on mobile device or datasheet ("F" for feces) if sample was collected. If available, scan the barcode label with the tablet, double-checking that the barcode was successfully scanned before moving to the next sample.

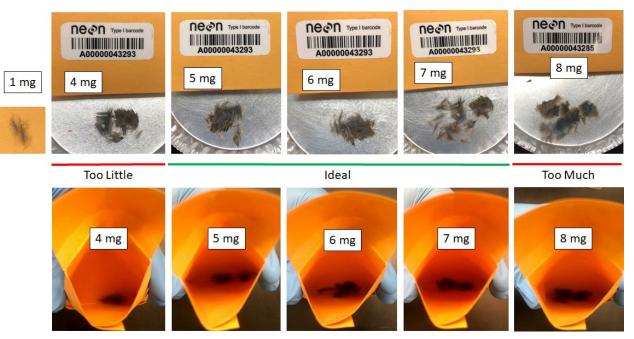
Table 10. Summary of samples to be collected. Note that the frequency per year is a minimum, and if a low-yield bout is chosen for sample collection, additional sample collection can be undertaken if time permits.


Sample	Frequency per Individual	Frequency per Year	Collection Limits	Storage container	Label	Field storage	Long- term storage
Blood	Once per bout	Every bout	20 samples per plot per day	Vial rated to -80°C	Type IV Label rated to - 80°C	Dry ice	-80 °C Ultralow freezer
Fecal	Every capture event	3 bouts per year per site	10 samples per species per plot per bout	Vial rated to -80°C	Type IV Label rated to - 80°C	Dry ice	-80 °C Ultralow freezer
Ear punch	Once per life of individual	3 bouts per year per site	10 samples per species per plot per bout	Vial rated to -80°C	Type IV Label rated to - 80°C	Dry ice	-80°C Ultralow freezer

	nean	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
		NEON Doc. #: NEON.DOC.000481	

Hair	Once per bout; only resample if it has grown back	3 bouts per year per site	10 samples per species per plot per bout	Archival	Write on envelope	Ambient	Ambient
Whiskers	Once per bout	3 bouts per year per site	10 samples per species per plot per bout	coin envelope	with Type I Label	Amplent	Ampient
Vouchers	Opportunistically	Opportunistically	Opportunistically	Resealable plastic bag	Acid-free, archival tag with Type IV Label	Dry ice	standard freezer

- b. Collect one ear tissue sample per individual, preferably from the untagged ear. One ear tissue sample is to be taken per the lifetime of an individual, regardless of whether it has clearly lost a tag or not. Limit collection to 10 samples per species per plot per bout.
 - Using a clicker-style 2000 Micron (2 mm) tissue biopsy punch, collect sample from near the edge of the untagged ear; OR
 - Using iris scissors, collect sample by cutting a small triangle of tissue from the edge of the ear
 - Place ear tissue in cryovial and label.
 - If the ear tissue gets stuck in the biopsy punch, remove with forceps.
 Forceps should by rinsed in quat and wiped clean prior to reuse.
 - Indicate on mobile device or datasheet if sample is collected. If available, scan the barcode label with the tablet.
- 48. For target or opportunistic species:
 - a. Cut a tuft of hair (at least 5-7 mg; Figure 12) from the rump of the individual with scissors. One method is for the recorder to secure the tuft of hair with forceps while the handler cuts. An alternative method is for the recorder to simply hold the coin envelope underneath the rump while the handler clips the hair. Pinning the animal on the ground may facilitate the process.



a.

b.

Figure 12. Example of the target 5 mg of hair collected from a museum specimen (a) and examples showing the target range of 5-7 mg of hair (b). Photo credits: Tara Smiley (a) and Tamara Hillman (b).

- b. Pluck 2 whiskers with forceps (or similar), or clip with cuticle scissors as close to the base as possible without injury from the front half of the nose.
 - i. It is preferable to collect one whisker from each cheek, but, if two are inadvertently collected from one side, do not collect more from the other cheek.
- c. Limit collection to 10 samples per species per plot per bout.

- d. Place hair and whiskers in archival coin envelope together. Do NOT seal coin envelopes; leave flaps folded over but unsealed.
- e. Collect these samples once per individual per sampling bout. If an individual is suspected to be a recapture that has lost a tag, do not collect samples if it is captured on the second or third day of a bout. Although not likely to negatively impact the welfare of the animal, it is best to avoid double collection of whiskers within one sampling bout. Do not collect additional hair if an individual has not re-grown the hair removed during sampling in a previous bout.

Indicate on datasheet or mobile device if samples are collected. If a sample does not get entered into the database, then all resulting data and specimens will be lost.

C.7 Sampling for rodent-borne pathogen analyses

Anesthetization and blood sampling should be done in a well-ventilated area and the handler should be upwind of animal being processed (e.g., back to the wind).

CRITERIA FOR BLEEDING ANIMALS

Bleed animals that meet all of the following criteria:

- Member of the Cricetidae, Muridae, or Dipodidae families
 Not excluded based on permitting regulations (e.g., protected species)
- Weighs at least 10 g
- No pronounced or physically debilitating injury
- Has not yet been bled (whether the attempt was successful or not) during the current sampling bout
 - If uncertain whether or not an animal has been bled during the current sampling bout (for example, due to a recently lost tag), err on the side of caution and do not bleed.

PROPER INFECTION-CONTROL TECHNIQUES

- Disinfect all equipment that is used during processing of a capture before processing the next.
- Disposable items (e.g., gauze, lancets, paper towels used for clean-up) should be sprayed with quat and properly disposed of (e.g., trash bag, sharps container).

BLOOD COLLECTION TECHNIQUES

• The mandibular blood sampling technique, which involves collection from the submandibular and/or facial vein or artery, has proven successful to date across all species, except for heteromyids. The retro-orbital technique is no longer an allowed technique for NEON.

The mandibular technique is widely used on laboratory mice, but has limited application to date in the field. It is known to work well on *Peromyscus spp*.

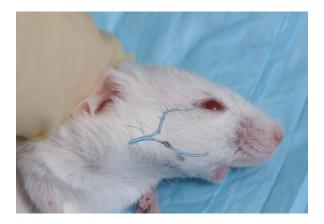
Anesthetization/Euthanasia

• The use of anesthesia is not required for the mandibular bleeding technique, but anesthesia is recommended for use on larger animals (e.g., >100 g) or by inexperienced personnel, if the technician cannot maintain a scruff.

- The effectiveness of isoflurane varies with ambient conditions (e.g., temperature, relative humidity) and across species. Therefore, a gradual increase in dosing is recommended to avoid accidental euthanasia.
- The required inhalation to effect time should not be longer than 1-5 minutes.
- The animal must not be released until signs of full recovery (i.e., resumption of normal movement and behavior) are observed. Take steps to heat or cool animals that are slow to awaken.
- If anesthesia is required, place 3-5 drops (~0.2 mL) of isoflurane onto a cotton ball. Place cotton ball:
 - (preferred) in an appropriately sized conical centrifuge tube (15mL, 50mL, or 100mL) the head of the small mammal should fit comfortably in the tube but leave minimal space surrounding the head to allow for an adequate supply of oxygen to enter the tube (while limiting the amount of isoflurane escaping the tube). Remove the capture from the plastic bag, and, once properly scruffed, insert the capture's head completely into the tube.
 - Please note that this method is preferred, as it can decrease the handling time because the animal is exposed to much higher concentrations of isoflurane. Therefore, this method requires increased vigilance (relative to the tea strainer method below) to prevent overdosing of the animal. Moving the animal's head in and out of the tube can control concentration of the isoflurane.

OR

- in a spring-loaded tea strainer, and place the tea strainer in the bag with the small mammal.
- 2. Avoid direct contact between the animal and the cotton ball. If the animal does not respond within 1-2 minutes, additional isoflurane can be added, 3-5 drops at a time, to the initial dose.



Revision: M

- The rodent's rate of respiration, spontaneous movements, responses to tactile stimulation, and ability to retain sternal recumbency must be monitored in order to gauge the state of anesthetization.
- 3. Once the animal is stable and non-responsive to tactile stimulation, the bleeding procedure can be performed (described below).
- 4. Any animals encountered with significant injuries or found moribund in the field will be euthanized by placing the animal in a plastic bag with a cotton ball soaked in approximately 5mL isoflurane (Parker et al. 2008). This method is approved by the AVMA Guidelines (Leary et al. 2013). The rodent's rate of respiration, spontaneous movements, responses to tactile stimulation, and ability to retain sternal recumbency will be monitored, in order to verify death. Death will be confirmed via cervical dislocation. Personnel performing this procedure <u>must be properly trained</u> and qualified in vertebrate cervical dislocation.

Mandibular Bleeding

The 4 or 5 mm lancet sizes are appropriate for most species under 40 grams, except *Rattus spp*. The size affects the depth of the puncture, and so the selection of size is dependent on the force used by a particular handler. As a rule of thumb, use the 4 mm for individuals < 20g, the 5 mm for those >20 grams, the 5.5 - 6mm for individuals >60 grams, and the 7 - 8mm for individuals >140 g.

Figure 13. Schematic demonstrating where the facial vein and the submandibular vein meet at the rear end of the mandibular bone on a lab mouse (Mus).

The facial vein (lower branch) is typically the target for blood collection, but the vascular bundle associated with the junction of these vessels can also be used. From http://www.medipoint.com.

1. Securely scruff the rodent between its shoulder blades in one hand.

- 2. Locate the back of the mandible using the blunt end of the lancet to determine appropriate placement of the lancet.
- 3. The optimal puncture point is at the back of the jaw of the mouse, very slightly behind the hinge of the jawbones, toward the ear, just behind the point at which the upper and lower jawbones meet (Golde et al. 2005).
- 4. Puncture the cheek with a quick, firm thrust with the lancet. Be ready with the cryovial. Tilt the head to facilitate blood flow into the cryovial. Withdraw a volume of blood less than 1% of the rodent's body weight (e.g., 0.2 mL of blood from a 20g mouse; **Figure 14**)

- Blood flow can be remarkably rapid and of high volume with this method.
 Familiarize yourself with the blood sample guidelines relative to the approximate fill levels in the given cryovial.
- b. If an animal shows signs of lethargy or lack of responsiveness, administer sugar water as soon as possible.
- c. If blood flow is too low, use the lancet to puncture the same spot with a bit more force or gently move the animal's head up and down to facilitate bleeding.
- d. If blood is smearing into the fur, rather than forming drops, apply eye ointment to the area prior to lancing.

Figure 14. (A) Ideal volume of blood sample (50 microliters). (B) Minimum (20 microliters) and maximum sample volumes (50 microliters) needed for serological analysis.

- 5. In the event of an unsuccessful attempt, the other cheek can also be used. As a rule of thumb, do not try more than three attempts per cheek.
- 6. Even if the first attempt of the bout was unsuccessful, bleeding of an individual should only be attempted once per bout.
- 7. Even small amounts of blood should be retained as a sample. If the collected amount is less than the minimum required for the pathogen testing of 20 microliters, record the sample as Quantity Not Sufficient (QNS). These samples will be handled differently than those of sufficient quantity. Use a permanent marker to mark the top of the vial containing a QNS sample; this allows for

faster organization of samples back in the lab (helps to maintain the cold chain required for these samples).

- 8. When the desired amount of blood has been collected, place a fresh piece of sterile gauze over the puncture point and pinch closed for up to 30 seconds to stem further bleeding.
- 9. Seal the cryovial with a screw cap and apply label. See labeling guidelines in sample collection section above.
- 10. Dispose of lancet in sharps container, and spray used gauze with quat and place in trash bag.
- 11. Record the blood collection on the datasheet with an 'M' for mandibular.

After processing for that individual is complete (but no more than 15 minutes after collection), place sample in 4 mil resealable plastic bag or cryovial storage box (cardboard preferred) on dry ice and KEEP FROZEN until sample can be transferred to the -80°C freezer in the lab.

Blood Sample Volume Guidelines

- Hantavirus testing requires at least 0.02 mL
- Extra blood for archiving is also desirable (approximately 0.06 mL)
- Minimum desired sample volume = 0.08 mL
- The National Institutes of Health Office of Animal Care and Use recommends a maximum sample volume of 10% of the circulating blood volume (CBV) of an animal:

 Table 11. Approximate blood sample volumes for a range of body weights.

Body Weight (g)	* CBV (ml)	1% CBV (ml) every 24 hrs†	7.5% CBV (ml) every 7 days†	10% CBV (ml) every 2-4 wks†
20	1.10 - 1.40	.011014	.082105	.1114
25	1.37 - 1.75	.014018	.1013	.1418
30	1.65 - 2.10	.017021	.1216	.1721
35	1.93 - 2.45	.019025	.1418	.1925
40	2.20 - 2.80	.022028	.1621	.2228
125	6.88 - 8.75	.069088	.5266	.6988
150	8.25 - 10.50	.082105	.6279	.82 - 1.0
200	11.00 - 14.00	.1114	.82 - 1.05	1.1 - 1.4
250	13.75 - 17.50	.1418	1.0 - 1.3	1.4 - 1.8
300	16.50 - 21.00	.1721	1.2 - 1.6	1.7 - 2.1
350	19.25 - 24.50	.1925	1.4 - 1.8	1.9 - 2.5

* Circulating blood volume

⁺ Maximum sample volume for that sampling frequency

Follow final steps and clean up procedures described in section 7C.9 before processing the next animal to avoid cross contamination. Vouchers should be processed after all live captures have been processed.

C.8 Voucher specimens

Opportunistic collection

All animals that die during the course of regular sampling should be collected as voucher specimens. Dead animals should be processed only after all the live ones have been processed. Blood, whisker, hair, and ear tissue samples do not need to be collected from dead individuals. Vouchers that are collected from a known plotID during the course of sampling should be recorded in the Small Mammal Sampling mobile data entry application. Vouchers that are collected from locations outside of the plot, at unknown locations, and/or outside of the regular sampling effort should be recorded in the Mammal and Herptile: Off Grid Voucher mobile data entry application.

Intentional collection

Intentional collection of vouchers has not yet been funded. Training grids will also be used as a source of voucher specimens of target species, to both provide a historical record of the taxonomic identifications used in this study and enable additional scientific study, if funding is available. Voucher specimens of all resident species shall be collected from each domain, with a target minimum of 5 vouchers per species collected every 5 years. Ideally, these specimens will include skin, skeleton, and frozen tissues (e.g., liver, heart). These specimens minimally provide a long-term record of the taxonomy of the species being studied, as a reference for verification or evidence to support taxonomic changes that occur as the science advances.

Whenever training grids are sampled, the captured individuals of target species only should be used to meet the sample size criteria above. Individuals selected for vouchering should first be processed for training purposes and then immediately euthanized, as described in SOP C.5 'Anesthesia/Euthanasia'. The process for determining the vouchering needs to meet the desired sample sizes will be to evaluate the incidental deaths within a domain after the first 3 years of sampling; any species not yet vouchered adequately can then be targeted over the next two years, before the subsequent 5 year cycle begins. Please note that data from the training grids, including voucher specimen data, do not get entered into the small mammal mobile application, as these locations are not long-term sampling locations. Voucher specimen data collected from training grids only should be captured on paper datasheets and then transcribed into the Mammal and Herptile: Off Grid Voucher application.

Collection Procedure

49. Label a specimen tag with the site ID, tag ID, sex, species, and date of capture (**Figure 15**). The specimen tag should have a barcode label affixed to the back of it, as described in Section B.5.

- a. Use archival quality Pigma pen. Pencil <u>may not</u> be used to write information on the tag unless it is the uncommon #3 hard lead pencil but this <u>must</u> be verified prior to use or the tag information will smear and become unreadable.
- b. If an individual does not have a tag AND and the voucher was collected from a known plotID during the course of sampling (Small Mammal Trap Checking application), assign a tagID with the format: 'O' + 3 digit number of plotID + trapCoordinate + YYYY + MM + DD (e.g., 0003A520160518).
 - i. If two or more untagged specimens are collected in the same trap, add an A/B/etc. to the end of the sampleID.
 - ii. Note that this tagID should be associated with all samples collected from a vouchered specimen, if the samples were collected prior to death.
- c. If an individual does not have a tag AND and the voucher was collected from locations outside of the plot, at unknown locations, and/or outside of the regular sampling effort (Mammal and Herptile: Off Grid Voucher application), assign a tagID that corresponds to the time of collection (HH:MM), resulting in a voucherID with the format: siteID.YYYYMMDD.HH:MM.V (e.g., TALL.20181110.10:42.V)
- d. Note that the mobile data entry applications will auto-generate the voucherID, and so it is **imperative** that labels on all associated samples exactly match the format provided in the data entry application.
- xx. Securely affix the tag to the right hind foot above the ankle using cotton thread. Since long threads tend to become tangled during storage, tie the tag as close to the leg as possible. Note that the archive facility will replace the thread with archival thread upon processing of the voucher.
- yy. Place the animal in a resealable plastic bag and immediately place in the cooler.
- zz. Indicate that a voucher has been collected on datasheet or mobile application.

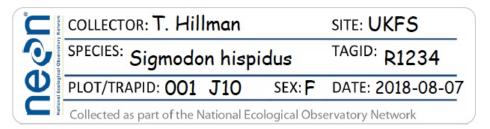


Figure 15. Example of a completed specimen tag. A barcode label should be affixed to the back.

Page **62**

Revision: M

Note: **Specimens in poor condition should first be offered to the identified repository prior to disposal, if required by the state collection permit**. If the repository refuses to accept specimens in poor condition, they should be sprayed liberally with disinfectant, double-bagged, and placed in the trash.

C.9 Final processing steps and cleanup

After all samples have been collected:

- Small captures can be weighed with the scale clipped directly to the base of the tail. Large captures or those that cannot be weighed by the tail should be weighed in a cloth or plastic bag. Next, the bag should be weighed without the animal inside. The two weights can be recorded directly into the app, or the weight of the animal (bag+animal weight bag weight) should be calculated and entered onto the datasheet Make sure all cryovials are labeled correctly, put in cooler with dry ice, and entered on the datasheet or in the mobile application. Hair and whiskers are stored at ambient temperature.
- 2. Put animal back into trap (trap is still in plastic bag) for transport back to point of capture.

Equipment is cleaned and sterilized in the field between processing of individuals to prevent cross contamination. The recorder is typically responsible for these tasks.

- 1. After spraying with quat, place all contaminated consumables (e.g., paper towels, plastic bags, gauze, and cotton) in the trash bag.
- 2. Place all used small instruments in the tray filled with quat for at least 5 full seconds (e.g., clip of spring scale only, forceps, biopsy punch, tea infuser spoon, scissors).
 - Dry instruments with paper towel before use.
- 53. Spray quat on larger reusable equipment (e.g., insulated cooler, squirt bottle containing quat). Use paper towels to carefully and thoroughly wipe the surfaces.
- 54. Spray down the processing surface with quat. Wipe processing surface with paper towels.
- 55. Always spray contaminated areas of clothing with quat as soon as possible.
- 56. Spray quat on gloved hands of animal handler and then own hands.
 - Wipe hands together and dry with paper towels as needed.
 - Sterilized gloves can be reused with the next animal but should be changed if a hole develops and after each grid is completed.
- 57. You are now ready to process the next animal.

Process all individuals on a grid before releasing animals at point of capture, unless extra personnel are available or an animal has given birth in the trap.

SOP C

C.10 End of the sampling day

SAMPLES AND SPECIMENS

58. Keep all samples stored in cryovials on dry ice for transport back to the lab.

• Frozen samples must remain frozen at all times. Repeated freeze-thaw cycles will compromise the integrity of the sample.

Author: S. Paull

• Transfer frozen samples to ultralow freezer (-80°C).

NEON Doc. #: NEON.DOC.000481

• Store voucher specimens in a standard freezer (≤ 0° C but ≥ -20° C) and record on freezer log, if available.

EQUIPMENT - IN THE FIELD

When all animals are processed and released, clean up as described in previous section, plus do the following.

- 59. Spray used batting with quat and dispose of in trash bag.
 - a. Clean, dry batting can be reused.
- 60. Pack up all supplies and equipment, once they are clean and dry.
- 61. Clean PPE as directed by EHS Safety Policy and Program Manual and dispose final round of nitrile gloves and wipes.
- 62. Close and tie the trash bag(s). Place bag in bed of pickup truck for transport back to the lab
- 63. If another night of sampling is scheduled, be sure that all traps are closed until dusk.
- 64. Be sure to replace dirty traps with clean ones.
- 65. If another night is not scheduled, collapse all traps and place in large plastic bag.
 - Place bag in bed of pickup truck for transport back to the lab or outside of passenger compartment of vehicle to prevent exposure to any remaining pathogens, if present.
 - Be sure to keep clean and dirty traps separate, as dirty traps should not be reused until they have been cleaned and sterilized.
- 66. Be sure that all soiled disposable sharps (e.g., PIT tag needles, heparinized microhematocrit tubes) have been disposed of in a 1 quart, slip-top, OSHA NIOSH/CDC compliant sharps container in the field, and is in a sealed plastic bag when not in use.

SOP D Post-Field Sampling Tasks

Process all frozen samples immediately upon returning to the lab. To keep samples frozen, always endeavor to minimize handling time and, while handling, always stage cryovials containing samples using a lab-top cooling device, dry ice bed, or similar. Once samples are frozen, they must remain frozen; plan accordingly. Any sampling that was missed should also be documented with an incident in Service Now.

D.1 Sample processing in the lab

1. Frozen samples (blood, ear, feces):

- a. Sort frozen cryovials into cryovial storage boxes according to sample type.
- b. Be sure to label the outside of all storage containers (e.g., cryovial storage boxes) with the domain, collection year, and sample type. Storage Container IDs should follow the format DXX.YYYY.#.(sample type letter from sampleID e.g., B for blood), where # indicates the number of the box (1 n). Place a type 2 barcode onto the storage container and use the inventory application to track samples. Use of the inventory application creates a record of the well coordinate location of each sample in the box and allows for the rapid creation of shipments. Please place freezer box label and barcode on the side of box and the side of the lid with A1 in back left corner.
- c. Secure the lid to the box with a rubber band.
- d. Record all samples onto a manifest with the corresponding well coordinates (RD[05]) and storage container ID. This is ideally accomplished via the Inventory data entry application, and it is recommended that barcodes are scanned into the application and well coordinates recorded.
 - i. This manifest can then be used to compare to a downloaded csv from the data viewing application, Magpie (RD[04]), if needed.
 - ii. This approach allows you to reference sampleID data without removing samples from the ultralow and to quickly locate particular samples as needed for disposal, bar-coding, etc.
- e. Although the inventory application is the recommended method, an alternative approach for generating the manifest (available only if mobile application has been used) is to:
 - i. Sync the mobile tablets
 - ii. Download the data from the data viewing application, Magpie (RD[04])
 - iii. Sort records by tag ID
 - iv. Copy records into the master running inventory

- v. Record sample container IDs and well coordinates for each sampleID in the manifest
- vi. This allows for the rapid discovery of any data recording errors the same day (e.g., sample did not get marked as collected in the field or was inadvertently marked as a different sample type).

