

TOS PROTOCOL AND PROCEDURE: LITTERFALL AND FINE WOODY DEBRIS

PREPARED BY:	ORGANIZATION:	DATE:
Katie Jones	FSU	9/8/2014
Courtney Meier	FSU	9/8/2014

APPROVALS (Name):	ORGANIZATION:	APPROVAL DATE:
Dave Tazik	SCI	9/8/2014
Mike Stewart	PSE	9/8/2014

RELEASED BY (Name):	ORGANIZATION:	RELEASE DATE:
Stephen Craft	PSE	9/8/2014

See Configuration Management System for Approval History

Change Record

REVISION	DATE	ECO #	DESCRIPTION OF CHANGE
А	9/9/2014	ECO-02136	Initial release

	<i>Title</i> : TOS Protocol and Procedure: Litterfall and Fine Woody Debris	Author: K. Jones	Date: 9/9/2014
< 1	NEON Doc. #: NEON.DOC.001710		Revision: A

TABLE OF CONTENTS

1	De	escription	1
	1.1	Purpose	1
	1.2	Scope	1
	1.3	Acknowledgements	1
2	Re	elated Documents and Acronyms	2
	2.1	Applicable Documents	2
	2.2	Reference Documents	2
	2.3	Acronyms	2
	2.4	Definitions	3
3	Ba	ackground and Objectives	4
	3.1	Background