2. Ear punches

- a. A subset of the ear tissue samples will be used in SOP F.
- b. The remaining ear tissue samples should be shipped to the archive institution indicated in the CLA shipping document on CLA's NEON intranet site, according to the instructions in SOP H.

3. Hair/Whiskers, Fecal samples, Voucher specimens

a. All samples should be shipped to the archive institution indicated in the CLA shipping document on CLA's NEON intranet site, according to the instructions in SOP H.

4. Blood samples

- a. Contact CLA to determine when and how many blood samples you are permitted to ship for pathogen analysis. If the permitted amount exceeds the number of collected samples, send all samples to the testing lab for analysis. Otherwise, consult Appendix C.
- b. See SOP H for further details on sample shipment.

D.2 Sample preservation

- Store ear punches, fecal samples, and blood samples in an ultralow (-80°C) freezer.
- Store **voucher specimens** in individual, labeled plastic bags in a standard -20°C freezer. Label by writing the voucherSampleID on the bag in permanent marker. If a sampleID is not available (e.g., specimens captured on training grids), record siteID, date, and species code on the bag instead
- Store **coin envelopes** containing hair and whisker samples in labeled, small plastic bags at ambient temperature and low humidity. To avoid excess moisture build-up, do not completely seal the plastic bags and use dessicant, if necessary. Humid conditions will often seal the envelopes inadvertently, making the sample more difficult to work with.

D.3 Sample disposal

- If a sample does not end up with any corresponding data in the database, the sample loses all scientific value.
- If a sample does not have any associated data (minimally, date and location):
 - Review the data records for the corresponding tagID (if a barcode label is not used) and check whether the sample was simply not recorded as intended; fix the data, if applicable.

- If you cannot find a matching data record, the sample should be discarded. These samples are not considered biohazardous, so the entire vial can be disposed of normally. Do not open the vial to spray quat inside. Please see voucher specimen section above for proper disposal of voucher specimens, if permitted.
- Example: You have an ear sample for R1234 from trap A4 on 20180601 for plot HEAL_010.
 Your sampling bout took place from 20180602 to 20180604, and you have another ear sample for R1234 on 20180602. Therefore, the first sampleID was likely recorded in error and cannot be matched to a record. Discard this sample.

D.4 Document Incomplete Sampling Within a Site

Small mammal sampling is scheduled to occur at all prescribed sampling locations according to the frequency and timing described in Section 4. Ideally, sampling will occur at these sampling locations for the lifetime of the Observatory (core sites) or the duration of the site's affiliation with the NEON project (relocatable sites). However, circumstances may arise requiring that sampling within a site be shifted from one particular location to another. In general, sampling is considered to be compromised when sampling at a location becomes so limited that data quality is significantly reduced. If sampling at a given plot becomes compromised, a problem ticket should be submitted by Field Science to HQ Science.

There are two main pathways by which sampling can be compromised. First, sampling locations can become inappropriately suited to answer meaningful biological questions (e.g., a terrestrial sampling plot is compromised after road-building activities, or a stream moves after a flood and the location is no longer within the stream channel). Second, sampling locations may be located in areas that are logistically impossible to sample on a schedule that that is biologically meaningful.

For small mammal sampling, a given plot must be able to be sampled (minimum of 75 traps per plotnight) on a minimum of 80% of scheduled plot-nights per calendar year over a two-year period. Plots that cannot be sampled on this schedule should be considered compromised.

If sampling at a given plot is not possible during a given bout a problem ticket should be submitted by Field Science staff.

To document locations not sampled during the current bout:

- 1. Review Fulcrum records to determine which locations were not sampled but were scheduled to be sampled.
- Create an incident with the following naming convention to document the missed sampling: 'TOS Sampling Incomplete: MOD – [Root Cause Description]'
 - a. Example: 'TOS Sampling Incomplete: MAM Could not access plot due to permanently closed road'
- 3. Staff scientists review incident tickets periodically to determine whether a sampling location is compromised.

SOP D

SOP E Equipment Cleaning in the Laboratory

NEON Doc. #: NEON.DOC.000481

E.1 Timing

Cleaning of dirty traps occurs at the Domain Support Facility, at the earliest convenience of the domain staff. Cleaning should follow the guidelines provided in the NEON Operations Field Safety and Security Plan (AD[02]). Dirty traps must be cleaned before re-deployment in the field. If stored, dirty traps must be stored in plastic bags in a well-ventilated area posted with Biohazard per Biosafety Level 2 requirements.

Author: S. Paull

E.2 Equipment Cleaning and Disposal Procedures

To reduce the risk of disease transmission to technicians and among captured small mammals, thorough cleaning and disinfection of equipment that is known to have been in contact with small mammals is required. Cleaning of traps that are extremely soiled, full of bait, contaminated by ants, slugs, etc., or to be transported for use at another site is recommended. Small mammal traps that have contained trapped animals will be removed from the trapping grid, transported back to the domain lab in a plastic bag, where dirty traps will be thoroughly cleaned, as described below. These traps will be replaced with clean traps before the next night of trapping. The bags containing dirty traps will then be placed in the bed of a pickup truck, which is separated from the passenger compartment. Back at the laboratory, a solution of quaternary ammonia (follow manufacturer guidelines for dilution) or a 10% bleach solution (i.e., 1:10 dilution with water) should be mixed in a carboy, or similar container. Never mix a bleach solution with ammonia solution (quat), as the resulting vapors are extremely dangerous. Cleaning is best performed in a well-ventilated area, while wearing the full PPE required for handling small mammals at a given site. Chemical-resistant rubber gloves should be worn in place of nitrile gloves. Traps must then be soaked in the quaternary ammonia solution for a minimum of 10 minutes (as specified by the manufacturer guidelines) or the bleach solution for 10 seconds, and scrubbed out with stiff bristled brushes. Traps will be rinsed thoroughly with water, to avoid damage and to remove as much of the disinfectant scent as possible.

Mesh wash bags used for animal handling must be decontaminated via laundering or UV

SOP F Processing for Genetic Analysis

F.1 Ear Punch Sample Processing Timing

A subset of ear tissue samples will be prepared for DNA barcoding, to provide quality assurance of species identification. Selection of samples for barcoding should not occur prior to the end of field sampling or October 31, whichever is earlier. DNA barcode samples must be shipped to the contracted barcoding facility by February of the following calendar year in which they were collected.

Author: S. Paull

F.2 Ear Punch Preparation

67. Select the small mammal ear tissue samples to be barcoded.

NEON Doc. #: NEON.DOC.000481

- a. Select up to 95 individuals for 1 DNA barcode plate per domain. The following rationale should be used to select specimens based on the confidence in the species identification:
 - i. A minimum of 3 individuals per species recorded in a domain should be sent for barcoding annually (if available).
- Where possible, select samples from a variety of sampling dates and locations (sites and plots) within a domain.
 - ii. Individuals with species identifications that have uncertainty associated with them are the priority for the remaining wells.
- Uncertainty should have been recorded in the identificationQualifier field on the small mammal field datasheet (RD[05]).
- For these species, submit either 10 individuals or 11% of the individuals sampled (whichever is higher, if space is available). If species are present at multiple sites in the domain, include representatives from all possible sites.
- If additional wells remain:
 - If there are more samples available from individuals with uncertain identifications, fill the plate with these preferentially, endeavoring to achieve representation from all sites in the domain.
 - Else, add another sample per species until all wells are full.
 - b. Print one 96-well datasheet per plate (RD[05]), unless entering data directly into the DNA Sample Processing data entry application.
 - c. Prepare a workspace with shipping box, 96-well microplate with row caps loosely attached, forceps, lighter, pencil or ethanol-safe pen, and gloves.
 - Before placing tissue into plates, please read section F.3 and the more detailed <u>DNA Sample Preparation Instructions</u>, provided by the Canadian Centre for DNA Barcoding (CCDB).

F.3 Ear Punch Sample Processing in the Lab

NEON Doc. #: NEON.DOC.000481

Fill each microplate completely (95 specimens) before shipping, if sufficient numbers of samples are available. If sample numbers preclude reaching 75% capacity of the plate, issue a problem ticket to Science for guidance.

Author: S. Paull

- 68. Wipe down the work area with 95% ethanol.
- 69. Prepare 95 specimens for barcoding.
 - a. Work with a single microplate at a time and enter all data before proceeding to the next microplate. It is recommended that a white piece of paper is placed under the microplate to assist in seeing the ear samples in the wells.
 - b. To keep samples frozen, stage cryovials containing samples using a lab-top cooling device, dry ice bed, or similar. Once the samples are in the well with ethanol, the cold chain does not need to be maintained.
 - c. Fill out the 96 well datasheet with the plate number, sample location in the plate, barcode lab and tag ID.
 - d. DO NOT place any foreign objects (e.g. labels) into sampling wells. If something falls into a well (e.g., eyelash), note it and do not place a sample into that well. Move to the next well.
 - e. Cover wells that are not in use with row caps to mitigate contamination. Note that strip caps are numbered and correspond to numbering on plates.
 - f. Prior to beginning, and between each specimen, wipe with Kim-wipe, then rinse/spray forceps with ethanol and flame-sterilize for at least 2 seconds to ensure that no residual tissue is present.
 - g. Place the ear tissue sample in the well (Figure 16).
 - i. Ear tissue can get stuck in the lid of the vial, so be sure to search the vial thoroughly if tissue does not appear to be present.
 - ii. Static from the plate and on the forceps can make it difficult to get the tissue into the well.
 - iii. Be gentle so that the sample does not end up in a different well.
 - iv. It can be helpful to gently tap the forceps to shake the tissue into the well. If it has gone into a different well but is the only sample in the well, do not remove it. If it has gone into a different well that already has a sample in it, both samples should be discarded and well should remain empty.

- v. If an ear sample accidentally falls onto the counter prior to be placed in a well, rinse the sample with ethanol before placing in the well.
- h. Repeat until you have filled all wells in the microplate, **EXCEPT** for well H12 which always remains empty as a negative control (fill 95 wells).
- i. Cover plate.
- j. Complete data entry prior to filling a new plate.

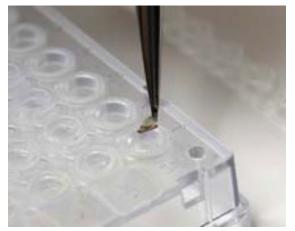


Figure 16. Placing tissue in a well.

F.4 Ear Punch Data Handling

STOP after each plate and enter the Plate number and Sample location into the Barcode Plate datasheet and/or DNA Sample Processing data entry application. Plate number is the unique plate number provided by CCDB. Sample location refers to the position each sample occupies in the plate (A01-H12). Have another staff member double-check data entry.

CCDB provides specific instructions for data handling, as provided in the document Instructions_Microplate.pdf. Read this document thoroughly before shipping. Key points include:

- 70. Biological Material Analysis Agreement
 - A Biological Material Analysis Agreement (BMAA) is provided by CCDB with each plate. This form will tell you the plateID for each plate you receive (i.e., CCDB-31771 microplate). Check the box under item 1 and sign the BMAA where indicated.
- 71. Sample Record Data Input Sheet
 - a. There is a CCDB specific form called <u>CCDB-00000_Record.xls</u>. Fill in this form following instructions in the <u>InterationalShippingGuide_mammal.ppt</u> document, available on the CLA page on the NEON intranet.

The BMAA and Sample Record Datasheet must be sent to CCDB as an email attachment (send to ccdbcol@uoguelph.ca) to initiate processing of the plates.

F.5 Sample Preservation

Small mammal ear samples should be maintained at -80C until they are placed in well plates for DNA barcoding. Once plated, these ear samples will be submerged in a small quantity of 95% ethanol within the well to preserve the tissue, allowing for the shipment of these samples at room temperature. Store any filled plates in the refrigerator until ready to ship. Once ready to ship, the prepared plates should be removed from refrigerator and then shipped under ambient conditions. Please note that plates provided for DNA barcoding are not ultralow (-80 C) safe.

F.6 Sample Shipping

Follow the instructions in the <u>InterationalShippingGuide mammal.ppt</u> document, available on the CLA page on the NEON intranet. At the end of the process, double-check that these items are included in the shipment:

- Shipping label from FedEx
- Shipper's address (DSF)
- Destination address (CCDB)
- Manifest
- Biological Material Analysis Agreement (BMAA) that came with the plates
- International Ground One-Time General Agency Agreement (3 copies)
- Commercial Invoice (3 copies)

Use the Shipping data entry application and select 'DNA Sample Processing [PROD]' as the source application to view only those ear punches that are to be DNA barcoded. The batch mode will allow for rapid selection of those identifiers in the plate.

Shipments from D18/D19 must be shipped by air rather than ground. Additional actions are required:

- Label the box with an "Accepted quantities" sticker, which indicates that the amount of ethanol being shipped is less than 30ml (pg. 270 E2 EQ 2.6 of IATA Handbook).
 - Anything over 30 ml (but under 1 liter) would be considered "limited quantity" which would require a dangerous goods shipping declaration. No declaration is needed for quantities less than 30ml.
- On the "Accepted quantities" sticker, write a "3" to indicate the hazard class (3 = flammable).

SOP G Data Entry and Verification

The importance of thorough, accurate data entry and transcription cannot be overstated; the value of the efforts in the field is only manifested once the data are properly entered for delivery to NEON's end users.

Mobile applications are the preferred mechanism for data entry. Data should be entered into the protocol-specific application as they are being collected, whenever possible, to minimize data transcription and improve data quality. For detailed instructions on protocol specific data entry into mobile devices, see the NEON Internal Sampling Support Library (SSL). Mobile devices should be synced at the end of each field day, where possible; alternatively, devices should be synced immediately upon return to the Domain Support Facility.

However, given the potential for mobile devices to fail under field conditions, it is imperative that paper datasheets are always available to record data. Paper datasheets should be carried along with the mobile devices to sampling locations at all times. As a best practice, field data collected on paper datasheets should be digitally transcribed within 7 days of collection or the end of a sampling bout (where applicable). However, given logistical constraints, the maximum timeline for entering data is within 14 days of collection or the end of a sampling bout (where applicable).

Before entering data, all personnel <u>must</u> read RD[04] for complete instructions regarding manual data transcription. Prior to entering data via a web user interface (webUI), each technician shall enter a plot (or subplot) of data from one bout into the protocol-specific webUI housed on the Training portal, as described in RD[04].

Protocol-specific instructions

- can be found on the NEON intranet in the Sampling Support Library.
- Do NOT enter data from training grids in the PROD mobile data entry application; these data should be collected on paper datasheets and can be entered into the CERT application.

Sample Labels & Identifiers

If available, adhesive barcode labels should be applied to dry, room temperature containers in advance of their use in the field (at least 30 minutes prior, but may be applied at the start of the season). Use the appropriate barcode label type with each container (i.e., cryo-safe barcode labels only used for samples that are stored at -80°C, etc).

Barcodes are scanned into the mobile application when the sample is placed into the container; only one barcode may be associated with a particular sample. Do not reuse barcodes. If a barcode is associated with multiple samples, the data ingest system will throw an error and refuse to pull in entered data

Data and sample IDs must be entered digitally and quality checked prior to shipping samples to an external facility.

SOP G

SOP H Sample Shipment

For information on shipping samples, reference the CLA shipping document on CLA's NEON intranet site (available through the Sampling Support Library) and the Domain Chemical Hygiene Plan and Biosafety Manual (AD[03]).

8 REFERENCES

- Adams, J., C. Edmondson, D. Willis, and R. Carter. 2013. Effects of prescribed burning on small mammal, reptile, and tick populations on the Talladega National Forest, Alabama. Pages 123–126 in J. M. Guldin, editor. Proceedings of the 15th Biennial Southern Silvicultural Research Conference. e-Gen. Tech. Rep. SRS-GTR-175. U.S. Department of Agriculture, Forest Service, Southern Research Station - See more at: http://www.srs.fs.usda.gov/pubs/43491#sthash.l0CCuJHG.dpuf, Asheville, NC.
- Annotated Mammal Species List of the Ordway-Swisher Biological Station. (n.d.). . http://ordwayswisher.ufl.edu/species/os-mammalia.htm.
- Armstrong, D. M. 2008. Rocky Mountain mammals: a handbook of mammals of Rocky Mountain National Park and vicinity. Third edition. University Press of Colorado.
- Baker, M. F., and N. C. Frischknecht. 1973. Small mammals increase on recently cleared and seeded juniper rangeland. Journal of Range Management 26:101–103.
- Batzli, G. O., and H. Henttonen. 1990. Demography and resource use by microtine rodents near Toolik Lake, Alaska, U.S.A. Arctic and Alpine Research 22:51–64.
- Bock, C. E., and J. H. Bock. 1978. Response of birds, small mammals, and vegetation to burning sacaton grasslands in southeastern Arizona. Journal of Range Management 31:296–300.
- Bury, R. B., and P. S. Corn. 1987. Evaluation of Pitfall Trapping in Northwestern Forests: Trap Arrays with Drift Fences. Journal of Wildlife Management 51:112–119.
- Cardoza, J. E., G. S. Jones, and T. W. French. 2009. Massachussetts State Mammal List. http://www.mass.gov/dfwele/dfw/wildlife/facts/mammals/mammal list.htm.
- Carey, A., and S. Wilson. 2001. Induced Spatial Heterogeneity in Forest Canopies: Responses of Small Mammals. The Journal of Wildlife Management 65:1014–1027.
- Clevenger, G. A. 1977. The effects of campgrounds on small mammals in Canyonlands and Arches National Parks, Utah. Utah State University.
- Dahlquist, R. M., T. S. Prather, and J. J. Stapleton. 2007. Time and Temperature Requirements for Weed Seed Thermal Death. Weed Science 55:619–625.
- Degrassi, A., and A. M. Ellison. 2013. A Mark-Recapture of the Rodent and Shrew Populations in a Declining Hemlock Stand.

http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf208

Denali National Park mammal checklist. 2002.

- Discover Life in America All Taxa Biodiversity Inventory. 2008. The ATBI Database. http://tremont22.campus.utk.edu/ATBI start.cfm.
- Engeman, R., D. Whisson, J. Quinn, F. Cano, P. Quiñones, and T. H. White Jr. 2005. Monitoring invasive mammalian predator populations sharing habitat with the Critically Endangered Puerto Rican parrot Amazona vittata. Oryx 39:95.
- Evangelista, P. H., D. T. Barnett, T. J. Stohlgren, P. Stapp, C. Jarnevich, S. Kumar, and S. Rauth. 2008. Field and costs sssessment for the Fundamental Sentinel Unit (FSU) at the Central Plains Experimental Range, Colorado.
- Fitch, H. S., and N. A. Slade. (n.d.). Checklist of Field Station Mammals.
- Giffen, N. R., R. S. Reasor, and C. A. Campbell. 2011. Small Mammal Abundance and Distribution Survey. Oak Ridge National Laboratory, Oak Ridge, TN.
- Golde, W., P. Gollobin, and L. Rodriguez. 2005. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Animal 34:39–43.
- Gómez, A., a M. Kilpatrick, L. D. Kramer, A. P. Dupuis, J. G. Maffei, S. J. Goetz, P. P. Marra, P. Daszak, and a A. Aguirre. 2008. Land use and west nile virus seroprevalence in wild mammals. Emerging infectious diseases 14:962–5.
- Halfpenny, J. (n.d.). Small mammal herbivore trapping in alpine tundra, 1981-1990.
- Kaminski, J., M. Davis, and P. Keyser. 2007. Disturbance Effects on Small Mammal Species in a Managed Appalachian Forest. The American Midland Naturalist 157:385–397.
- Kao, R. H., C. M. Gibson, R. E. Gallery, C. L. Meier, D. T. Barnett, K. M. Docherty, K. K. Blevins, P. D. Travers, E. Azuaje, Y. P. Springer, K. M. Thibault, V. J. McKenzie, M. Keller, L. F. Alves, E. S. Hinckley, J. Parnell, and D. S. Schimel. 2012. NEON terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere 3:115.
- Kays, R. W., and D. E. Wilson. 2011. Mammals of North America. Second Edi. Princeton University Press.
- Kelt, D. A., M. S. Hafner, and The Committee for Guidelines on Handling Rodents in the Field of the American Society of Mammalogists. 2010. Updated guidelines for protection of mammalogists and wildlife researchers from hantavirus pulmonary syndrome (HPS). Journal of Mammalogy 91:1524– 1527.
- Kelt, D. A., D. H. Van Vuren, M. S. Hafner, B. J. Danielson, and M. J. Kelly. 2007. Threat of hantavirus pulmonary syndrome to field biologists working with small mammals. Emerging Infectious Diseases 13:1285-7.

Kilcline, B. 2003. Trap Biases in Surveying the Small Mammals of UNDERC.

- Leis, S. A., D. M. J. Leslie, D. M. Engle, and J. S. Fehmi. 2007. Small mammals as indicators of short-term and long-term disturbance in mixed prairie. Environmental Monitoring and Assessment.
- Maher, S. 2010. Spatial dynamics of mammals and their pathogens and parasites. University of Kansas, United States -- Kansas.
- Mammals of Florida | American Society of Mammalogists. (n.d.). http://www.mammalsociety.org/mammals-florida.
- Martin, S. C., and H. G. Reynolds. 1973. The Santa Rita Experimental Range : Your Facility for Research on Semidesert Ecosystems. Journal of the Arizona Academy of Science 8:56–67.
- Matter, S. F., J. F. Zawacki, and M. A. Bowers. 1996. Habitat fragmentation and the perceived and actual risk of predation. Virginia Journal of Science 47:19-27.
- McMillan, B. R., D. W. Kaufman, G. A. Kaufman, and R. S. Matlack. 1997. Mammals of Konza Prairie: new observations and an updated species list. The Prairie Naturalist 29:263–271.
- McShea, W. J., John Pagels, John Orrock, Elizabeth Harper, and Kevin Koy. 2003. Mesic deciduous forest as patches of small-mammal richness within an Appalachian Mountain Forest. Journal of Mammalogy 84:627–643.
- Mitchell, J. C., S. C. Rinehart, J. F. Pagels, K. A. Buhlmann, and C. A. Pague. 1997. Factors influencing amphibian and small mammal assemblages in central Appalachian forests. Forest Ecology and Management 96:65–76.
- National Park Service. 2006, May. Yellowstone Mammal Certified Species List. https://irma.nps.gov/App/Species/Search.
- Osbourne, J. D., J. T. Anderson, and A. B. Spurgeon. 2005. Effects of habitat on small-mammal diversity and abundance in West Virginia. Wildlife Society Bulletin 33:814–822.
- Ostfeld, R. S., and R. R. Parmenter. 2008. Small mammals, Fundamental Sentinel Units TIGR team report.
- Parker, W. T., L. I. Muller, R. R. Gerhardt, P. O. Dorcas, and C. Edward. 2008. Field Use of Isoflurane for Safe Squirrel and Woodrat Anesthesia. Science 72:1262–1266.
- Perry, M. C., P. C. Osenton, and C. S. Stoll. 1998. Biological diversity of created forested wetlands in comparison to reference forested wetlands in the bay watershed. Pages 261–268. Maryland Department of Natural Resources, Annapolis, Maryland.
- Price, M. V. 1978. The role of microhabitat in structuring desert rodent communities. Ecology 59:910– 921.
- Prugh, L., and J. Brashares. 2010. Basking in the moonlight? Effect of illumination on capture success of the endangered giant kangaroo rat. Journal of Mammalogy 91:1205–1212.

- Purcell, K. L., D. A. Drynan, and K. M. Mazzocco. 2007. Vertebrate Fauna of the San Joaquin Experimental Range, California: an annotated checklist based on 70 years of observations.
- Rexstad, E. A., and E. Debevec. (n.d.). Dynamics of Small Mammal Populations in the Rock Creek Watershed of Denali. http://www.nps.gov/articles/aps-v6-i2-c16.htm.
- Reynolds, H. G. 1950. Relation of Merriam kangaroo rats to range vegetation in southern Arizona. Ecology 31:456–463.
- Roberts, S. L., D. A. Kelt, J. W. van Wagtendonk, A. K. Miles, and M. D. Meyer. 2015. Effects of fire on small mammal communities in frequent-fire forests in California. Journal of Mammalogy 96:107–119.
- Sikes, R. S., and The Animal Care And Use Committee of The American Society Of Mammalogists. 2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97:663–688.
- Smith, C. B., and P. J. Urness. 1984. Small mammal abundance on native and improved foothill ranges, Utah. Journal of Range Management 37:353–357.
- Snyder, E., and L. Best. 1988. Dynamics of Habitat use by Small Mammals in Prairie Communities. The American Midland Naturalist 119:128–136.
- Sureda, M., and M. L. Morrison. 1998. Habitat use by small mammals in southeastern Utah, with reference to Mexican spotted owl management. Western North American Naturalist 58:76–81.
- Vaughn, C., S. Glenn, and I. Butler. 1993. Characterization of Prairie Mole Cricket Chorusing Sites in Oklahoma. The American Midland Naturalist 130:364–371.
- Wiewel, A. S., W. R. Clark, and M. A. Sovada. 2007. Assessing small mammal abundance with track-tube indices and mark-recapture population estimates. Journal of Mammalogy 88:250–260.
- Wilson, D. E., F. R. Cole, J. D. Nichols, R. Rudran, and M. S. Foster, editors. 1996. Measuring and Monitoring Biological Diversity: Standard Methods for Mammals. Biological Diversity Handbook Series. Smithsonian Institution Press, Washington, D.C.

Date: 02/11/2020

APPENDIX AQUICK REFERENCESQuick Reference: Checking Traps and Processing CapturesQuick Reference: Decision Tree for ProcessingQuick Reference: Challenging ConditionsQuick Reference: Small Mammal Sampling Datasheet

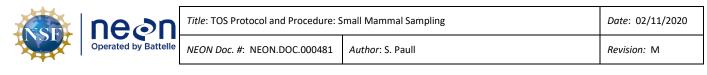
Date: 02/11/2020

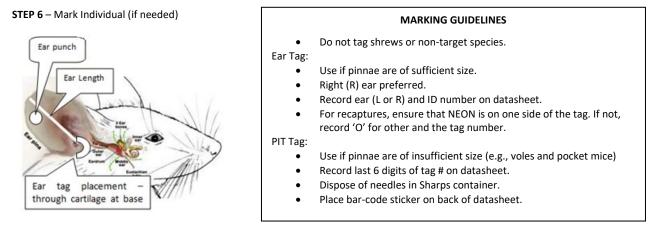
A.1 Quick Reference: Checking Traps and Processing Captures

STEP 1 - Check ALL traps in grid for captures.

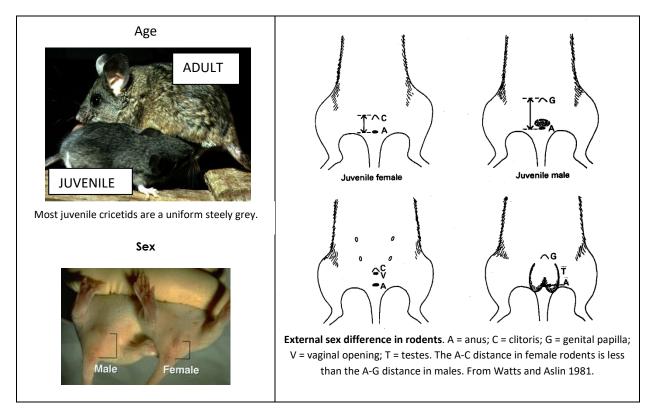
IF trap door CLOSED	IF trap door OPEN
Peek inside to see if there is a capture or feces.	Clean trap can be reused.
Immediately release non-target captures.	Traps with feces only should be marked, bagged, and taken to
Write grid coordinate on trap.	processing station.
Place trap in plastic bag, for transport to processing station	If mid-bout, leave empty trap in place and close door.
(even if capture has been released)	On last day of sampling, remove trap.

STEP 2 – Set up processing station.


STEP 3 – Transfer capture to plastic bag (use stronger 4 mil bags if capture > 100g).


STEP 4 – Assess animal for signs of stress. Treat/release as needed.

STEP 5 – Modify processing, if necessary, based on total number of live captures of target or opportunistic species on the grid.


Captures Per Grid	Suggested Modifications to Processing					
>20 - <30	Blood samples – stop after 20 samples have been collected** Recaptures only – eliminate size measurements Hair and whisker samples – stop after 10 samples have been collected Fecal samples – stop after 10 samples have been collected Ear punches – stop after 10 samples have been collected*** Eliminate estimates of tick numbers (e.g., binned values)					
30 +	Same as above plus: All captures – eliminate size measurements Eliminate tick searches					

CRITERIA FOR BLOOD SAMPLING	
COLLECT blood from:	DO NOT collect blood from:
 Cricetids that are > 10 g Dipodids that are > 10 g Murids that are > 10 g UNLESS individual has: Pronounced or physically debilitating injury, and/or Already been captured and bled during current sampling bout. 	 Sciurids - chipmunks, squirrels, etc. Soricids - shrews Talpids - moles Geomyids - pocket gophers Heteromyids - kangaroo rats, pocket mice Any protected species listed on state or federal permit

STEP 7 – Assess age, sex and reproductive condition.

n	Title: TOS Protocol and Procedure: S	Date: 02/11/2020	
ttelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull	Revision: M

STEP 8 – Proceed with sample collection, including bleeding, if required.

ENSURE that all collected samples are indicated on the datasheet. If a sample does not get entered into the database, then all resulting data are lost and samples will need to be discarded.

Sample	Description Frequency		Storage container	Label	Field storage	
Hair	tuft (~5-7 mg) from rear	once per bout			Ambient	
Whiskers	pluck or snip at base, one from each cheek	once per bout	Archival coin envelope	Type I barcode		
Fecal	fresh only	every capture event	vial rated to -80°C	Type IV barcode	Dry ice	
Ear punch	punch from outer margin of untagged ear	once per life of individual	vial rated to -80°C	Type IV barcode	Dry ice	
Vouchers	entire specimens	opportunistically	resealable plastic bag	Type I barcode	Dry ice	
Blood	Collected via mandibular technique	Once per bout	Vial rated to -80°C	Type IV barcode	Dry ice	

STEP 9 – Measure hind foot length (all species).

STEP 10 – Measure ear length/tail length, and/or total length (if needed for species ID)

STEP 11 – Weigh

STEP 12 – Put back in trap for transport back to point of capture and release.

STEP 13 – Clean all gloves and tools with quat before using on the next individual.

Label all containers ightarrow

siteID.date.tagID.X, where X = B for blood, E for ear, F for feces, V, for voucher, H for hair and whiskers

OR

Barcode label

A.2 Quick Reference: Decision Tree for Processing

In the event of very high capture rates, lower priority tasks may be left out of processing. **The goal is to avoid situations where captures are released without any processing.**

For simplicity, guidelines are provided according to **captures per grid**. If grids predictably vary in capture rates, reduced processing can be implemented on grids that do not exceed the thresholds given below, to enable increased processing on high-capture grids being processed on the same day. Please keep in mind that the decision tree is intended to be used as a guideline only; use professional discretion.

Captures Per Grid	Suggested Modifications to Processing					
	Blood samples – stop after 20 samples have been collected**					
	Recaptures only – eliminate size measurements					
	Hair and whisker samples – stop after 10 samples have been collected					
>20 - <30	Fecal samples – stop after 10 samples have been collected					
	Ear punches – stop after 10 samples have been collected***					
	Eliminate estimates of tick numbers (e.g., binned values)					
	Blood samples – stop after 20 samples have been collected**					
	All captures – eliminate size measurements					
	Hair and whisker samples – stop after 10 samples have been collected					
30 +	Fecal samples – stop after 10 samples have been collected					
	Ear punches – stop after 10 samples have been collected***					
	Eliminate tick searches					

**When blood sample collections are limited, attempt to distribute the 20 samples among the priority species if possible (provided in Appendix D). Please do not spend additional time counting captures per species prior to processing. The simplest, acceptable implementation of this guidance is to stop collecting blood samples once 10 samples have been collected for a given priority species, if a site has >1 priority species. For sites with priority species that are difficult to distinguish (e.g., PEMA vs. PELE), collect up to 20 samples from individuals of these species, regardless of species ID.

**For maximum time savings, include unsuccessful bleeding attempts in the count to 20.

***If possible, without expending additional effort to review captures, prioritize individuals with uncertain species IDs for ear punch collection.

A.3 Quick Reference: Challenging Conditions

Small mammal sampling can be performed under a variety of weather conditions. Care must be taken, however, to prevent conditions such that the trapped individual cannot thermoregulate properly, either in hot or cold conditions. Such conditions will result in the death of the trapped individuals.

MORTALITIES

- Each mortality must be reported to the Field Operations Manager within 24 hours of processing, in accordance with all state- and site-specific permit requirements.
- If ≥ 5 individuals on any given trapping grid during a single night of trapping die, the trapping on that grid should be discontinued until the next scheduled sampling bout, and a problem ticket should be issued detailing the locations, species, sex, and ages of the mortalities.

LOGISTICAL HURDLES

- If there is any chance (i.e., >0%) that traps cannot be checked the following morning at dawn, traps shall not be set (e.g., impassable roads).
- If one night of trapping within the sampling bout is missed, **trapping may be resumed** and continued as normal at any time **within 5 days** of the latest night of trapping.
- If **predators destroy >15** traps on a single grid on any given night, traps should be removed from the site and that sampling bout terminated prematurely. The Field Operations Manager shall be informed as soon as possible, and a problem ticket should be issued.

COLD WEATHER

- Bedding should be used when low temperatures are expected to be < 18°C (65°F), except at sites where heteromyids dominate.
- Trapping should not occur on nights when both very cold temperatures (< 5.5°C (42°F)) and (a) precipitation in the form of rain are expected (>20% chance at sites with bedding; >5% chance at sites that cannot use bedding) or (b) dew is expected (i.e., if humidity is >75% and the projected minimum temperature is below the dew point), except if otherwise indicated in the site-specific appendices.

HOT WEATHER

- When ambient temperatures are expected to reach 27°C (80°F), by 10 a.m., extra effort must be made to ensure that all traps containing captured individuals are processed or placed in the shade as soon as possible. Initiation of trap checking before sunrise may be necessary in extremely hot environments, especially where shade is lacking.
- If trap checking **does not begin** prior to 8 9 am and **all traps are not shaded**, all traps should be opened to release animals and avoid heat-induced mortality. The trap night should be repeated the subsequent night by resetting the traps.

Date: 02/11/2020

A.4 Quick Reference: Small Mammal Sampling Datasheet

Data Field	Description/What to Enter
plotID	Enter number only (Use leading zeros where applicable.)
trapCoordinate	Indicate point of capture with grid coordinate e.g., B5. Indicate uncertainty with an 'X'
Notes	Information on trap condition and quality. Use codes (1 through 6) from top left corner of datasheet. See below.
taxonID	Use 4 letter species code (examples listed on top of datasheet). Create own code if captured species not listed <u>and</u> record full name on back of <u>each</u> Datasheet on which the code is used.
idQ – identification Qualifier	CS – cf. species; cf. = "not sure"; AS – aff. species; aff. = "similar to, but is not" (full list in the protocol above)
Sex	Male (M) or female (F) or unknown (U).
Ear/PIT	Unique tag ID, format: Ear tags: RXXXX or LXXXX; PIT tags: last 6 digits of serial number
Age & repro status	Use uppercase letter codes from datasheet
HFL	Hind foot length (mm) – to nearest millimeter
Ear	Right ear length (mm) – to nearest millimeter
Tail	Tail length (mm) – round to nearest millimeter
TTL	Total length (head + body) (mm)
WGT	Weight (g) – round to nearest gram
Recapture	Yes/No/Unknown – indicates whether an individual is a recapture
Ripped Ear/Tag replaced	Indicate from which ear the tag was presumably lost (R or L), or the tag ID (ear or PIT) replaced. Record 'U' in the Recapture field if the previous tagID is unknown (and the animal is clearly a recapture).
Fate	Indicate history/condition of capture. <u>E</u> scaped, <u>D</u> ead, <u>N</u> on-target, <u>R</u> eleased. Dead supercedes the Non-target option. Released should be whenever a capture is intentionally released (vs. if it escaped).
Attached ticks	Circle the tick life stages attached to the individual's head and neck
Blood	Indicate whether was blood sample was successfully collected using the Mandibular technique, Unsuccessfully collected, or a Quantity Not Sufficient was collected.
Samples	Indicate type of sample collected: Fecal, Ear, Hair, Whisker, or Voucher.
Comments	Indicate there are comments on back of datasheet ("C").
	plotID trapCoordinate Notes Notes taxonID idQ – identification Qualifier Sex Ear/PIT Age & repro status HFL Ear Tail TTL WGT Recapture Ripped Ear/Tag replaced Fate Attached ticks Blood Samples

• If traps are not set on a particular grid as scheduled or if no individuals are captured, these should be recorded in the NOTES field as a line on the datasheet for that given date, grid, and bout combination.

• If traps are damaged or disturbed overnight, note trap locations and code the nature of the disturbance on the datasheet in the NOTES field, with any other known details described on the back of the datasheet.

NOTES codes:

Definitions	Application Rules
1 – traps not set	Used at the level of the entire trapping grid, or, if some traps on a grid were set and others were not, can be used to indicate which ones were not set. Also used when a set trap goes missing and cannot be found.
2 – trap disturbed/door closed but empty – no animal sign	Used per trap coordinate, when necessary. Also used if a trap was set too tightly to successfully capture an animal overnight.
3 – trap door open or closed with feces left behind or bait missing	Used per trap coordinate, when necessary.

NSF	neon	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
		<i>NEON Doc. #</i> : NEON.DOC.000481	Author: S. Paull

Definitions	Application Rules
4 – >1 capture per trap	Used per trap coordinate; in the rare event of multiple captures per trap; enter this note code for each individual
5 – single capture in trap	Used per trap coordinate, when necessary
6—no captures	Used ONLY at the per grid level; there is no need to write down every trap that has been set but is empty

Author: S. Paull

APPENDIX B CHECKLISTS

B.1 Trapping Small Mammals

Always have on hand:

☑ Copy of IACUC protocol form and IACUC approval letter

NEON Doc. #: NEON.DOC.000481

- ☑ Copy of up-to-date state collection permit
- ☑ Copy of site-specific research permit
- ☑ Personal ID
- ☑ GPS with grid locations
- ☑ Compass to aid in
 - following trap lines

Setting Traps:

nit		A	В	C	D	E	F	G	Н		J
	1	A1	B1	C1	D1	E1	F1	G1	H1	11	JI
	2	A2	B2	C2	D2	E2	F2	G2	H2	12	J2
	3	A3	B3	C3	D3	E3	F3	G3	H3	13	J3
	4	A4	B4	C4	D4	E4	F4	G4	H4	14	J4
	5	A5	B5	C5	D5	E5	F5	G5	H5	15	J5
	6	A6	B6	C6	D6	E6	F6	G6	H6	16	J6
	7	A7	B7	C7	D7	E7	F7	G7	H7	17	J7
•	8	A8	B8	C8	D8	E8	F8	G8	H8	18	J8
	9	A9	B9	C9	D9	E9	F9	G9	H9	19	J9
	10	A10	B10	C10	D10	E10	F10	G10	H10	110	J10

Layout of Small Mammal Sampling Grid

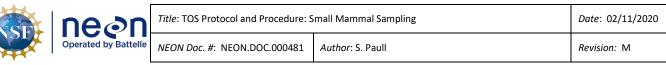
- Each person should carry enough traps at one time for at least two traplines (i.e., 20 traps plus a few extra), for efficiency.
- Always walk the traplines along the N-S axis, except when moving to the next trapline. This will constrain vegetation disturbance to narrow trails within the grids over time.
- Whenever possible, place traps near shrubs, downed logs, burrows, or other microsites that offer shelter.
- ☑ Place trap, making sure trap is on level ground and the door remains open. If necessary, adjust trap sensitivity by gently pulling or pushing catch.
- ☑ Bait trap, by distributing about a tablespoon (use more in colder conditions) of seed mix throughout the trap, including near the entrance to the trap.
- ☑ When overnight lows will be <18°C (65°F), place approximately 5 cm (2 in) of batting into trap (except at sites dominated by heteromyids).

Setting Equipment

1	Traps (100 per grid + extras)
2	Tree planting bags (1 per person or per 40-50 traps)
3	Bait: Sterilized millet & sunflower seed (mealworms, where needed).
4	Lumbar bags of bait (1 per person)

Checking Equipment

- Replacement traps
- Trap-sized plastic bags
- Work gloves
- Tree planting bags (1 per person or per 40-50 traps)



B.2 Getting Ready for Small Mammal Sampling

- ☑ Ensure all **traps** and sampling equipment are functioning and sanitized.
- ☑ Ensure safety gear (**PPE**) is available in sufficient quantities, clean, and functioning.
- Prepare barcodes, pre-printed **labels** and materials for handwriting on the sample containers in the field.
- ☑ Ensure pit tag reader and camera batteries are charged. Bring spare batteries for headlamps.
- ☑ Print the NEON template provided on the NEON intranet (in the Sampling Support Library) onto specimen tags in the event of voucher specimens.
- Prepare a small vial of 10% sugar in water to revitalize stressed, hypothermic or heat-stressed captures.
 Change solution often to prevent mold growth.
- Sterilize and mix a sufficient amount of millet (65% of **seed** mix) and sunflower seeds (35%).
- **I** Ensure that all necessary **datasheets**, **identification keys**, **permits**, and equipment are packed.
- Prepare and maintain a list of individuals already bled within the current sampling bout to ensure that no individuals are bled twice within a bout. Also note any individuals with missing data that can be collected if recaptured in this bout, and the number of feces, ear, and hair samples taken.
- Prepare quat: if necessary, mix a batch of quat stock solution in the lab (5% solution, or 1:20 dilution in tap water). Fill up the spray bottle(s) and field stock bottles.
- Prepare **isoflurane**: in a fume hood or well-ventilated outdoor location; fill up the glass bottle with rubber dropper bulb and glass bottle with screw top with isoflurane.
- Pack **supplies**: bring enough supplies for processing at least twice as many individuals as you expect.
- ☑ Obtain **dry ice**: this should be done as close to departure for the field as possible and stored in a cooler prior to use.

Personal Protective Equipment (PPE)

- Eye protection (safety glasses to discourage rubbing of the eyes and protect from extreme splashes)
- Disposable respirators with N95 (HEPA-equivalent) particulate filter
- Required: all sites in CO, NM, AZ, CA
- Recommended: all sites in KS, TX, UT, MT, NV, ID, OR, and WA
- Latex and/or nitrile gloves
- Long-sleeved shirt
- Long pants
- Close-toed shoes with socks
- a disposable or reusable (cotton) laboratory coat or apron
- Special cloth gloves with rubber-tipped fingers are recommended to be worn while handling to reduce the incidence of bites (latex/nitrile gloves should be worn over these)

APPENDIX C GUIDELINES FOR BLOOD SAMPLE SELECTION FOR PATHOGEN ANALYSIS

The following guidelines should be considered halfway through and at the end of the trapping season to make any necessary decisions prior to shipping samples. Sample shipment is planned to occur twice per year to balance the desire to ship samples for analysis as soon as possible and the desire to select samples for testing strategically, if more samples are collected than the budget allows.

Only blood samples with volumes of at least 20 microliters should be sent for analysis. The remaining samples should be archived. To avoid sending quantity not sufficient (QNS) samples for testing:

- Use a 'template' cryo-vial marked to denote 20µL to use for comparison
- Flag samples that are likely QNS when collecting in the field since it easier to estimate volumes prior to freezing samples
- Do not use blood smeared on side of vial when making the quantity estimate

Sites should not send more than 140 samples for pathogen testing, even if other sites in that domain are below their allotment. All remaining samples beyond 140 from a site should be sent to the bioarchive. If the number of eligible samples exceeds the number allotted by CLA per site per year:

- Consult Appendix D for site-specific species that are priorities for pathogen testing. Samples from these species should be given priority to the exclusion of other species, if necessary.
- Samples to be analyzed should include representatives from all sampling bouts.
- If the number of samples still exceeds the maximum, prioritize samples collected from adult individuals to the exclusion of juveniles and subadults.
- Distribute samples across priority species, plots, and bouts as much as possible.

Author: S. Paull

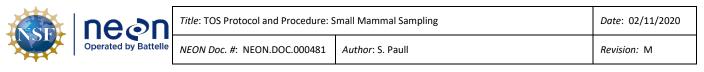
NEON Doc. #: NEON.DOC.000481

APPENDIX D SITE-SPECIFIC INFORMATION

D.1 D01 – CORE – HARV (Harvard Forest)

Trapping Issues

- Slugs after rainfall events may fill traps
- Large (i.e., bear) and medium sized carnivore (e.g., fishers, raccoons) disturbance


Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F. **Dominant vegetation type(s) for bleed grid designation:** Deciduous/Evergreen/Mixed Forest **Priority species for pathogen testing:** Microtus pennsylvanicus, Myodes gapperi, Peromyscus leucopus, Peromyscus maniculatus

Species List and Abundance Estimates

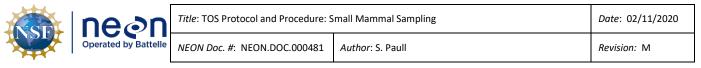

This species list is based on Cardoza, Jones, & French, 2009. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported in Degrassi & Ellison, 2013, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 12. Site-specific species list (HARV)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Gapper's Red-backed Vole	50 - 500
Microtus pennsylvanicus	Meadow Vole	0 - 50
Napaeozapus insignis	Woodland Jumping mouse	20 - 100
Peromyscus leucopus	White footed mouse	50 - 500
Peromyscus maniculatus	N. American deer mouse	100 - 500
Microtus pinetorum	Woodland Vole	0 - 20
Synaptomys cooperi	Southern Bog Lemming	0 - 20
Zapus hudsonius	Meadow Jumping Mouse	0 - 20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	50 - 150
Sorex cinereus	Masked Shrew	0 - 50
Sorex fumeus	Smoky Shrew	0 - 30
Tamias striatus	Eastern Chipmunk	50 - 150
Sorex dispar	Long-tailed Shrew	0 - 20
Sorex hoyi	American Pygmy Shrew	0 - 20
Sorex palustris	American Water Shrew	0 - 20
Tamiasciurus hudsonicus	Red Squirrel	0 - 20
NON-TARGE (Scientific and C		

Parascalops breweri	Hairy-tailed Mole	0 - 20
Scalopus aquaticus	Eastern Mole	0 - 20
Glaucomys volans	Southern Flying Squirrel	0 - 20
Glaucomys sabrinus	Northern Flying Squirrel	0 - 20

D.2 D01 – RELOCATABLE - BART (Barlett Experimental Forest)

Trapping Issues

• Large (i.e., bear) and medium sized carnivore (e.g., fishers, raccoons) disturbance

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F. **Dominant vegetation type(s) for bleed grid designation:** Mixed/Deciduous/Evergreen Forest **Priority species for pathogen testing**: Microtus pennsylvanicus, Myodes gapperi, Peromyscus leucopus, Peromyscus maniculatus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Ryan B. Stephens (pers. comm.) based on 2013 trapping efforts, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

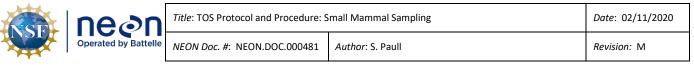

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus chrotorrhinus	Rock Vole	0-20
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus pinetorum	Woodland Vole	0-20
Myodes gapperi	Southern Red-backed Vole	10-200
Peromyscus leucopus	White-footed Deermouse	50-200
Peromyscus maniculatus	North American Deermouse	50-500
Synaptomys borealis	Northern Bog Lemming	0-5
Synaptomys cooperi	Southern Bog Lemming	0-5
Napaeozapus insignis	Woodland Jumping Mouse	100-500
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	20-200
Sorex cinereus	Cinereus Shrew	0-50
Sorex dispar	Long-tailed Shrew	0-5
Sorex fumeus	Smoky Shrew	0-50
Sorex hoyi	American Pygmy Shrew	0-5
Sorex palustris	American Water Shrew	0-5
Tamias striatus	Eastern Chipmunk	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-50

Table 13. Site-specific species list (BART)

Author: S. Paull

NON-TARGET ANIMALS (Scientific and Common Name)		
Condylura cristata	Star-nosed Mole	0-5
Glaucomys sabrinus	Northern Flying Squirrel	0-5
Glaucomys volans	Southern Flying Squirrel	0-50
Martes americana	American Marten	0-5
Martes pennanti	Fisher	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	American Mink	0-5
Parascalops breweri	Hairy-tailed Mole	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sylvilagus transitionalis	New England Cottontail	0-5

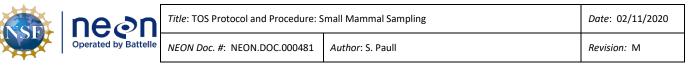
D.3 D02 – CORE – SCBI (Smithsonian Conservation Biology Institute)

Trapping Issues

• Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Deciduous Forest

Priority species for pathogen testing: Microtus pennsylvanicus, Myodes gapperi, Neotoma magister, Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys humulis, Microtus pinetorum *Species List and Abundance Estimates*


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by McShea et al. 2003 and Osbourne et al. 2005, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Southern Red-backed Vole	0-50
Microtus pennsylvanicus	Meadow Vole	0-100
Microtus pinetorum	Woodland Vole	0-50
Mus musculus musculus	House mouse	0-150
Neotoma magister	Allegheny Woodrat	0-20
Peromyscus leucopus	Northern white-footed mouse	100-500
Peromyscus maniculatus	North American deer mouse	0-50
Rattus norvegicus	Norway rat	0-5
Rattus rattus	Black rat	0-5
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Synaptomys cooperi	Southern Bog Lemming	0-50
Napaeozapus insignis	Woodland Jumping Mouse	0-200
Zapus hudsonius	Meadow Jumping Mouse	0-50
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	50-200
Cryptotis parva	North American Least Shrew	0-5
Sorex cinereus	Cinereus Shrew	0-20
Sorex fumeus	Smoky shrew	0-20
Sorex hoyi	American Pygmy Shrew	0-50
Sorex longirostris	Southeastern shrew	0-5

Table 14. Site-specific species list (SCBI)

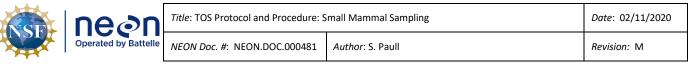
Tamias striatus	Eastern Chipmunk	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Condylura cristata	Star-nosed Mole	0-5
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed weasel	0-5
Mustela nivalis	Least weasel	0-5
Mustela vison	Common mink	0-5
Parascalops breweri	Hairy-tailed Mole	0-5
Scalopus aquaticus	Southern mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5

D.4 D02 – RELOCATABLE – SERC (Smithsonian Environmental Research Center)

Trapping Issues

• Medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F *Dominant vegetation type(s) for bleed grid designation:* Deciduous Forest *Priority species for pathogen testing*: Microtus pennsylvanicus, Myodes gapperi, Neotoma magister, Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys humulis *Species List and Abundance Estimates:* This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific


relative abundances reported by Perry et al. 1998 and Gómez et al. 2008, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Southern Red-backed Vole	0-20
Microtus pennsylvanicus	Meadow Vole	100-500
Microtus pinetorum	Woodland Vole	0-50
Mus musculus	House mouse	0-50
Neotoma magister	Allegheny Woodrat	0-20
Peromyscus leucopus	Northern white-footed mouse	50-500
Peromyscus maniculatus	North American deer mouse	0-50
Rattus norvegicus	Norway rat	0-5
Rattus rattus	Black rat	0-5
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Synaptomys cooperi	Southern Bog Lemming	0-5
Napaeozapus insignis	Woodland Jumping Mouse	0-20
Zapus hudsonius	Meadow Jumping Mouse	0-50
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	20-100
Cryptotis parva	North American Least Shrew	0-5
Sorex cinereus	Cinereus Shrew	0-20
Sorex fumeus	Smoky shrew	0-20
Sorex hoyi	American Pygmy Shrew	0-5
Sorex longirostris	Southeastern shrew	0-5

 Table 15. Site-specific species list (SERC)

Tamias striatus	Eastern Chipmunk	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Condylura cristata	Star-nosed Mole	0-5
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed weasel	0-5
Mustela nivalis	Least weasel	0-5
Mustela vison	Common mink	0-5
Parascalops breweri	Hairy-tailed Mole	0-5
Scalopus aquaticus	Southern mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5

D.5 D02 – RELOCATABLE – BLAN (Blandy Experimental Farm)

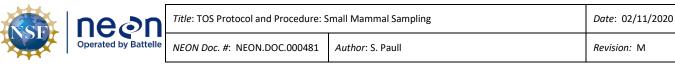
Trapping Issues

• Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Pasture/hay

Priority species for pathogen testing: Microtus pennsylvanicus, Myodes gapperi, Neotoma magister, Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys humulis

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Matter et al. 1996 and Mitchell et al. 1997, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Southern Red-backed Vole	0-20
Microtus pennsylvanicus	Meadow Vole	0-50
Microtus pinetorum	Woodland Vole	0-50
Mus musculus	House mouse	0-20
Neotoma magister	Allegheny Woodrat	0-20
Peromyscus leucopus	Northern white-footed mouse	50-500
Peromyscus maniculatus	North American deer mouse	0-50
Rattus norvegicus	Norway rat	0-5
Rattus rattus	Black rat	0-5
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Synaptomys cooperi	Southern Bog Lemming	0-50
Napaeozapus insignis	Woodland Jumping Mouse	0-20
Zapus hudsonius	Meadow Jumping Mouse	0-50
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-50
Cryptotis parva	North American Least Shrew	0-5
Sorex cinereus	Cinereus Shrew	0-5
Sorex fumeus	Smoky shrew	0-5
Sorex hoyi	American Pygmy Shrew	0-5
Sorex longirostris	Southeastern shrew	0-5

 Table 16. Site-specific species list (BLAN)

Tamias striatus	Eastern Chipmunk	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Condylura cristata	Star-nosed Mole	0-5
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed weasel	0-5
Mustela nivalis	Least weasel	0-5
Mustela vison	Common mink	0-5
Parascalops breweri	Hairy-tailed Mole	0-5
Scalopus aquaticus	Southern mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5

D.6 D03 – CORE – OSBS (Ordway-Swisher Biological Station)

Trapping Issues

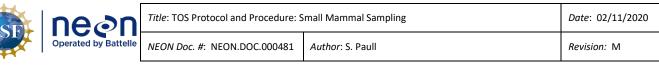
- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Traps can also be set closer to sunset and checked earlier, to minimize traps being open when ants are most active.
- Medium sized carnivore (e.g., coyotes, raccoons) disturbance
- Do not trap when traps are in any danger of becoming waterlogged overnight.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: N/A (due to the low capture rates at this site, bleed grids were selected based on capture rates rather than vegetation type)

Priority species for pathogen testing: Neotoma floridana, Ochrotomoys nuttalli, Oryzomys palustris, Peromyscus gossypinus, Peromyscus polionotus, Podomys floridanus, Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on the Annotated Mammal Species List of the Ordway-Swisher Biological Station. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Dr. Bob McCleery at the University of Florida, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET species (Scientific and Common Name)		Number to be Used Annually
Mus musculus	House mouse	0 - 20
Neotoma floridana floridana	Florida wood rat	0 - 50
Ochrotomys nuttalli	Golden Mouse	0 - 50
Oryzomys palustris natator	Marsh rice rat	0 - 20
Peromyscus gossypinus gossypinus	Cotton mouse	10 - 100
Peromyscus polionotus subgriseus	Oldfield mouse	100 - 50
Podomys floridanus	Florida Deermouse	10 - 100
Reithrodontomys humulis	Eastern Harvest Mouse	0 - 50
Sigmodon hispidus hispidus	Hispid Cotton Rat	0 - 50
OPPORTUNISTIC (Scientific and Cor		
Blarina carolinensis	Southern Short-tailed Shrew	0 - 20
Cryptotis parva floridana	Least shrew	0 - 20
Sorex longirostris	Southeastern Shrew	0 - 20
NON-TARGET (Scientific and Cor		

 Table 17. Site-specific species list (OSBS)

	Title: TOS Protocol and Procedure: Small Mammal Sampling		Date: 02/11/2020	
	Operated by Battelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull	Revision: M

Geomys pinetis floridanus	Florida pocket gopher	0 - 5
Scalopus aquaticus australis	Southern mole	0 - 5
Glaucomys volans	Southern Flying Squirrel	0-100
Sciurus carolinensis	Eastern grey squirrel	0 - 5

D.7 D03 – RELOCATABLE – DSNY (Disney Wilderness Preserve)

Trapping Issues

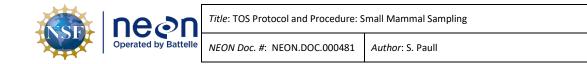
- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Medium sized carnivore (e.g., coyotes, raccoons) disturbance
- Cattle disturbance
- Do not trap when traps are in any danger of becoming waterlogged overnight.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Woody Wetlands

Priority species for pathogen testing: Neotoma floridana, Ochrotomoys nuttalli, Oryzomys palustris, Peromyscus gossypinus, Peromyscus polionotus, Podomys floridanus, Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on the Mammals of Florida | American Society of Mammalogists. The abundance estimates were based on an average capture rate of 10%, and, in the absence of existing data, estimates of captures are based on data for Ordway Swisher, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARC (Scientific ar	Number to be Used Annually	
Neotoma floridana	Eastern Woodrat	0 - 20
Peromyscus gossypinus	Cotton Deermouse	0 - 50
Peromyscus polionotus	Oldfield Deermouse	0 - 20
Podomys floridanus	Florida Deermouse	0 - 50
Sigmodon hispidus	Hispid Cotton Rat	5 - 150
Ochrotomys nuttalli	Golden Mouse	0 - 5
Oryzomys palustris	Marsh Oryzomys	0 - 20
Mus musculus	House mouse	0 - 20
Rattus norvegicus	Norway rat	0 - 20
Rattus rattus	Black rat	0 - 20
Reithrodontomys humulis	Eastern Harvest Mouse	0 - 50
OPPORTU (Scientific ar		
Blarina carolinensis	Southern Short-tailed Shrew	0 - 20
Cryptotis parva floridana	Least shrew	0 - 20
Sorex longirostris	Southeastern Shrew	0 - 20

 Table 18. Site-specific species list (DSNY)

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys pinetis	Southeastern Pocket Gopher	0 - 5
Scalopus aquaticus	Eastern Mole	0 - 5
Glaucomys volans	Southern Flying Squirrel	0 - 20

D.8 D03 – RELOCATABLE – JERC (Jones Ecological Research Center)

Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Medium sized carnivore (e.g., coyotes, raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Evergreen/Deciduous/Mixed Forest **Priority species for pathogen testing**: Microtus pinetorum, Neotoma floridana, Ochrotomoys nuttalli, Oryzomys palustris, Peromyscus gossypinus, Peromyscus polionotus, Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays & Wilson, 2011 and Smith et al., 2006. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported in Ford et al. 1994, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

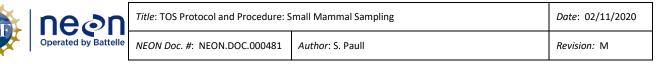
TAR (Scientific a	Number to be Used Annually	
Microtus pinetorum	Woodland Vole	0-50
Mus musculus	House mouse	0-50
Neotoma floridana	Eastern Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	0-20
Oryzomys palustris	Marsh Oryzomys	0-20
Peromyscus gossypinus	Cotton Deermouse	100-500
Peromyscus polionotus	Oldfield Deermouse	20-100
Rattus norvegicus	Norway rat	0-20
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	20-200
OPPORTU (Scientific a		
Blarina carolinensis	Southern Short-tailed Shrew	0-5
Cryptotis parva	North American Least Shrew	0-5
Sorex longirostris	Southeastern Shrew	0-5
Tamias striatus	Eastern Chipmunk	0-50

 Table 19. Site-specific species list (JERC)

NON- (Scientific		
Geomys pinetis	Southeastern Pocket Gopher	0-5
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger shermani	Sherman's fox squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sylvilagus palustris	Marsh Rabbit	0-5

Date: 02/11/2020

D.9 D04 – CORE – GUAN (Guanica Forest)


Small mammal trapping is not planned to occur at this site.

Date: 02/11/2020

D.11 D04 – RELOCATABLE – LAJA (Lajas Experimental Station)

Small mammal trapping is not planned to occur at this site.

D.12 D05 – CORE – UNDE (University of Notre Dame Environmental Research Center)

Trapping Issues

- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance
- Due to the high mortality rates of shrews during April and October sampling bouts in 2014 and 2015, it is recommended that these bouts be dropped from the sampling schedule for this site.
- Flying squirrels (*Glaucomys spp.*) are relatively abundant and so are to be treated as opportunistic species, including species identifications when possible.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F *Dominant vegetation type(s) for bleed grid designation:* Woody Wetlands

Priority species for pathogen testing: Microtus pennsylvanicus, Myodes gapperi, Peromyscus leucopus, Peromyscus maniculatus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Kilcline 2003 and data collected by NEON, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 20. Site-specific species list (UNDE)

TAR (Scientific a	Number to be Used Annually	
Myodes gapperi	Southern Red-backed Vole	20-200
Microtus pennsylvanicus	Meadow Vole	0-50
Mus musculus	House mouse	0-20
Peromyscus leucopus	White-footed Deermouse	50-300
Peromyscus maniculatus	North American Deermouse	50-500
Synaptomys cooperi	Southern Bog Lemming	0-50
Napaeozapus insignis	Woodland Jumping Mouse	20-200
Zapus hudsonius	Meadow Jumping Mouse	0-100
OPPORT (Scientific a		
Blarina brevicauda	Northern Short-tailed Shrew	10-250
Glaucomys sabrinus	Northern Flying Squirrel	10-100
Glaucomys volans	Southern Flying Squirrel	10-100
Sorex arcticus	Arctic Shrew	0-50
Sorex cinereus	Cinereus Shrew	20-200
Sorex hoyi	American Pygmy Shrew	0-5
Sorex palustris	American Water Shrew	0-5
Tamias minimus	Least Chipmunk	0-10
Tamias striatus	Eastern Chipmunk	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-10

Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
NON-TAF	RGET ANIMALS	
(Scientific an	d Common Name)	
Condylura cristata	Star-nosed Mole	0-5
Lepus americanus	Snowshoe Hare	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Martes pennanti	Fisher	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5

D.13 D05 – RELOCATABLE – STEI (Steigerwaldt)

Trapping Issues

- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance
- Due to the high mortality rates of shrews during April and October sampling bouts at UNDE in 2014 and 2015, it is recommended that these bouts be dropped from the sampling schedule for this site.
- Flying squirrels (*Glaucomys spp.*) are relatively abundant and so are to be treated as opportunistic species, including species identifications when possible.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Deciduous Forest

Priority species for pathogen testing: Microtus pennsylvanicus, Myodes gapperi, Peromyscus leucopus, Peromyscus maniculatus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Kilcline 2003, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TAR (Scientific a	Number to be Used Annually		
Myodes gapperi	Southern Red-backed Vole	20-200	
Microtus pennsylvanicus	Meadow Vole	0-50	
Mus musculus	House mouse	0-20	
Peromyscus leucopus	White-footed Deermouse	50-300	
Peromyscus maniculatus	North American Deermouse	100-500	
Synaptomys cooperi	Southern Bog Lemming	0-50	
Napaeozapus insignis	Woodland Jumping Mouse	0-20	
Zapus hudsonius	Meadow Jumping Mouse	10-100	
	OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	20-100	
Glaucomys sabrinus	Northern Flying Squirrel	5-50	
Glaucomys volans	Southern Flying Squirrel	5-50	
Sorex arcticus	Arctic Shrew	0-10	
Sorex cinereus	Cinereus Shrew	10-100	
Sorex hoyi	American Pygmy Shrew	0-5	
Sorex palustris	American Water Shrew	0-5	
Tamias minimus	Least Chipmunk	0-50	

Table 21. Site-specific species list (STEI)

Tamias striatus	Eastern Chipmunk	0-20
Tamiasciurus hudsonicus	Red Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
	ARGET ANIMALS	
(Scientific a	nd Common Name)	
Condylura cristata	Star-nosed Mole	0-5
Lepus americanus	Snowshoe Hare	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Martes pennanti	Fisher	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5

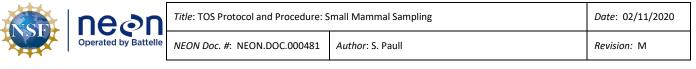
D.14 D05 – RELOCATABLE – TREE (Treehaven)

Trapping Issues

- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance
- Due to the high mortality rates of shrews during April and October sampling bouts at UNDE in 2014 and 2015, it is recommended that these bouts be dropped from the sampling schedule for this site.
- Flying squirrels (*Glaucomys spp.*) are relatively abundant and so are to be treated as opportunistic species, including species identifications when possible.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Woody Wetlands/Evergreen Forest **Priority species for pathogen testing**: Microtus pennsylvanicus, Myodes gapperi, Peromyscus leucopus, Peromyscus maniculatus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Kilcline 2003, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TAF (Scientific a	Number to be Used Annually	
Myodes gapperi	Southern Red-backed Vole	20-100
Microtus pennsylvanicus	Meadow Vole	0-50
Mus musculus	House mouse	0-20
Peromyscus leucopus	White-footed Deermouse	20-200
Peromyscus maniculatus	North American Deermouse	20-200
Synaptomys cooperi	Southern Bog Lemming	0-50
Napaeozapus insignis	Woodland Jumping Mouse	0-20
Zapus hudsonius	Meadow Jumping Mouse	0-50
OPPORT (Scientific a		
Blarina brevicauda	Northern Short-tailed Shrew	0-50
Glaucomys sabrinus	Northern Flying Squirrel	0-5
Glaucomys volans	Southern Flying Squirrel	0-5
Sorex arcticus	Arctic Shrew	0-50
Sorex cinereus	Cinereus Shrew	0-50
Sorex hoyi	American Pygmy Shrew	0-5
Sorex palustris	American Water Shrew	0-5
Tamias minimus	Least Chipmunk	0-50

Table 22. Site-specific species list (TREE)

Tamias striatus	Eastern Chipmunk	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
NON-TA (Scientific a		
Condylura cristata	Star-nosed Mole	0-5
Lepus americanus	Snowshoe Hare	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Martes pennanti	Fisher	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5

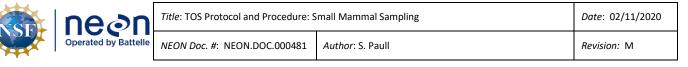
D.15 D06 – CORE – KONZ (Konza Prairie Biological Station)

Trapping Issues

• Medium sized carnivore (e.g., raccoons, coyotes) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F Dominant vegetation type(s) for bleed grid designation: Grassland/Herbaceous Priority species for pathogen testing: Microtus spp., Neotoma floridana, Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by McMillan et al. 1997, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

	GET SPECIES nd Common Name)	Number to be Used Annually
Chaetodipus hispidus	Hispid Pocket Mouse	20-200
Microtus ochrogaster	Prairie Vole	100-500
Microtus pinetorum	Woodland Vole	0-20
Mus musculus	House mouse	0-20
Neotoma floridana	Eastern Woodrat	20-100
Onychomys leucogaster	Northern Grasshopper Mouse	0-20
Peromyscus leucopus	White-footed Deermouse	50-300
Peromyscus maniculatus	North American Deermouse	50-300
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Reithrodontomys montanus	Plains Harvest Mouse	100-500
Sigmodon hispidus	Hispid Cotton Rat	20-200
Synaptomys cooperi	Southern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-20
Blarina hylophaga	Elliot's Short-tailed Shrew	0-50
Cryptotis parva	North American Least Shrew	0-50
Tamias striatus	Eastern Chipmunk	0-20
Spermophilus franklinii	Franklin's Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5

Table 23. Site-specific species list (KONZ)

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys bursarius	Plains Pocket Gopher	0-5
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.16 D06 – RELOCATABLE – UKFS (University of Kansas Field Station)

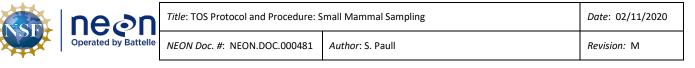
Trapping Issues

• Medium sized carnivore (e.g., raccoons, coyotes) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F Dominant vegetation type(s) for bleed grid designation: Deciduous Forest Priority species for pathogen testing: Microtus spp., Neotoma floridana, Peromyscus leucopus,

Peromyscus maniculatus, Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Fitch and Slade 2014, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

	GET SPECIES nd Common Name)	Number to be Used Annually
Chaetodipus hispidus	Hispid Pocket Mouse	0-20
Microtus ochrogaster	Prairie Vole	0-100
Microtus pinetorum	Woodland Vole	0-20
Mus musculus	House mouse	0-20
Neotoma floridana	Eastern Woodrat	20-200
Onychomys leucogaster	Northern Grasshopper Mouse	0-20
Peromyscus leucopus	White-footed Deermouse	100-300
Peromyscus maniculatus	North American Deermouse	0-50
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Reithrodontomys montanus	Plains Harvest Mouse	0-50
Sigmodon hispidus	Hispid Cotton Rat	100-300
Synaptomys cooperi	Southern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-20
Blarina hylophaga	Elliot's Short-tailed Shrew	0-50
Cryptotis parva	North American Least Shrew	0-50
Tamias striatus	Eastern Chipmunk	0-20
Spermophilus franklinii	Franklin's Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5

Table 24. Site-specific species list (UKFS)

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys bursarius	Plains Pocket Gopher	0-5
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.17 D06 – RELOCATABLE – KONA (Konza Prairie Biological Station - Agriculture)

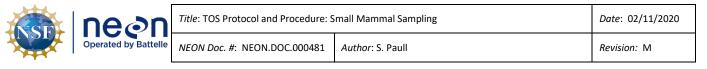
Trapping Issues

• Medium sized carnivore (e.g., raccoons, coyotes) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Agriculture

Priority species for pathogen testing: Microtus spp., Neotoma floridana, Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by McMillan et al. 1997, and updated with NEON data from nearby Konza Biological Stations from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

	GET SPECIES nd Common Name)	Number to be Used Annually
Chaetodipus hispidus	Hispid Pocket Mouse	20-200
Microtus ochrogaster	Prairie Vole	100-500
Microtus pinetorum	Woodland Vole	0-20
Mus musculus	House mouse	0-20
Neotoma floridana	Eastern Woodrat	20-100
Onychomys leucogaster	Northern Grasshopper Mouse	0-20
Peromyscus leucopus	White-footed Deermouse	50-300
Peromyscus maniculatus	North American Deermouse	50-300
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Reithrodontomys montanus	Plains Harvest Mouse	100-500
Sigmodon hispidus	Hispid Cotton Rat	20-200
Synaptomys cooperi	Southern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-20
Blarina hylophaga	Elliot's Short-tailed Shrew	0-50
Cryptotis parva	North American Least Shrew	0-50
Tamias striatus	Eastern Chipmunk	0-20
Spermophilus franklinii	Franklin's Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
	RGET ANIMALS nd Common Name)	

Table 25. Site-specific species list (KONA)

Geomys bursarius	Plains Pocket Gopher	0-5
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.18 D07 – CORE – ORNL (Oak Ridge National Laboratory)

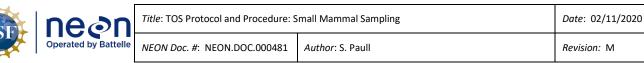
Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F *Dominant vegetation type(s) for bleed grid designation:* Deciduous Forest

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Giffen et al. 2011, and updated with NEON data from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus chrotorrhinus	Rock Vole	0-20
Microtus ochrogaster	Prairie Vole	0-20
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus pinetorum	Woodland Vole	0-20
Mus musculus	House mouse	0-20
Neotoma floridana	Eastern Woodrat	0-20
Neotoma magister	Allegheny Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	0-20
Oryzomys palustris	Marsh Oryzomys	0-20
Peromyscus leucopus	White-footed Deermouse	50-300
Peromyscus maniculatus	North American Deermouse	20-200
Rattus norvegicus	Norway rat	0-20
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	10-100
Synaptomys cooperi	Southern Bog Lemming	0-5
Napaeozapus insignis	Woodland Jumping Mouse	0-20
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		

Table 26. Site-specific species list (ORNL)

Blarina brevicauda	Northern Short-tailed Shrew	10-100
Cryptotis parva	North American Least Shrew	0-5
Sorex cinereus	Cinereus Shrew	0-5
Sorex dispar	Long-tailed Shrew	0-5
Sorex fumeus	Smoky Shrew	0-5
Sorex hoyi	American Pygmy Shrew	0-5
Sorex longirostris	Southeastern Shrew	0-5
Tamias striatus	Eastern Chipmunk	10-100
NON		
(Scientific and Common Name)		
Glaucomys volans	Southern Flying Squirrel	0-50
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Didelphis virginiana	Virginia Opossum	0-5

D.19 D07 – RELOCATABLE – GRSM (Great Smoky Mountains National Park)

Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons, coyotes) disturbance
 - Due to the high density of bears in the Park, if ONE or more traps are disturbed, traps must be removed from the disturbed grid and any other grid within one mile. The sampling bout must be terminated prematurely for these grids; trapping can resume after a month.
 - If bears disturb the same grid twice, then trapping cannot recur for one year.
 - The Park and the Field Operations Manager shall be informed as soon as possible, and a problem ticket should be issued.
 - To reduce the probability of bear disturbance, every effort should be made to collect all seed for disposal off site.
- Do <u>not</u> intentionally collect vouchers at this site. It is not permitted by the Park.
- **Contingency plot guidelines**: Preferably trap the original 6 designated mammal plots each year. If one of those locations is closed to trapping due to repeated bear disturbance, in accordance with the Park rules, trap one of the 3 contingent mammal plots as a replacement, according to the assigned priority. That contingent plot will be either a bleed or diversity plot, depending on which plot is dropped. Contingent plots will be used as needed and can change grid type (bleed or diversity) from season to season.

Animal Care

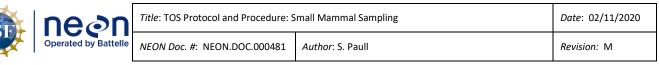
- When performing maxio-facial bleeding of small mammals, it is important that the lancet be applied in alignment with the muscle fibers of the animal's jaw line to avoid undue trauma by severing muscles associated with mastication.
- A maximum 2-attempt rule to the facial bleeding of animals in the field should be observed.

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F *Dominant vegetation type(s) for bleed grid designation:* Deciduous Forest

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma spp., Peromyscus spp., Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Discover Life in America - All Taxa Biodiversity Inventory 2008, and updated with NEON data from 2015 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.


Table 27. Site-specific species list (GRSM)

TAF	RGET SPECIES	Number to be Used	
(Scientific a	and Common Name)	Annually	
Microtus chrotorrhinus	Rock Vole	0-20	
Microtus ochrogaster	Prairie Vole	0-20	
Microtus pennsylvanicus	Meadow Vole	0-20	
Microtus pinetorum	Woodland Vole	0-20	
Myodes gapperi	Southern red-backed vole	0-20	
Mus musculus	House mouse	0-20	
Neotoma floridana	Eastern Woodrat	0-20	
Neotoma magister	Allegheny Woodrat	0-20	
Ochrotomys nuttalli	Golden Mouse	0-20	
Oryzomys palustris	Marsh Oryzomys	0-20	
Peromyscus gossypinus	Cotton Mouse	0-20	
Peromyscus leucopus	White-footed Deermouse	50-300	
Peromyscus maniculatus	North American Deermouse	20-200	
Rattus norvegicus	Norway Rat	0-20	
Reithrodontomys humulis	Eastern Harvest Mouse	0-20	
Sigmodon hispidus	Hispid Cotton Rat	0-20	
Synaptomys cooperi	Southern Bog Lemming	0-5	
Napaeozapus insignis	Woodland Jumping Mouse	0-20	
Zapus hudsonius	Meadow Jumping Mouse	0-20	
OPPORT	UNISTIC ANIMALS		
(Scientific a	and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	5-50	
Cryptotis parva	North American Least Shrew	0-5	
Sorex cinereus	Cinereus Shrew	0-5	
Sorex dispar	Long-tailed Shrew	0-5	
Sorex fumeus	Smoky Shrew	0-20	
Sorex hoyi	American Pygmy Shrew	0-5	
Sorex longirostris	Southeastern Shrew	0-5	
Sorex palustris	American Water Shrew	0-5	
Tamias striatus	Eastern Chipmunk	5-50	
Tamiasciurus hudsonicus	Red Squirrel	0 - 20	
	NON-TARGET ANIMALS		
(Scientific and Common Name)			
Glaucomys sabrinus	Northern Flying Squirrel	0-5	
Glaucomys volans	Southern Flying Squirrel	0-50	
Mustela frenata	Long-tailed Weasel	0-5	

Neovison vison	Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.20 D07 – RELOCATABLE – MLBS (Mountain Lake Biological Station)

Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F *Dominant vegetation type(s) for bleed grid designation:* Deciduous Forest

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma spp., Peromyscus spp., Reithrodontomys humulis

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Kaminski et al. 2007. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus pennsylvanicus	Meadow Vole	0-50
Microtus pinetorum	Woodland Vole	0-50
Mus musculus	House Mouse	0-50
Myodes gapperi	Southern Red-backed Vole	0-50
Napaeozapus insignis	Woodland Jumping Mouse	50-200
Neotoma floridana	Eastern Woodrat	0-20
Neotoma magister	Allegheny Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	0-50
Peromyscus leucopus	White-footed Deermouse	50-200
Peromyscus maniculatus	North American Deermouse	50-200
Reithrodontomys humulis	Eastern Harvest Mouse	50-200
Synaptomys cooperi	Southern Bog Lemming	0-50
Zapus hudsonius	Meadow Jumping Mouse	50-200
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	50-200
Cryptotis parva	North American Least Shrew	0-50
Sorex cinereus	Cinereus Shrew	100-500

 Table 28. Site-specific species list (MLBS)

Long-tailed Shrew	0-50
Smoky Shrew	50-200
American Pygmy Shrew	0-50
Southeastern Shrew	0-50
American Water Shrew	0-50
Eastern Chipmunk	0-50
Red Squirrel	0-50
T ANIMALS	
Common Name)	
Star-nosed Mole	0-5
Southern Flying Squirrel	0-20
Striped Skunk	0
Long-tailed Weasel	0-50
Least Weasel	0-50
American Mink	0-5
Common Muskrat	0
Hairy-tailed Mole	0-50
Eastern Mole	0-5
Eastern Gray Squirrel	0-5
Eastern Fox Squirrel	0-5
Eastern Spotted Skunk	0
Eastern Cottontail	0-5
Appalachian Cottontail	0-5
	Smoky ShrewAmerican Pygmy ShrewSoutheastern ShrewAmerican Water ShrewEastern ChipmunkRed SquirrelT ANIMALSCommon Name)Star-nosed MoleSouthern Flying SquirrelStriped SkunkLong-tailed WeaselLeast WeaselAmerican MinkCommon MuskratHairy-tailed MoleEastern Gray SquirrelEastern Fox SquirrelEastern Spotted SkunkEastern Spotted Skunk

D.21 D08 – CORE – TALL (Talladega National Forest)

Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Evergreen Forest

Priority species for pathogen testing: Neotoma floridana, Oryzomys palustris, Peromyscus spp., Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Adams et al. 2013 and data collected by NEON in 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus pinetorum	Woodland Vole	0-20
Neotoma floridana	Eastern Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	0-20
Oryzomys palustris	Marsh Oryzomys	0-20
Peromyscus gossypinus	Cotton Deermouse	20-200
Peromyscus leucopus	White-footed Deermouse	20-200
Peromyscus polionotus	Oldfield Deermouse	0-20
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-20
Blarina carolinensis	Southern Short-tailed Shrew	10-100
Cryptotis parva	North American Least Shrew	0-5
Sorex longirostris	Southeastern Shrew	0-5
Tamias striatus	Eastern Chipmunk	0-20
Mus musculus	House mouse	0-50

 Table 29. Site-specific species list (TALL)

NON-TARGET ANIMALS (Scientific and Common Name)		
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed Weasel	0-5
Geomys pinetis	Southeastern Pocket Gopher	0-5
Neovison vison	American Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus aquaticus	Swamp Rabbit	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.22 D08 – RELOCATABLE – DELA (Dead Lake)

Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Woody Wetlands

Priority species for pathogen testing: Neotoma floridana, Oryzomys palustris, Peromyscus spp., Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Adams et al. 2013 and data collected by NEON in 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus pinetorum	Woodland Vole	0-20
Neotoma floridana	Eastern Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	50-200
Oryzomys palustris	Marsh Oryzomys	0-20
Peromyscus gossypinus	Cotton Deermouse	10-200
Peromyscus leucopus	White-footed Deermouse	0-20
Peromyscus polionotus	Oldfield Deermouse	0-20
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina carolinensis	Southern Short-tailed Shrew	0-5
Cryptotis parva	North American Least Shrew	0-5
Sorex longirostris	Southeastern Shrew	0-5
Tamias striatus	Eastern Chipmunk	50-200
Mus musculus	house mouse	0-50
	ARGET ANIMALS and Common Name)	

 Table 30. Site-specific species list (DELA)

Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed Weasel	0-5
Geomys pinetis	Southeastern Pocket Gopher	0-5
Neovison vison	American Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus aquaticus	Swamp Rabbit	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.23 D08 – RELOCATABLE – LENO (Lenoir Landing)

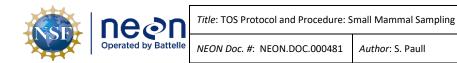
Trapping Issues

- Fire ants
 - If fire ant activity is present in the immediate vicinity of a trapping station, be sure to dust the ground under and around the trap with Talstar granules.
 - Fire ant activity can also be mitigated by use of 100% sunflower seeds as bait to avoid spillage of millet that attracts ants to the site.
- Large (i.e., bear) and medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Woody Wetlands

Priority species for pathogen testing: Neotoma floridana, Oryzomys palustris, Peromyscus spp., Reithrodontomys humulis, Sigmodon hispidus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Adams et al. 2013 and data collected by NEON in 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus pinetorum	Woodland Vole	0-20
Neotoma floridana	Eastern Woodrat	0-20
Ochrotomys nuttalli	Golden Mouse	0-20
Oryzomys palustris	Marsh Oryzomys	0-20
Peromyscus gossypinus	Cotton Deermouse	20-200
Peromyscus leucopus	White-footed Deermouse	0-100
Peromyscus polionotus	Oldfield Deermouse	0-20
Reithrodontomys humulis	Eastern Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	0-20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina carolinensis	Southern Short-tailed Shrew	0-5
Cryptotis parva	North American Least Shrew	0-5
Sorex longirostris	Southeastern Shrew	0-5
Tamias striatus	Eastern Chipmunk	0-20
Mus musculus	house mouse	0-50

 Table 31. Site-specific species list (LENO)

NON-TARGET ANIMALS (Scientific and Common Name)		
Glaucomys volans	Southern Flying Squirrel	0-5
Mustela frenata	Long-tailed Weasel	0-5
Geomys pinetis	Southeastern Pocket Gopher	0-5
Neovison vison	American Mink	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus aquaticus	Swamp Rabbit	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

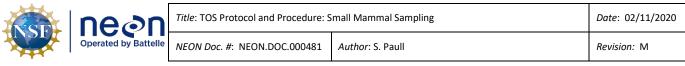
D.24 D09 – CORE – WOOD (Woodworth Field Station)

Trapping Issues

• Medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Grassland/Herbaceous **Priority species for pathogen testing**: Microtus spp., Myodes gapperi, Peromyscus spp., Reithrodontomys megalotis

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Wiewel et al. 2007 and data collected by NEON in 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

))
ļ

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus ochrogaster	Prairie Vole	0-20
Microtus pennsylvanicus	Meadow Vole	100-1000
Myodes gapperi	Southern Red-backed Vole	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	0-20
Perognathus fasciatus	Olive-backed Pocket Mouse	0-20
Perognathus flavescens	Plains Pocket Mouse	0-20
Peromyscus leucopus	White-footed Deermouse	0-20
Peromyscus maniculatus	North American Deermouse	50-200
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Zapus hudsonius	Meadow Jumping Mouse	5-50
Zapus princeps	Western Jumping Mouse	50-200
	NISTIC ANIMALS d Common Name)	
Blarina brevicauda	Northern Short-tailed Shrew	0-200
Sorex arcticus	Arctic Shrew	0-5
Sorex cinereus	Cinereus Shrew	5-50
Spermophilus franklinii	Franklin's Ground Squirrel	0-20
Spermophilus richardsonii	Richardson's Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	10-100
Sorex haydeni	Prairie Shrew	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
Tamias striatus	Eastern Chipmunk	0-5

Rattus norvegicus	Norway rat	0-5
Mus musculus	House mouse	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5
Mustela vison	Mink	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Thomomys talpoides	Northern Pocket Gopher	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Mustela erminea	Ermine	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5

D.25 D09 – RELOCATABLE – DCFS (Dakota Coteau Field School)

Trapping Issues

• Medium sized carnivore (e.g., raccoons) disturbance

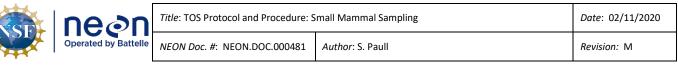
Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Grassland/Herbaceous **Priority species for pathogen testing**: Microtus spp., Myodes gapperi, Peromyscus spp., Reithrodontomys megalotis

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Snyder and Best 1988. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 33. Site-specific species list (DCFS)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Microtus ochrogaster	Prairie Vole	0-20
Microtus pennsylvanicus	Meadow Vole	400-1000
Mus musculus	House Mouse	0-50
Myodes gapperi	Southern Red-backed Vole	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	0-20
Perognathus fasciatus	Olive-backed Pocket Mouse	0-50
Perognathus flavescens	Plains Pocket Mouse	0-20
Peromyscus leucopus	White-footed Deermouse	0-50
Peromyscus maniculatus	North American Deermouse	50-200
Rattus norvegicus	Norway Rat	0-5
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Zapus hudsonius	Meadow Jumping Mouse	50-200
Zapus princeps	Western Jumping Mouse	0-20
	NISTIC ANIMALS Id Common Name)	
Blarina brevicauda	Northern Short-tailed Shrew	0-50
Sorex arcticus	Arctic Shrew	0-5
Sorex cinereus	Cinereus Shrew	50-200
Sorex haydeni	Prairie Shrew	0-5
Spermophilus franklinii	Franklin's Ground Squirrel	0-5
Spermophilus richardsonii	Richardson's Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
Tamias striatus	Eastern Chipmunk	0-5



Title: TOS Protocol and Procedure: Small Mammal Sampling Author: S. Paull

Date: 02/11/2020

Revision: M

Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TAI	RGET ANIMALS	
(Scientific an	d Common Name)	
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5
Mustela vison	Mink	0-5
Ondatra zibethicus	Common Muskrat	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Thomomys talpoides	Northern Pocket Gopher	0-5

D.26 D09 – RELOCATABLE – NOGP (Northern Great Plains Research Laboratory)

Trapping Issues

• Medium sized carnivore (e.g., raccoons) disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F **Dominant vegetation type(s) for bleed grid designation:** Grassland/Herbaceous **Priority species for pathogen testing**: Microtus spp., Myodes gapperi, Peromyscus spp., Reithrodontomys megalotis

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Snyder and Best 1988, and updated with NEON data from 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 34. Site-specific species list (NOGP)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually	
Microtus ochrogaster	Prairie Vole	0-20	
Microtus pennsylvanicus	Meadow Vole	20-200	
Mus musculus	House Mouse	0-50	
Myodes gapperi	Southern Red-backed Vole	0-20	
Onychomys leucogaster	Northern Grasshopper Mouse	0-20	
Perognathus fasciatus	Olive-backed Pocket Mouse	0-50	
Perognathus flavescens	Plains Pocket Mouse	0-20	
Peromyscus leucopus	White-footed Deermouse	0-50	
Peromyscus maniculatus	North American Deermouse	50-300	
Rattus norvegicus	Norway Rat	0-5	
Reithrodontomys megalotis	Western Harvest Mouse	5-50	
Zapus hudsonius	Meadow Jumping Mouse	0-20	
Zapus princeps	Western Jumping Mouse	0-20	
	OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Blarina brevicauda	Northern Short-tailed Shrew	0-50	
Sorex arcticus	Arctic Shrew	0-5	
Sorex cinereus	Cinereus Shrew	0-20	
Sorex haydeni	Prairie Shrew	0-5	
Spermophilus franklinii	Franklin's Ground Squirrel	0-5	
Spermophilus richardsonii	Richardson's Ground Squirrel	0-5	
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	5-50	

Tamias striatus	Eastern Chipmunk	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela nivalis	Least Weasel	0-5
Mustela vison	Mink	0-5
Ondatra zibethicus	Common Muskrat	0-5
Sciurus carolinensis	Eastern Gray Squirrel	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Thomomys talpoides	Northern Pocket Gopher	0-5

D.27 D10 – CORE – CPER (Central Plains Experimental Range)

Trapping Issues

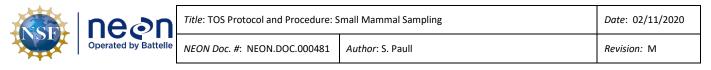
- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- Cattle disturbance

Use of bedding: NOT recommended under any circumstances.

Dominant vegetation type(s) for bleed grid designation: Grassland/Herbaceous

Priority species for pathogen testing: Microtus spp., Neotoma cinerea, Peromyscus sp.,

Reithrodontomys spp.


Species List and Abundance Estimates

This species list is based on the Shortgrass Steppe LTER website

(http://www.sgslter.colostate.edu/species_download.aspx?type=Mammals, accessed 2012). Abundance estimates were based on an average capture rate of 10%, and the species-specific abundances reported in Evangelista et al., 2008 and data collected by NEON in 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 35. Site-specific species list (CPER)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Chaetodipus hispidus	Hispid Pocket Mouse	0 - 100
Chaetodipus intermedius	Rock Pocket Mouse	0 - 20
Dipodomys ordii	Ord's Kangaroo Rat	0 - 100
Microtus longicaudus	Long-tailed Vole	0 - 50
Microtus ochrogaster	Prairie Vole	0-100
Microtus pennsylvanicus	Meadow Vole	0 - 50
Neotoma cinerea	Bushy-tailed Woodrat	0 - 50
Onychomys leucogaster	Northern Grasshopper Mouse	5 - 50
Perognathus fasciatus	Olive-backed Pocket Mouse	0 - 20
Perognathus flavescens	Plains Pocket Mouse	0 - 50
Perognathus flavus	Silky Pocket Mouse	5 - 100
Peromyscus maniculatus	N. American Deer Mouse	5 - 100
Reithrodontomys megalotis	Western Harvest Mouse	50 - 300
Reithrodontomys montanus	Plains Harvest Mouse	50 - 300
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Cryptotis parva	North American Least Shrew	0 - 20
Spermophilus spilosoma	Spotted Ground Squirrel	0 - 20
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0 - 20

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys bursarius	Plains Pocket Gopher	0 - 20
Mustela frenata	Long-tailed Weasel	0 -5
Sylvilagus floridanus	Eastern cottontail	0-5

D.28 D10 – RELOCATABLE – STER (Sterling)

Trapping Issues

Coyote disturbance

Use of bedding: Recommended only when low temperatures are expected to be <18°C/65°F; depends on the relative abundance (RA) of heteromyid species – stop use if RA of heteromyids exceeds 50% *Dominant vegetation type(s) for bleed grid designation:* Cultivated Crops

Author: S. Paull

Priority species for pathogen testing: Microtus spp., Neotoma cinerea, Peromyscus sp., Reithrodontomys spp.

Species List and Abundance Estimates

This species list is based on the North Sterling State Park website

NEON Doc. #: NEON.DOC.000481

(<u>http://www.parks.state.co.us/parks/northsterling/Pages/NorthSterling.aspx</u>, accessed 2012). Abundance estimates were based on an average capture rate of 10%, and relative abundances in data collected by NEON from 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 36. Site-specific species list (STER)

TARGE (Scientific and	Number to be Used Annually		
Chaetodipus hispidus	Hispid Pocket Mouse	20 - 200	
Dipodomys ordii	Ord's Kangaroo Rat	0 - 50	
Microtus ochrogaster	Prairie Vole	0 - 50	
Microtus pennsylvanicus	Meadow Vole	0 - 50	
Neotoma cinerea	Bushy-tailed Woodrat	0 - 5	
Onychomys leucogaster	Northern Grasshopper Mouse	50 - 500	
Perognathus flavescens	Plains Pocket Mouse	0 - 50	
Perognathus flavus	Silky Pocket Mouse	0 - 50	
Peromyscus maniculatus	Deer Mouse	50 - 500	
Reithrodontomys megalotis	Western Harvest Mouse	0 - 50	
Reithrodontomys montanus	Plains Harvest Mouse	0 - 50	
Mus musculus	House Mouse	0 - 5	
	OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Cryptotis parva	Least Shrew	0 - 20	
Sorex cinereus	Masked Shrew	0 - 20	
Spermophilus spilosoma	Spotted Ground Squirrel	0 - 20	
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	5 - 50	
NON-TARG (Scientific and			
Geomys bursarius	Plains Pocket Gopher	0 – 20	
Mustela frenata	Long-tailed Weasel	0 - 5	

Author: S. Paull

D.29 D10 – RELOCATABLE – RMNP (Rocky Mountain National Park)

NEON Doc. #: NEON.DOC.000481

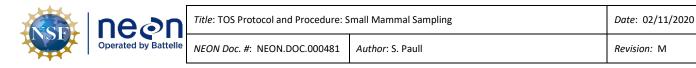
Trapping Issues

- Cold temperatures, wind, and snow
- Bear and elk disturbance

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: TBD

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma spp., Peromyscus spp. *Species List and Abundance Estimates*


This species list is based on Armstrong, 2008, as well as the NEON 2012 capture data. The abundance estimates were based on an average capture rate of 10%, with declining returns of unique individuals over the consecutive nights of a sampling bout, as well as the species-specific relative abundances reported in Maher, 2010, and data collected by NEON in 2017. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Red-backed vole	50 - 200
Lemmiscus curtatus	Sagebrush Vole	20 - 100
Microtus longicaudus	Long-tailed Vole	20 - 100
Microtus montanus	Montane Vole	20 - 100
Neotoma cinerea	Bushy-tailed Woodrat	0 - 50
Neotoma mexicana	Mexican Woodrat	0 - 5
Peromyscus maniculatus	N. American Deermouse	200 - 2000
Peromyscus nasutus	Northern Rock Deermouse	0 - 50
Zapus princeps	Western Jumping Mouse	5 – 100
OPPORT		
(Scientific a	and Common Name)	
Sorex cinereus	Cinereus Shrew	0 - 25
Sorex hoyi	American Pygmy Shrew	0 - 25
Sorex merriami	Merriam's Shrew	0 - 25
Sorex monticolus	Dusky Shrew	0 - 50
Sorex nanus	Dwarf Shrew	0 - 25
Sorex palustris	American Water Shrew	0-10
Spermophilus elegans	Wyoming Ground Squirrel	0 - 50
Callospermophilus lateralis	Golden-mantled Ground Squirrel	5 - 50
Spermophilus variegatus	Rock Squirrel	0 - 10
Tamias minimus	Least Chipmunk	10 - 500
Tamias quadrivittatus	Colorado Chipmunk	0 - 20

 Table 37. Site-specific species list (RMNP)

nean	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020
Operated by Battelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull	Revision: M

Tamias umbrinus	Uinta Chipmunk	5 - 20
Tamiasciurus hudsonicus	Red Squirrel	5 - 50
NON-TARGET ANIMALS	(Scientific and Common Name)	
Thomomys talpoides	Northern Pocket Gopher	0 - 50

D.30 D11 – CORE – CLBJ (Caddo/LBJ National Grassland)

Trapping Issues

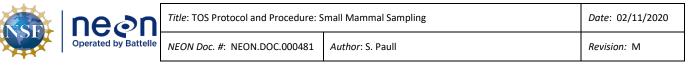
• Medium sized carnivore (e.g., raccoons, coyotes) disturbance.

Use of bedding: Pending capture rates of heteromyids; Recommended only when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Deciduous Forest/ Grassland/ Herbaceous **Priority species for pathogen testing**: Neotoma micropus, Peromyscus sp., Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Vaughn et al. 1993, updated based on NEON data in 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.


Table 38. Site-specific species list (CLBJ)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Baiomys taylori	Northern Pygmy Mouse	0-20
Chaetodipus hispidus	Hispid Pocket Mouse	0-50
Dipodomys ordii	Ord's Kangaroo Rat	0-50
Microtus pinetorum	Woodland Vole	0-20
Neotoma micropus	Southern Plains Woodrat	20-100
Onychomys leucogaster	Northern Grasshopper Mouse	0-5
Perognathus flavescens	Plains Pocket Mouse	0-50
Perognathus flavus	Silky Pocket Mouse	0-20
Peromyscus attwateri	Texas Deermouse	0-50
Peromyscus leucopus	White-footed Deermouse	50-300
Peromyscus maniculatus	North American Deermouse	50-300
Reithrodontomys fulvescens	Fulvous Harvest Mouse	0-20
Reithrodontomys montanus	Plains Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	50-300
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Cryptotis parva	North American Least Shrew	0-50
Notiosorex crawfordi	Crawford's Gray Shrew	0-20
Spermophilus spilosoma	Spotted Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-50

Author: S. Paull

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys bursarius	Plains Pocket Gopher	0-5
Mustela frenata	Long-tailed Weasel	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus audubonii	Desert Cottontail	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.31 D11 – RELOCATABLE – OAES (Klemme Range Research Station)

Trapping Issues

• Medium sized carnivore (e.g., raccoons, coyotes) disturbance

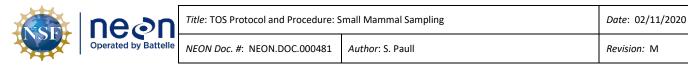
Use of bedding: If capture rates of heteromyids exceed 35% of all capture, do not use; Recommended only when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Grassland/Herbaceous

Priority species for pathogen testing: Neotoma micropus, Peromyscus sp., Reithrodontomys spp., Sigmodon hispidus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Leis et al. 2008 and data collected by NEON in 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.


Table 39. Site-specific species list (OAES)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Chaetodipus hispidus	Hispid Pocket Mouse	20-200
Dipodomys ordii	Ord's Kangaroo Rat	0-20
Microtus ochrogaster	Prairie Vole	0-50
Neotoma micropus	Southern Plains Woodrat	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	20-200
Perognathus flavescens	Plains Pocket Mouse	0-20
Perognathus flavus	Silky Pocket Mouse	0-20
Peromyscus attwateri	Texas Deermouse	0-20
Peromyscus leucopus	White-footed Deermouse	20-200
Peromyscus maniculatus	North American Deermouse	20-200
Reithrodontomys fulvescens	Fulvous Harvest Mouse	0-20
Reithrodontomys montanus	Plains Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	50-500
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Cryptotis parva	North American Least Shrew	0-5
Spermophilus spilosoma	Spotted Ground Squirrel	0-5
Ictidomys tridecemlineatus	Thirteen-lined Ground Squirrel	0-5
Tamias striatus	Eastern Chipmunk	0-5

Author: S. Paull

NON-TARGET ANIMALS (Scientific and Common Name)		
Geomys bursarius	Plains Pocket Gopher	0-5
Mustela frenata	Long-tailed Weasel	0-5
Scalopus aquaticus	Eastern Mole	0-5
Sciurus niger	Eastern Fox Squirrel	0-5
Sylvilagus audubonii	Desert Cottontail	0-5
Sylvilagus floridanus	Eastern Cottontail	0-5

D.32 D12 – CORE – YELL (Yellowstone National Park)

Site-specific protocol modifications: Bleeding of small mammals is not permitted within the Park. As Hantavirus has been detected in small mammals in the Park, the use of a respirator by NEON personnel handling small mammals is required. Finally, all traps, regardless of whether an animal is suspected to have visited the trap, are required to be cleaned prior to use of traps at a different plot within the Park.

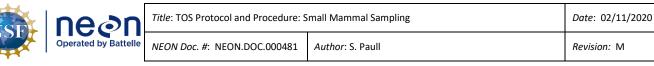
Trapping Issues

- Cold temperatures, wind, and snow
- Bear, wolf, and elk disturbance
- Due to the shortness of the warm weather season at this high-elevation core site, it is expected that trapping will only occur for four, rather than six, bouts per year.

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Shrub Scrub

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma cinerea, Peromyscus sp. *Species List and Abundance Estimates*


This species list is based on Armstrong et al., 2001. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by National Park Service 2006. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used
Microtus longicaudus	Long-tailed Vole	50-200
Microtus montanus	Montane Vole	400-1,000
Microtus pennsylvanicus	Meadow Vole	400-1,000
Microtus richardsoni	Richardson Water Vole	0-20
Mus musculus	House Mouse	0-20
Myodes gapperi	Southern Red-backed Vole	400-1,000
Neotoma cinerea	Bushy-tailed Woodrat	50-200
Peromyscus maniculatus	North American Deermouse	400-1,000
Phenacomys intermedius	Western Heather Vole	0-20
Zapus princeps	Western Jumping Mouse	0-20
OPPORTUNISTIC ANIMALS		
(Scientific an	d Common Name)	
Sorex cinereus	Cinereus Shrew	0-20
Sorex monticolus	Dusky Shrew	0-20
Sorex nanus	Rocky Mountain Dwarf Shrew	0-20
Sorex palustris	American Water Shrew	0-20
Sorex preblei	Preble's Shrew	0-20
Spermophilus armatus	Uinta Ground Squirrel	0-5
Callospermophilus lateralis	Golden-mantled Ground Squirrel	0-5
Tamias amoenus	Yellow Pine Chipmunk	0-20
Tamias minimus	Least Chipmunk	0-20
Tamias umbrinus	Uinta Chipmunk	0-20

Table 40. Site-specific species list (YELL)

nean	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020
Operated by Battelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull	Revision: M

Tamiasciurus hudsonicus	Red Squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Glaucomys sabrinus	Northern Flying Squirrel	0-20
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Mustela vison	American Mink	0-5
Sylvilagus audubonii	Desert Cottontail	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Thomomys talpoides	Northern Pocket Gopher	0-5

D.33 D13 – CORE – NIWO (Niwot Ridge Mountain Research Station)

Trapping Issues

- Cold temperatures, wind, and snow
 - Do not trap when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Bear and elk disturbance
- Due to the shortness of the warm weather season at this high-elevation core site, it is expected that trapping will only occur for four, rather than six, bouts per year.

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F Dominant vegetation type(s) for bleed grid designation: Evergreen Forest/ Grassland/ Herbaceous Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma cinerea, Peromyscus sp. Species List and Abundance Estimates

This species list is based on Armstrong et al., 2001. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Halfpenny 2010, and updated based on NEON data from 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Myodes gapperi	Red-backed vole	20 - 200
Phenacomys intermedius	Heather Vole	0 - 20
Microtus longicaudus	Long-tailed Vole	0 - 20
Microtus montanus	Montane Vole	0 - 20
Neotoma cinerea	Bushy-tailed Woodrat	0 - 50
Peromyscus maniculatus	N. American Deermouse	50 - 500
Zapus princeps	Western Jumping Mouse	0 – 20
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Sorex cinereus	Cinereus Shrew	0 - 5
Sorex monticolus	Montane Shrew	0 – 5
Sorex nanus	Dwarf Shrew	0 - 5
Callospermophilus lateralis	Golden-mantled Ground Squirrel	0 - 20
Tamias minimus	Least Chipmunk	5-50
NON-TARGET ANIMALS (Scientific and Common Name)		
Thomomys talpoides	Northern Pocket Gopher	0 - 10
Mustela ermine	Short-tailed weasel	0-5
Mustela frenata	Long-tailed weasel	0-5
Ochotona princeps	American Pika	0-5

Table 41. Site-specific species list (NIWO)

D.34 D13 – RELOCATABLE – MOAB (Moab)

Trapping Issues

- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: NOT recommended under any circumstances.

Target vegetation type(s) for bleed grid designation: Evergreen Forest

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus spp., Reithrodontomys sp.

Species List and Abundance Estimates:

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Clevenger 1977 and Sureda and Morrison 1998. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 42. Site-specific species list (MOAB)	

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Dipodomys ordii	Ord's Kangaroo Rat	20-200
Microtus longicaudus	Long-tailed Vole	0-20
Microtus montanus	Montane Vole	0-50
Neotoma albigula	White-throated Woodrat	0-20
Neotoma cinerea	Bushy-tailed Woodrat	0-20
Neotoma lepida	Desert Woodrat	0-20
Neotoma mexicana	Mexican Woodrat	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	10-100
Perognathus fasciatus	Olive-backed Pocket Mouse	0-20
Perognathus flavescens	Plains Pocket Mouse	0-20
Perognathus parvus	Great Basin Pocket Mouse	0-20
Peromyscus boylii	Brush Deermouse	0-20
Peromyscus crinitus	Canyon Deermouse	0-20
Peromyscus maniculatus	North American Deermouse	5-300
Peromyscus truei	Pinon Deermouse	3-300
Reithrodontomys megalotis	Western Harvest Mouse	0-20
Zapus princeps	Western Jumping Mouse	0-20

Author: S. Paull

OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Notiosorex crawfordi	Crawford's Gray Shrew	0-5
Sorex merriami	Merriam's Shrew	0-5
Sorex monticolus	Dusky Shrew	0-5
Sorex nanus	Dwarf Shrew	0-5
Ammospermophilus leucurus	White-tailed Antelope Squirrel	0-5
Callospermophilus lateralis	Golden-mantled Ground Squirrel	0-5
Spermophilus spilosoma	Spotted Ground Squirrel	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
Tamias minimus	Least Chipmunk	0-5
Tamias quadrivittatus	Colorado Chipmunk	0-5
Tamias rufus	Hopi Chipmunk	0-20
NON-TARGET ANIMALS (Scientific and Common Name)		
Spermophilus variegatus	Rock Squirrel	0-5
Sylvilagus audubonii	Desert Cottontail	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Thomomys bottae	Botta's Pocket Gopher	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5

D.35 D14 – CORE – SRER (Santa Rita Experimental Range)

Trapping Issues

- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

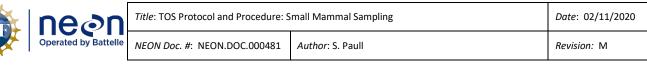
Use of bedding: NOT recommended under any circumstances.

Dominant vegetation type(s) for bleed grid designation: Shrub Scrub

Priority species for pathogen testing: Neotoma spp., Peromyscus spp., Reithrodontomys spp., Sigmodon spp.

Species List and Abundance Estimates

This species list is based on Martin and Reynolds 1973 and Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Reynolds 1950, Price 1978, and Bock and Bock 1978, and from data collected by NEON in 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.


Table 43. Site-specific species list (SRER)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Baiomys taylori	Northern Pygmy Mouse	0-20
Chaetodipus baileyi	Bailey's Pocket Mouse	50-200
Chaetodipus hispidus	Hispid Pocket Mouse	0-20
Chaetodipus intermedius	Rock Pocket Mouse	0-50
Chaetodipus penicillatus	Desert Pocket Mouse	100-500
Dipodomys merriami	Merriam's Kangaroo Rat	100-500
Dipodomys ordii	Ord's Kangaroo Rat	20-100
Dipodomys spectabilis	Banner-tailed Kangaroo Rat	0-50
Neotoma albigula	White-throated Woodrat	20-200
Neotoma mexicana	Mexican Woodrat	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	0-50
Onychomys torridus	Southern Grasshopper Mouse	20-200
Perognathus amplus	Arizona Pocket Mouse	0-20
Perognathus flavus	Silky Pocket Mouse	0-20
Peromyscus boylii	Brush Deermouse	0-20
Peromyscus eremicus	Cactus Deermouse	5-100
Peromyscus leucopus	White-footed Deermouse	0-20
Peromyscus maniculatus	North American Deermouse	0-20
Peromyscus truei	Pinon Deermouse	0-50

Author: S. Paull

Reithrodontomys megalotis	Western Harvest Mouse	0-20
Peromyscus merriami	Merriam's Deermouse	0-20
Reithrodontomys fulvescens	Fulvous Harvest Mouse	5-50
Reithrodontomys megalotis	Western Harvest Mouse	0-20
Reithrodontomys montanus	Plains Harvest Mouse	0-20
Sigmodon arizonae	Arizona Cotton Rat	0-20
Sigmodon fulviventer	Tawny-bellied Cotton Rat	0-20
Sigmodon ochrognathus	Yellow-nosed Cotton Rat	20-100
OPPORTU		
(Scientific an		
Notiosorex crawfordi	Crawford's Gray Shrew	0-5
	1	
Sorex arizonae	Arizona Shrew	0-5
Sorex arizonae	Arizona Shrew	0-5
Sorex arizonae Sorex monticolus	Arizona Shrew Dusky Shrew	0-5 0-5
Sorex arizonae Sorex monticolus Ammospermophilus harrisii Spermophilus tereticaudus	Arizona Shrew Dusky Shrew Harris's Antelope Squirrel	0-5 0-5 0-20
Sorex arizonae Sorex monticolus Ammospermophilus harrisii Spermophilus tereticaudus NON-TAR	Arizona Shrew Dusky Shrew Harris's Antelope Squirrel Round-tailed Ground Squirrel	0-5 0-5 0-20
Sorex arizonae Sorex monticolus Ammospermophilus harrisii Spermophilus tereticaudus NON-TAR	Arizona Shrew Dusky Shrew Harris's Antelope Squirrel Round-tailed Ground Squirrel	0-5 0-5 0-20
Sorex arizonae Sorex monticolus Ammospermophilus harrisii Spermophilus tereticaudus NON-TAR (Scientific an	Arizona Shrew Dusky Shrew Harris's Antelope Squirrel Round-tailed Ground Squirrel GET ANIMALS d Common Name)	0-5 0-5 0-20 0-5

D.36 D14 – RELOCATABLE – JORN (Jornada Experimental Range)

Trapping Issues

- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: NOT recommended under any circumstances.

Dominant vegetation type(s) for bleed grid designation: Shrub scrub

Priority species for pathogen testing: Neotoma spp., Peromyscus spp.

Species List and Abundance Estimates

Data sets were provided by the Jornada Basin Long-Term Ecological Research (LTER) project. Funding for these data was provided by the U.S. National Science Foundation (Grant DEB-1235828). The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Bestelmeyer and Lightfoot (<u>http://jornada-</u>

<u>www.nmsu.edu/studies/lter/projects/smlmamex.prj</u>, accessed 5 March 2015) and data collected by NEON in 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Chaetodipus intermedius	Rock pocket mouse	0-20
Chaetodipus penicillatus	Desert pocket mouse	100-600
Dipodomys merriami	Merriam's kangaroo rat	100-500
Dipodomys ordii	Ord's kangaroo rat	50-200
Dipodomys spectabilis	Banner-tailed kangaroo rat	0-100
Mus musculus	House mouse	0-5
Neotoma albigula	White-throated woodrat	0-50
Neotoma micropus	Southern plains woodrat	0-20
Onychomys arenicola	Mearns' grasshopper mouse	5-200
Onychomys leucogaster	Northern grasshopper mouse	5-200
Perognathus fasciatus	Olive-backed Pocket Mouse	0-20
Perognathus flavus	Silky pocket mouse	5-200
Peromyscus boylii	Brush mouse	0-20
Peromyscus eremicus	Cactus mouse	0-20
Peromyscus leucopus	White-footed mouse	0-50
Peromyscus maniculatus	Deer mouse	0-20
Reithrodontomys megalotis	Western Harvest Mouse	0-20
Sigmodon hispidus	Hispid Cotton Rat	0 - 50

Table 44. Site-specific species list (JORN)

OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Notiosorex crawfordi	Desert shrew	0-5
Spermophilus spilosoma	Spotted ground squirrel	0-50
Spermophilus variegatus	Rock squirrel	0-5
NON-TARGET ANIMALS (Scientific and Common Name)		
Lepus californicus	Black-tailed jackrabbit	0-5
Sylvilagus audubonii	Desert cottontail	0-5
Thomomys bottae	Botta's pocket gopher	0-5

D.37 D15 – CORE – ONAQ (Onaqui-Ault)

Trapping Issues

- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Capture rates at all grids tend to be high (> 25 captures per grid). Technicians should use the prioritization scheme outlined in C.4, but do not need to issue a problem ticket when all data cannot be collected (since it is expected that this will occur during most bouts).

Use of bedding: Not recommended, as the relative abundance of heteromyids at the site is ~50% **Dominant vegetation type(s) for bleed grid designation:** Shrub scrub

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus spp., Reithrodontomys spp.

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Baker and Frischknecht 1973 and Smith and Urness 1984 and data collected by NEON in 2014 through 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Chaetodipus formosus	Long-tailed Pocket Mouse	0-20
Dipodomys microps	Chisel-toothed Kangaroo Rat	5-200
Dipodomys ordii	Ord's Kangaroo Rat	20-300
Dipodomys spectabilis	Banner-tailed kangaroo rat	0-20
Lemmiscus curtatus	Sagebrush Vole	0-20
Microdipodops megacephalus	Dark Kangaroo Mouse	0-20
Microtus longicaudus	Long-tailed Vole	0-20
Microtus montanus	Montane Vole	0-20
Microtus pennsylvanicus	Meadow Vole	0-20
Neotoma cinerea	Bushy-tailed Woodrat	0-20
Neotoma lepida	Desert Woodrat	0-20
Onychomys leucogaster	Northern Grasshopper Mouse	0-50
Perognathus parvus	Great Basin Pocket Mouse	100-500
Peromyscus boylii	Brush Deermouse	0-20
Peromyscus crinitus	Canyon Deermouse	0-20
Peromyscus maniculatus	North American Deermouse	100-500
Peromyscus truei	Pinon Deermouse	0-50

Table 45. Site-specific species list (ONAQ)

Date: 02/11/2020

Revision: M

		5-100
Reithrodontomys megalotis	Reithrodontomys megalotis Western Harvest Mouse	
Zapus princeps	Western Jumping Mouse	0-20
OPPORTUN	NISTIC ANIMALS	
(Scientific an	d Common Name)	
Sorex cinereus	Cinereus Shrew	0-5
Sorex palustris	American Water Shrew	0-5
Sorex vagrans	Vagrant Shrew	0-5
Sorex merriami	Merriam's Shrew	0-5
Ammospermophilus leucurus	White-tailed Antelope Squirrel	0-5
Tamiasciurus hudsonicus	Red Squirrel	0-5
Tamias alpinus	Alpine Chipmunk	0-5
Tamias dorsalis	Cliff Chipmunk	0-20
Tamias minimus	Least Chipmunk	0-50
NON-TAR	GET ANIMALS	
(Scientific an		
Spermophilus variegatus	Rock Squirrel	0-5
Sylvilagus audubonii	Desert Cottontail	0-5
Sylvilagus nuttallii	Mountain Cottontail	0-5
Brachylagus idahoensis	Pygmy Rabbit	0-5

D.38 D16 – CORE – WREF (Wind River Experimental Forest)

Trapping Issues

- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Evergreen Forest

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma cinerea, Peromyscus sp., Reithrodontomys sp.

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Carey and Wilson 2001. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 46. Site-specific species list (WREF)

TARC (Scientific ar	Number to be Used Annually		
Microtus longicaudus	Long-tailed Vole	0-20	
Microtus oregoni	Creeping Vole	0-50	
Microtus richardsoni	North American Water Vole	0-20	
Microtus townsendii	Townsend's Vole	0-20	
Myodes gapperi	Southern Red-backed Vole	50-200	
Neotoma cinerea	Bushy-tailed Woodrat	0-20	
Peromyscus keeni	Forest Deer Mouse	0-20	
Peromyscus maniculatus bairdii	North American Deermouse	0-50	
Phenacomys intermedius	Heather Vole	0-20	
Reithrodontomys megalotis	Western Harvest Mouse	0-20	
Zapus trinotatus	Pacific Jumping Mouse	0-50	
	OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Neurotrichus gibbsii	Shrew-mole	0-50	
Scapanus orarius	Coast Mole	0-50	
Sorex bairdi	Baird's Shrew	0-20	
Sorex bendirii	Marsh Shrew	0-50	
Sorex cinereus	Cinereus Shrew	0-20	
Sorex monticolus	Dusky Shrew	50-200	
Sorex palustris punctulatus	American Water Shrew	0-20	
Sorex trowbridgii	Trowbridge's Shrew	100-500	
Sorex vagrans	Vagrant Shrew	50-200	

	Cascade Golden-mantled Ground	
Spermophilus saturatus	Squirrel	0-5
Tamias amoenus	Yellow-pine Chipmunk	0-5
Tamias townsendii	Townsend's Chipmunk	0-5
Tamiasciurus douglasii	Douglas's Squirrel	0-5
NON-TA		
(Scientific a		
Glaucomys sabrinus	Northern Flying Squirrel	0-5
Mustela erminea	Ermine	0-5
Mustela frenata Long-tailed Weasel		0-5
Neovison vison	American Mink	0-5
Thomomys talpoides	Northern Pocket Gopher	0-5

D.39 D16 - RELOCATABLE - ABBY (Abby Road)

Trapping Issues

• **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Evergreen Forest

Priority species for pathogen testing: Microtus spp., Myodes gapperi, Neotoma cinerea, Peromyscus sp., Reithrodontomys sp.

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Bury and Corn 1987 and data collected by NEON in 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES Number to be (Scientific and Common Name) **Used Annually** Microtus longicaudus Long-tailed Vole 0-20 0-50 Microtus oregoni **Creeping Vole** 0-20 Microtus richardsoni North American Water Vole Microtus townsendii Townsend's Vole 0-20 Southern Red-backed Vole 0-50 Myodes gapperi 0-20 Neotoma cinerea Bushy-tailed Woodrat Peromyscus keeni 0-50 Northwestern Deermouse Peromyscus maniculatus North American Deermouse 50-500 Phenacomys intermedius Western Heather Vole 0-50 Zapus trinotatus **Pacific Jumping Mouse** 0-50 **OPPORTUNISTIC ANIMALS** (Scientific and Common Name) 0-50 Neurotrichus gibbsii Shrew-mole 0-20 Sorex bairdi **Baird's Shrew** 0-50 Sorex bendirii Marsh Shrew 0-20 Sorex cinereus **Cinereus Shrew** 0-20 Sorex monticolus Dusky Shrew 0-20 Sorex palustris American Water Shrew 0-20 **Trowbridge's Shrew** Sorex trowbridgii 0-20 Sorex vagrans Vagrant Shrew 0-5 Tamias amoenus Yellow-pine Chipmunk 0-5 **Townsend's Chipmunk** Tamias townsendii

Table 47. Site-specific species list (ABBY)

Title: TOS Protocol and Procedure: Small Mammal Sampling Author: S. Paull

Revision: M

Tamiasciurus douglasii	Douglas's Squirrel	0-5
NON-TA (Scientific ar		
Glaucomys sabrinus	Northern Flying Squirrel	0-5
Mustela erminea	Ermine	0-5
Mustela frenata	Long-tailed Weasel	0-5
Neovison vison	American Mink	0-5
Scapanus orarius	Coast Mole	0-50
Scapanus townsendii	Townsend's Mole	0-20

D.40 D17 – CORE – SJER (San Joaquin Experimental Range)

Trapping Issues

- Kangaroo rats require larger traps (12" long rather than 9"), to minimize trap-related injuries to their long tails.
- Coyote disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Not recommended

Dominant vegetation type(s) for bleed grid designation: Grassland/ Herbaceous

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus spp., Reithrodontomys sp.

Species List and Abundance Estimates:

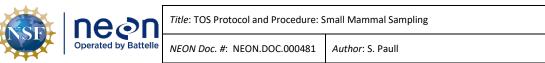

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Purcell et al. 2007. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Table 48. Site-specific species list (SJER)

TARC (Scientific ar	Number to be Used Annually	
Chaetodipus californicus	California pocket mouse	50-200
Dipodomys heermanni	Heermann's Kangaroo Rat	0-50
Microtus californicus	California Vole	0-20
Microtus longicaudus	Long-tailed Vole	50-200
Microtus montanus	Montane Vole	50-200
Mus musculus	house mouse	0-20
Neotoma cinerea	Bushy-tailed Woodrat	0-20
Neotoma fuscipes	Dusky-footed Woodrat	0-50
Neotoma macrotis big-eared woodrat		0-20
Onychomys torridus Southern Grasshopper Mouse		0-50
Perognathus inornatus	San Joaquin pocket mouse	0-50
Peromyscus boylii	brush deermouse	100-500
Peromyscus californicus	California Deermouse	0-20
Peromyscus maniculatus	North American Deermouse	100-500
Peromyscus truei	Pinon Deermouse	100-500
Reithrodontomys megalotis	Western Harvest Mouse	50-200
Zapus princeps Western Jumping Mouse		0-20
OPPORTU (Scientific ar		
Scapanus latimanus	Broad-footed Mole	0-5

Sorex lyelli	Mt. Lyell Shrew	0-5
Sorex ornatus	Ornate Shrew	0-5
Sorex palustris	American Water Shrew	0-5
Spermophilus beecheyi	California Ground Squirrel	0-5
Callospermophilus lateralis	Golden-mantled Ground Squirrel	0-5
Tamias merriami	Merriam's chipmunk	0-5
Tamiasciurus douglasii Douglas's Squirrel		0-5
NON-TAI (Scientific an		
Glaucomys sabrinus Northern Flying Squirrel		0-5
Mustela frenata	Mustela frenata Long-tailed Weasel	
Sciurus griseus Western Gray Squirrel		0-5
Sylvilagus audubonii Desert Cottontail		0-5
Sylvilagus bachmani Brush Rabbit		0-5
Thomomys bottae Botta's Pocket Gopher		0-5

D.41 D17 – RELOCATABLE – SOAP (Soaproot Saddle)

Trapping Issues

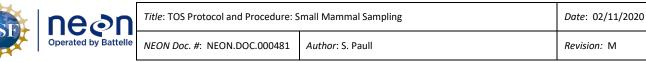
• **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Evergreen Forest

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus spp., Reithrodontomys sp.

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Roberts et al. 2015. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARG (Scientific an	Number to be Used Annually	
Chaetodipus californicus	California pocket mouse	0-50
Microtus californicus	California Vole	0-20
Microtus longicaudus	Long-tailed Vole	0-20
Microtus montanus	Montane Vole	0-20
Onychomys torridus	Southern Grasshopper Mouse	0-50
Neotoma macrotis	Large-eared woodrat	0-50
Peromyscus boylii	Brush Deermouse	10-100
Peromyscus californicus	California Deermouse	0-50
Peromyscus maniculatus	North American Deermouse	400-1,000
Peromyscus truei	Pinon Deermouse	0-50
Reithrodontomys megalotis	Western Harvest Mouse	0-50
Zapus princeps	Western Jumping Mouse	0-50
	NISTIC ANIMALS Id Common Name)	
Callospermophilus lateralis	Golden-mantled ground squirrel	0 - 50
Otospermophilus beecheyi	California ground squirrel	0 - 50
Sorex lyelli	Mt. Lyell Shrew	0-20
Sorex ornatus	Ornate Shrew	0-20
Sorex palustris	American Water Shrew	0-20
Sorex trowbridgii	Trowbridge's Shrew	0-20
Sorex vagrans	Vagrant Shrew	0-20
Tamias quadrimaculatus	Long-eared chipmunk	50 - 200
Tamias speciosus	Lodgepole chipmunk	0 - 50

Table 49. Site-specific species list (SOAP)

ne⊘n	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020
		Author: S. Paull	Revision: M

Tamiasciurus douglasii	Tamiasciurus douglasii Douglas squirrel	
NON-TARGET ANIMALS (Scientific and Common Name)		
Glaucomys sabrinus	Northern flying squirrel	0 - 50
Scapanus latimanus	Broad-footed Mole	0 - 50
Sciurus griseus	Western gray squirrel	0 - 50
Thomomys monticola	Montane pocket gopher	0 - 50

D.42 D17 – RELOCATABLE – TEAK (Teakettle Experimental Forest)

Trapping Issues

- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Evergreen Forest

Priority species for pathogen testing: Microtus spp., Neotoma spp., Peromyscus spp., Reithrodontomys sp.

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Roberts et al. 2015. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARC (Scientific ar	Number to be Used Annually		
Chaetodipus californicus	California pocket mouse	0-50	
Microtus californicus	California Vole	0-20	
Microtus longicaudus	Long-tailed Vole	0-20	
Microtus montanus	Montane Vole	0-20	
Onychomys torridus	Southern Grasshopper Mouse	0-50	
Neotoma macrotis	Large-eared woodrat	0-50	
Peromyscus boylii	Brush Deermouse	10-100	
Peromyscus californicus	California Deermouse	0-50	
Peromyscus maniculatus	North American Deermouse	400-1,000	
Peromyscus truei	Pinon Deermouse	0-50	
Reithrodontomys megalotis	Western Harvest Mouse	0-50	
Zapus princeps	Western Jumping Mouse	0-50	
	OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Callospermophilus lateralis	Golden-mantled ground squirrel	0 - 50	
Otospermophilus beecheyi	California ground squirrel	0 - 50	
Sorex lyelli	Mt. Lyell Shrew	0-20	
Sorex ornatus	Ornate Shrew	0-20	
Sorex palustris	American Water Shrew	0-20	
Sorex trowbridgii	Trowbridge's Shrew	0-20	
Sorex vagrans	Vagrant Shrew	0-20	
Tamias quadrimaculatus	Long-eared chipmunk	50 - 200	
Tamias speciosus	Lodgepole chipmunk	0 - 50	

Table 50. Site-specific species list (TEAK)

ne⊘n	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020
		Author: S. Paull	Revision: M

Tamiasciurus douglasii	Tamiasciurus douglasii Douglas squirrel	
NON-TARGET ANIMALS (Scientific and Common Name)		
Glaucomys sabrinus	Northern flying squirrel	0 - 50
Scapanus latimanus	Broad-footed Mole	0 - 50
Sciurus griseus	Western gray squirrel	0 - 50
Thomomys monticola	Montane pocket gopher	0 - 50

D.43 D18 – CORE – TOOL (Toolik Lake)

Timing of sampling

• Due to the very short season, a minimum of 3 bouts per year is expected.

NEON Doc. #: NEON.DOC.000481

• Given the presumed minimal influence of moonlight, bouts do not need to be scheduled within 10 days of the new moon but should be scheduled consistently across months with respect to the new moon.

Author: S. Paull

- Due to high sensitivity of tundra voles, the time between trap setting and trap checking at TOOL should be 6-8 hours. Trapping should occur overnight with traps set between 9-11PM. The shortest time interval is particularly recommended when weather conditions are expected to be near the minimum for trapping (e.g., if there is a 20% or greater chance of precipitation or if temperatures are expected to be < 7 °C / 45 °F).
- When weather conditions warrant it, tar paper trap covers such as those described for BARR can also be used at TOOL.

Trapping Issues

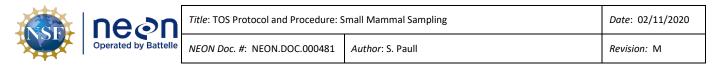
- Summers are cool and humid with 24 hours of daylight from mid-May through early August. Trapping can be done continuously, but, due to logistical constraints, NEON will set traps for a 10hour period. If the weather allows, set traps by 2000h and check and close traps at 0600h. If overnight lows are too cold, traps may be set during the day for a 10-hr period.
- Caribou disturbance
- **Do not trap** when very cold temperatures (< 1.7°C (35°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F

Dominant vegetation type(s) for bleed grid designation: Grassland/ Herbaceous

Priority species for pathogen testing: Microtus spp., Myodes rutilus

Species List and Abundance Estimates


This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Batzli and Henttonen 1990. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Dicrostonyx groenlandicus	Nearctic Collared Lemming	0-5
Lemmus trimucronatus	Nearctic Brown Lemming	0-5
Microtus miurus	Singing Vole	50-200
Microtus oeconomus	Tundra Vole	50-200
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus xanthognathus	Taiga Vole	0-50
Myodes rutilus	Northern Red-backed Vole	0-50
Synaptomys borealis	Northern Bog Lemming	0-5
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		

 Table 51. Site-specific species list (TOOL)

Sorex cinereus	Cinereus Shrew	0-50
Sorex hoyi	Pygmy Shrew	0-5
Sorex monticolus	Dusky Shrew	0-50
Sorex tundrensis	Tundra Shrew	0-5
Sorex ugyunak	Barren Ground Shrew	0-5
Sorex yukonicus	Tiny Shrew	0-5
Spermophilus parryii	Arctic Ground Squirrel	0-20
Tamiasciurus hudsonicus	Red Squirrel	0-20
Sorex ugyunak	Barren Ground Shrew	0-5
NON-TAR		
(Scientific and Common Name)		
Mustela erminea	Short-tailed weasel	0-5
Mustela nivalis	Least Weasel	0-5

D.44 D18 – RELOCATABLE – BARR (Barrow Environmental Observatory)

Site-specific trapping modification:

Sherman traps should be covered by a 12"x12" piece of water-proof roofing (tar) paper and then the paper and trap should be secured to the ground with two metal tent stakes. Two holes should be prepunched into the tar paper to allow for the addition and removal of the metal tent stakes. This design is from Ott 2012 (2011 Report: Estimation of Lemming Abundance and Distribution Near Barrow, Alaska; <u>www.north-slope.org/assets/images/uploads/2011_Lemming_report_FINAL.pdf</u>; accessed 30 September 2018).

Figure 17. Folding Sherman trap (3"x3.5"x9") covered with 12"x12" tar paper cover in Barrow, AK - from Ott 2012. Credit: Kaithryn Ott.

Timing of sampling

- Due to the very short season, a minimum of 3 bouts per year is expected.
- Given the presumed minimal influence of moonlight, bouts do not need to be scheduled within 10 days of the new moon but should be scheduled consistently across months with respect to the new moon.

Trapping Issues

- Summers are cool and humid with 24 hours of daylight from mid-May through early August. Trapping can be done continuously, but, due to logistical constraints, NEON will set traps for a 10hour period. If the weather allows, set traps by 2000h and check and close traps at 0600h. If overnight lows are too cold, traps may be set during the day for a 10-hr period
- Large mammal disturbance
- **Do not trap** when very cold temperatures (< 1.7°C (35°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Recommended when low temperatures are expected to be <18°C/65°F Dominant vegetation type(s) for bleed grid designation: Grassland/ Herbaceous Priority species for pathogen testing: Microtus oeconomus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported by Batzli and Henttonen 1990. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

Date: 02/11/2020

 Table 52. Site-specific species list (BARR)

TARGET SPECIES (Scientific and Common Name)		Number to be Used Annually
Dicrostonyx groenlandicus	Nearctic Collared Lemming	0-5
Lemmus trimucronatus	Nearctic Brown Lemming	0-5
Microtus oeconomus	Tundra Vole	10-100
OPPORTUNISTIC ANIMALS (Scientific and Common Name)		
Sorex tundrensis	Tundra Shrew	0-5
Sorex ugyunak	Barren Ground Shrew	0-5
Spermophilus parryii	Arctic Ground Squirrel	0-20
NON-TARGET ANIMALS (Scientific and Common Name)		
Mustela erminea	Short-tailed weasel	0-5
Mustela nivalis	Least Weasel	0-5
Neovison vison	American Mink	0-5

Timing of sampling

- Due to the very short season, a minimum of 3 bouts per year is expected.
- Given the presumed minimal influence of moonlight, bouts do not need to be scheduled within 10 days of the new moon but should be scheduled consistently across months with respect to the new moon.

Trapping Issues

- Summers are cool and humid with 24 hours of daylight from mid-May through early August. Trapping can be done continuously, but, due to logistical constraints, NEON will set traps by 2000h and check and close traps at 0600h during these times of year. During the spring and fall, trapping hours can be shifted earlier in the evening or later in the morning to reflect shifts in the timing of civil twilight.
- Large mammal disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Shrews are particularly abundant; mealworms should be added to the bait. Shrew mortality that exceeds the 5 individuals per night rule may lead to early closure of grids.

Use of bedding: Recommended under all conditions

Dominant vegetation type(s) for bleed grid designation: Deciduous Forest

Priority species for pathogen testing: Microtus spp.

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011 and Cook et al. 2002. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported for Denali National Park by Rexstad and Debevec n.d, and updated with NEON data from Healy in 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TAI (Scientific a	Number to be Used Annually	
Lemmus trimucronatus	Nearctic Brown Lemming	0-5
Microtus miurus	Singing Vole	0-50
Microtus oeconomus	Root Vole	0-50
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus xanthognathus	Taiga Vole	0-20
Myodes rutilus	Northern Red-backed Vole	20-200
Synaptomys borealis	Northern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORT (Scientific a		
Sorex cinereus	Cinereus Shrew	0-50
Sorex hoyi	American Pygmy Shrew	0-20
Sorex monticolus	Dusky Shrew	0-50

Table 53. Site-specific species list (BONA)

Sorex palustris	American Water Shrew	0-50
Sorex tundrensis	Tundra Shrew	0-50
Sorex yukonicus	Tiny shrew	0-50
Spermophilus parryii	Arctic Ground Squirrel	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-50
NON-T		
(Scientific a		
Glaucomys sabrinus	Northern Flying Squirrel	0-20
Mustela erminea	Short-tailed weasel	0-5
Mustela nivalis	Least Weasel	0-5

D.46 D19 – RELOCATABLE – HEAL (Healy)

Timing of sampling

• Due to the very short season, a minimum of 3 bouts per year is expected.

NEON Doc. #: NEON.DOC.000481

• Given the presumed minimal influence of moonlight, bouts do not need to be scheduled within 10 days of the new moon but should be scheduled consistently across months with respect to the new moon.

Author: S. Paull

Trapping Issues

- Summers are cool and humid with 24 hours of daylight from mid-May through early August. Trapping can be done continuously, but, due to logistical constraints, NEON will set traps by 2000h and check and close traps at 0600h during these times of year. During the spring and fall, trapping hours can be shifted earlier in the evening or later in the morning to reflect shifts in the timing of civil twilight.
- Large mammal disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).
- Shrews are particularly abundant; mealworms should be added to the bait. Shrew mortality may become prohibitively high at certain sites.

Use of bedding: Recommended under all conditions Dominant vegetation type(s) for bleed grid designation: Shrub scrub Priority species for pathogen testing: Microtus spp., Myodes rutilus

Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011 and Cook et al. 2002. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported for Denali National Park by Rexstad and Debevec n.d, and updated with NEON data from 2015 and 2016. Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TAI (Scientific :	Number to be Used Annually	
Lemmus trimucronatus	Nearctic Brown Lemming	0-5
Microtus miurus	Singing Vole	0-50
Microtus oeconomus	Root Vole	0-50
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus xanthognathus	Taiga Vole	0-20
Myodes rutilus	Northern Red-backed Vole	20-200
Synaptomys borealis	Northern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORT (Scientific :		
Sorex cinereus	Cinereus Shrew	0-50
Sorex hoyi	American Pygmy Shrew	0-20
Sorex monticolus	Dusky Shrew	0-50

Table 54. Site-specific species list (HEAL)

Sorex palustris	American Water Shrew	0-50
Sorex tundrensis	Tundra Shrew	0-50
Sorex yukonicus	Tiny shrew	0-50
Spermophilus parryii	Arctic Ground Squirrel	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-50
NON-T		
(Scientific a		
Glaucomys sabrinus	Northern Flying Squirrel	0-20
Mustela erminea	Short-tailed weasel	0-5
Mustela nivalis	Least Weasel	0-5

D.47 D19 – RELOCATABLE – DEJU (Delta Junction)

NEON Doc. #: NEON.DOC.000481

Timing of sampling

- Due to the very short season, a minimum of 3 bouts per year is expected.
- Given the presumed minimal influence of moonlight, bouts do not need to be scheduled within 10 days of the new moon but should be scheduled consistently across months with respect to the new moon.

Author: S. Paull

Trapping Issues

- Summers are cool and humid with 24 hours of daylight from mid-May through early August. Trapping can be done continuously, but, due to logistical constraints, NEON will set traps by 2000h and check and close traps at 0600h during these times of year. During the spring and fall, trapping hours can be shifted earlier in the evening or later in the morning to reflect shifts in the timing of civil twilight.
- Large mammal disturbance
- **Do not trap** when very cold temperatures (< 5.5°C (42°F)) are coupled with precipitation, or when there is sufficient snow on the ground (i.e., > 15 cm (6 inches)).

Use of bedding: Recommended under all conditions Dominant vegetation type(s) for bleed grid designation: Evergreen Forest Priority species for pathogen testing: Microtus spp., Myodes rutilus

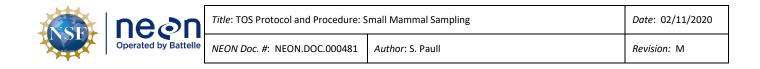
Species List and Abundance Estimates

This species list is based on Kays and Wilson 2011 and Cook et al. 2002. The abundance estimates were based on an average capture rate of 10%, as well as the species-specific relative abundances reported for Denali National Park by Rexstad and Debevec (n.d.). Domain staff must refer to the current state collection permit for the permitted list of species and associated capture numbers to ensure permit compliance, as these tables may differ.

TAI (Scientific	Number to be Used Annually	
Lemmus trimucronatus	Nearctic Brown Lemming	0-5
Microtus miurus	Singing Vole	0-100
Microtus oeconomus	Root Vole	0-50
Microtus pennsylvanicus	Meadow Vole	0-20
Microtus xanthognathus	Taiga Vole	0-20
Myodes rutilus	Northern Red-backed Vole	0-200
Synaptomys borealis	Northern Bog Lemming	0-5
Zapus hudsonius	Meadow Jumping Mouse	0-20
OPPORT		
(Scientific	and Common Name)	
Sorex cinereus	Cinereus Shrew	50-200
Sorex hoyi	American Pygmy Shrew	0-20
Sorex monticolus	Dusky Shrew	0-50
Sorex palustris	American Water Shrew	0-50
Sorex tundrensis	Tundra Shrew	0-50

 Table 55. Site-specific species list (DEJU)

Title: TOS Protocol and Procedure: Small Mammal Sampling				
NEON Doc. #: NEON.DOC.000481	Author: S. Paull			


Sorex yukonicus	Tiny shrew	0-50
Spermophilus parryii	Arctic Ground Squirrel	0-50
Tamiasciurus hudsonicus	Red Squirrel	0-50
NON-T		
(Scientific a		
Glaucomys sabrinus	Northern Flying Squirrel	0-20
Mustela erminea	Short-tailed weasel	0-5
Mustela nivalis	Least Weasel	0-5

Date: 02/11/2020

D.48 D20 – CORE – PUUM (Pu'u Maka'ala Natural Area Reserve)

Small mammal trapping is not permitted to occur at this site.

APPENDIX E EQUIPMENT

The following equipment is needed to implement the procedures in this document. Equipment lists are organized by task. They do not include standard field and laboratory supplies such as charging stations, first aid kits, drying ovens, ultra-low refrigerators, etc. A significant amount of specialized equipment is required to conduct surveys of small mammals. Therefore, all field personnel must be familiar and comfortable with using all the equipment before heading into the field. Please note that the use of 'All domains' in the Conditions Used field of the following equipment tables does not include D04 or D20, as no small mammal sampling is permitted to occur there.

Table 56. Equipment list – Flagging the grid, one bout

Supplier(s)	Supplier Number	Exact Brand	Description	Purpose	Quantity
Forestry Suppliers	91567	N	Laser Rangefinder, ½ foot accuracy	Set Traplines	1
Ben Meadows, Forestry Suppliers, or Forestry Supplier	213379 37184 3703	N	Compass with mirror and declination adjustment	Set and Follow Traplines	6
Ben Meadows, or Forestry Suppliers	122733 39986	N	Measuring tape, 100 m	Set Traplines	4
		N	Survey marking flag, wire, PVC or fiberglass stake	Set Traplines	100+
Amazon B&H	0100078101 0100150800	N	GPS receiver, recreational accuracy (Garmin eTrex20x)	Navigate to Traplines	2
Ben Meadows Forestry Supplier	100952 39167	N	Chaining pins or another suitable anchor	Anchor measuring tapes	10
		N	AA battery	Spare battery for GPS receiver	4
		N	CR123A battery	Spare battery for laser rangefinder	

ne@n	Title: TOS Protocol and Procedure: S	mall Mammal Sampling	Date: 02/11/2020	
		NEON Doc. #: NEON.DOC.000481		Revision: M

Supplier(s)	Supplier Number	Exact Brand	Description	Purpose	Quantity
		N	Permanent marker, chisel tip	Label flags	6

Table 57. Equipment list – Trapping, one bout

Supplier(s)	Supplier Number	Exact Brand	Description	Purpose	Quantity
Ben Meadows, Forestry Suppliers	213379 37184 37036	N	Compass with mirror and declination adjustment	Follow traplines	6
Amazon Cabela's REI	0100078101 IK270217 8950221	N	GPS receiver, recreational accuracy	Navigate to traplines	2
Amazon, Grainger Forestry Supplier	B007B5ZQJW, 8MNC9, 29204	N	2-way radio	Communication	6
H.B. Sherman Traps	LFA	Y	Sherman trap, small folding, 3"x3.5"x9"	Trap rodents (D01, D02, D03, D05, D06, D07, D08, D09*, D18, D19)	1200
H.B. Sherman Traps	XLK	Y	Sherman trap, x-large folding, 3"x3.75"x12"	Trap rodents (D09*, D10, D11, D12, D13, D14, D15, D16, D17)	1200

ne ne	Title: TOS Protocol and Procedure: S	mall Mammal Sampling
	NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Supplier(s)	Supplier Number	Exact Brand	Description	Purpose	Quantity
Forestry Supplier	2224	N	Headlamp	Hands-free lighting at dusk and dawn	6
Grainger	5M684	N	Storage bin, 26 gal rolling	Store seed	1
Forestry Supplier	69167	N	Tree planting bag	Carry traps	8
Forestry Supplier	35363 34504 34503	N	Lumbar bag	Carry bait	8
Forestry Supplier Grainger	35711 2YU13	N	Storage bin	Store extra supplies in truck	2
Amazon Excello Commodities Feed the Birds and More Home Depot	B0002T24OA	N	Seed, black oil sunflower	Bait traps	20 lb
Amazon	B000I1MASG	N	Seed, whole millet	Bait traps	2 lb
		N	Freeze-dried mealworms	Supplement bait for shrews	25 lb
Amazon	B00465UPA0	N	Batting, polyester	Nesting material	500

nean	Title: TOS Protocol and Procedure:
Operated by Battelle	NEON Doc. #: NEON.DOC.000481

Author: S. Paull

Supplier(s)	Supplier Number	Exact Brand	Description	Purpose	Quantity
ULINE	S-17685	N	Gusseted plastic bag, 2 gal	Contain traps during collection	1 lb
Amazon	B00GIRB5EE B004FEMQOU	Y	Talstar EZ or SevinDust	Control fire ants	1
		N	Biohazard warning sticker	Label traps	1200
		N	Resealable plastic bag, minimum 1 gal	Carry batting, secure to lumbar bag with carabiner	6
		N	Permanent marker, chisel tip	Label traps	6
		N	Wet erase markers, fine tip	Label traps	6
		N	Field notebook	Record field notes	1
		N	Pencils - #3	Label traps	6
		N	AA battery	Spare battery for GPS	4
		N	Battery, AAA, Rechargeable	Headlamp or GPS	12
		N	Bathtub crayons	Marking traps	6
		Y	Adhesive barcode labels (type IV for cryo storage, type I for hair/whisker envelopes)	Labeling sample containers	1 roll

Date: 02/11/2020

Table 58. Equipment list – Checking traps and processing captures, one bout

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Grainger	3VEP6	N	Amber bottle, 30 ml with dropper	Administer isoflurane	2
Amazon	B000I1ZZ24	Ν	Tea infuser spoon	Administer isoflurane	2
Fisher	1443222 1495949A	Ν	Tube, Centrifuge, Sterile, Conical, 50mL (30 mm diameter)	Administer isoflurane	2
Fisher	1495949B	Ν	Tube, Centrifuge, Sterile, Conical, 15mL (17mm diameter)	Administer isoflurane	2
National Band & Tag Company	100551	Y	Ear tag applicator, size monel #1	Affix ear tag	4
Oregon RFID Inc.	PortableFDXHD XReader	N	Proximity Reader. PIT tag portable reader capable of reading ISO 11784/11787 FDX-B and HDX PIT tags, simple data retrieval via USB port, Bluetooth	Read PIT tag number	2
Fisher	S90532C	N	Ruler, 12" plastic, mm gradation	Measure	2
Amazon Grainger Forestry Supplier	50045016 26CT75 47450	Ν	Ruler, 6", flexible clear plastic	Measure	2
Forestry Supplier	93010	Ν	Spring scale, tareable, capacity 30 g max Pesola LightLine or Micro-Line	Weigh individuals	2

ne⊘n	Title: TOS Protocol and Procedure:	
Operated by Battelle	Title: TOS Protocol and Procedure: NEON Doc. #: NEON.DOC.000481	

Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Forestry Supplier	93051	N	Spring scale, tareable, capacity 50 g max, Pesola LightLine	Weight individuals	2
Forestry Supplier	93011	N	Spring scale, tareable, capacity 100 g maximum Pesola LightLine or Micro-Line	Weigh individuals	2
Forestry Supplier	93053	N	Spring scale, tareable, capacity 1000 g maximum Pesola LightLine or Micro-Line	Weigh individuals	2
Fisher	15350107B	Ν	Storage box, 81 positions with lid	Organize cryovials during blood collection	4
Thomas	1217R63	Ν	Cryovial freezer storage box with dividers	Organize samples	10
National Band & Tag Company	1539 1538	N	Ear tissue punch	Collect ear tissue	2
		N	Cooler, 16qt	Chill perishable samples in field	2
Amazon Amazon B&H	B005MTMEKI B00HGE3D2K V104060BU000	Ν	Digital camera, 12 megapixels	Capture images of rodents for species identification	2

Decon Operated by Battelle	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
		Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Amazon B&H	B0039BPG4C LOA30AWB LOFS300B PEOCP260B OCP260B	N	Camera bag	Protect digital camera	2
		N	Ventilated tupperware or cardboard container	Care for hypothermic animals	5
Thomas Fisher	1709C02 02912034	N	Bottle, 250 mL wide-mouth HDPE	Store sugar/water solution for animal care	2
		N	Shelter/tent	Shade collected traps, provide shelter while processing	2
		N	Backpack	Transport field equipment	2
		N	Organizer boxes with lid	Organize equipment	4
		N	Mesh wash bag	Restrain larger species	20
MWI Veterinary Amazon	278318 B00AJHE41A	N	Restraint bag	Restrain larger species	20

nean	Title: TOS Protocol and Procedure: S	mall Mammal Sampling
Operated by Battelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Ben Meadows Forestry Supplier	133609 35668	N	Multi-tool	Marking	2
Grainger Amazon	10J907 B00D0BWEBE	N	Diagonal plier, 4 in	Remove ear tags	2
		N	Short (< 6 inches) piece of rope (550 paracord works well) for 1000 g scale	Attaching to scale, in place of alligator clip, to weigh larger animals in plastic bags	2
		N	Iris scissors	Collect ear tissue	2
Fisher	08953C	N	Forceps, cushing dissecting	Collect sample	4
Fisher	08953E 08953F	N	Forceps, dissecting microforceps	Collect sample, check for ticks	4
Fisher	50822372	N	Cuticle clippers	Remove ear tags	2
Forestry Supplier	61280	N	Magnifier hand-lens, 10X	Aid in species identification	2
Fisher	1523911	N	Plastic tray 25"x19x1"	Alternative or additional mammal processing surface	2
Grainger	30ZU96	N	Thermohygrometer	Monitor weather conditions	2

neon Operated by Battelle	<i>Title</i> : TOS Protocol and Procedure: S	mall Mammal Sampling
	NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Ben Meadows Forestry Supplier	01510-1 49247	N	All weather copy paper	Print datasheets	25 sheet
Fisher	19898793	N	Cotton ball	Administer isoflurane	150
MWI Veterinary Supply	502017	Y	Isoflurane	Anesthesia/eut hanasia	25 mL
Amazon Grainger	B0007ZF4OA 26KF06	N	Hand warmer	Care for hypothermic animals	2
Arrow	OFX00021	N	Sugar	Care for hypothermic animals	2
Amazon	B01AR8UGZI	N	Freeze-dried mealworms	Care for stressed animals	2 lb
Fisher	NC9335230	N	Styptic Powder	Slow/stop bleeding (in case of open wound)	1 pack, 42 g
Fisher	23400105 23400118	N	Cotton swab	Apply styptic powder	50
National Band & Tag Company	10051L2	Y	Ear tag, numbered	Tag captured individuals	200
Biomark, Inc.	BIO12, B03V1PLS25	Y	Pre-loaded Sterile FDX PIT tag 2mm x 12.5mm and implanter	Tag captured individuals	50

neon	Title: TOS Protocol and Procedure: Small Mammal Sampling				

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Biomark, Inc.	HPT8	Y	Pre-Loaded Sterile FDX PIT Tag 1.4mm x 8.5mm and RFID Pistol Grip Injector compatible with 1.4mm x 8mm and 2.1mm x 12mm Transponders	Tag captured individuals	50
Amazon	B004C12Q46	N	Veterinary tissue adhesive	Gluing tissue at PIT tag implant location	3 mL
		N	Permanent marker (>1/2 inch), red, blue, or green preferred	Mark–captured shrews	4
Fisher	NC9922361 NC9891620	N	Lancet, 4mm and 5mm	Collect blood	1000
Fisher	NC0600941	N	Lancet, 6mm	Collect blood	300
Amazon	B005TM1HJM	N	Sterile artificial tears ointment	Aid in blood collection	7 grams
Grainger Fisher	3VAL6, 5ELT9, 6LGZ4 22363750	N	Alcohol wipe	Collect ear punches	1000
Fisher	22362178	N	Gauze pad	Apply pressure to bleeding	1000
Thomas	1236C14	N	Microcentrifuge tube, 1.5 mL with external threads	Contain blood, fecal samples, ear punches	1000
University Products	613-1387	N	Artifact identification tag	Label vouchers	10

ne⊘n	Title: TOS Protocol and Procedure: S	Date: 02/11/2020	
	NEON Doc. #: NEON.DOC.000481		Revision: M

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Amazon	B004RCQC7M	N	Thread	Attach tags to voucher specimens	2 rolls
ULINE	S7798	N	Coin envelope, small (no larger than 3.5" x 2.25")	Contain whisker and hair samples	150
Vendors vary by domain	Varies by vendor	N	Dry ice, pelletized	Freeze blood samples	50 lbs
Grainger	5LH30	N	Resealable plastic bag, 1 gal, 2 mil	Restrain captured individuals	200
Grainger	8YAT5 5CNK5	N	Resealable plastic bag, 1 gal, 4 mil	Restrain captured individuals	100
Grainger	30N557	N	Heat shrink tubing	Cover clamp teeth on spring scales	1 package
Fisher	15930C	N	Cryogenic label	Label sample	1000
Grainger	5CNK1	N	Resealable plastic bag, 1 qt, 4 mil	Organize collected samples (coin envelopes, filled vials, and voucher specimens)	20
		N	Battery for thermohygrometer	Spare battery for thermo- hygrometer	2
		N	Digital camera battery	Spare battery	2

neon	Title: TOS Protocol and Procedure: S	imall Mammal Sampling
Operated by Battelle	NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Amazon	4CH350C	N	Plastic sheeting, 3 x 50ft, 4 mil, clear	Provide mammal processing surface	10
		N	Permanent marker, ultra-fine tip	Label sample	2
Bioquip	1154F	N	Permanent marker, archival ethanol-safe	Label sample	2
Nebraska	WPZ7H103	N	Preserved mice	Cervical dislocation training	1 per handler
		N	Field guide, regional, dichotomous key	Identify unknown species	2
		N	Field guide, mammals	Identify unknown species	2
RD[05]		N	Small mammal field datasheets	Record data	10

Date: 02/11/2020

 Table 59. Equipment list – Cleaning and sterilization, one bout.

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity*
Fisher	S65023	N	Butane lighter	Sterilize tools	2
Amazon Arrow Grainger	B001E0HWW CMC9223SPY 3LFU8	N	Spray bottle	Disinfect tools and work area	2
Grainger Fisher	2TUW7 033134F	N	Portable Sharps container.	Contain Sharps waste	2
Fisher	S13507	N	Narrow mouth jug, 1 gal	Transport quaternary ammonia	2
Grainger	6DLA6	Ν	3 cup container	Contain quaternary ammonia for disinfecting tools	2
		N	Mason jar	Transport used quaternary ammonia	2
		N	Alcohol wipe	Disinfect tools	50

Decon Operated by Battelle	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
	NEON Doc. #: NEON.DOC.000481	Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity*
Grainger	22C492 3WGK6	Ν	Quaternary Ammonia 5% solution	Disinfect tools, gloves and work surfaces	10 L
		N	Trash bag, large	Contain and transport waste	20
		N	Resealable plastic bag	Contain Sharps container	2
	perquis estimates pe	N	Paper towels	Dry tools	2 rolls

* Quantities are generous estimates per bout per site

Table 60. Equipment list – Cleaning traps, per bout

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Amazon Arrow Grainger	B001E0HWW CMC9223SPY 3LFU8	N	Spray bottle	Wash traps	1 pack, 6
		N	Scrub brush, long and short handle	Scrub traps	6
Fisher	03622	N	Bottle brush, 19"	Scrub traps	1
		N	Chemical-resistant glove	Protect hands	1
Fisher	0300739	Ν	Graduated cylinder, 25 ml, plastic	Measuring quaternary	2

Operated by Battelle	nean	Title: TOS Protocol and Procedure: S	Date: 02/11/2020
	Operated by Battelle		Author: S. Paull

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Thomas	100379			ammonium for dilution	
Grainger	49EN48	N	Plastic bucket, 5 gal	Wash traps	6
Fisher Thomas	23190050 1753E30	N	Carboy, 20 L	Wash traps	1
Grainger	22C492 3WGK6	N	Quaternary disinfectant	Disinfect traps	1 bottle, 1 gal

 Table 61. Equipment list – Preparing blood samples

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Thomas Fisher	1217R63 03395450	Ν	Cryovial freezer storage box with dividers	Organize samples	5
Fisher	11394305	N	Cryogenic gloves	Protect hands while handling dry ice	1 pair
Ben Meadows Forestry Suppliers	010510-1 49247	N	All weather copy paper	Print datasheets	5 sheets
RD[05]		Ν	Small mammal datasheet (shipping manifest)	Datasheets	5 sheets

Table 62. Equipment list – Shipping blood samples

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Fisher	11394305	N	Cryogenic gloves	Protect hands while handling dry ice	1 pair
		Ν	Corrugated fiberboard or insulated shipper, UN packing group III	Package samples for shipment	3
		N	Watertight inner shipping container, certified for UN3373	Package samples for shipment	
		Ν	Dry ice shipping label	Label shipments containing dry ice	3
		Ν	Biological Substance Category B shipping label	Label shipments of diagnostic specimens	3
Varies by domain	Varies by supplier	N	Dry ice, pelletized	Keep samples frozen during shipment	5 lbs
		Ν	Packaging tape	Package samples for shipment	
		N	Absorbent material (e.g., cellulose wadding, cotton balls, absorbent packets, or paper towels)	Package samples for shipment	
		N	Shipping manifest	Inventory of specimens being shipped	1

Table 63. Equipment list – Genetic analysis

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
Fisher	08953F 08953E	N	Forceps, jewelers	Remove tissue	3
Fisher	S65023	Ν	Butane lighter	Sterilize ear tissue punch	1
VWR	D-3505-1	Ν	Chill block and microplate cooler	Prepare well plates	1
Lab supplied		N	96-well microwell plates	Store tissue to be barcoded	3
Lab supplied		N	96-well microwell caps	Cover microwell plates	285
Amazon Arrow Grainger	B001E0HWW CMC9223SPY 3LFU8	N	Spray bottle for ethanol	Disinfect bench space and gloves	1
Fisher	11394305	N	Cryogenic gloves	Protect hands while handling dry ice	1 pair
Fisher	04355601	N	Ethanol, 190 proof (95%) (55 gallons)	Disinfect bench space and gloves	1 L
Thomas	C954K61	Ν	Ethanol, 190 proof (95%) (5 gallons)	As above, for domains that cannot store 55 gallons of ethanol. (D05)	

neon	Title:
Operated by Battelle	NEOI

e: TOS Protocol and Procedure: Small Mammal Sampling
ON Doc. #: NEON.DOC.000481 Author: S. Paull

Date: 02/11/2020

Supplier	Supplier Number	Exact Brand	Description	Purpose	Quantity
		N	Corrugated fiberboard or insulated shipper, UN packing group III	Package samples for shipment	1
		Ν	Watertight inner shipping container, certified for UN3373	Package samples for shipment	Variable
		N	Biological Substance Category B shipping label	Label shipments containing diagnostic specimens	Variable
		Ν	Packaging tape	Package samples for shipment	1 roll
		Ν	Nitrile gloves, powderless	Prevent contamination of samples	Variable
		N	Address labels	Address shipments	1
Varies by domain	Varies by supplier	N	Dry ice, pelletized	Preserve samples during shipment	2 lbs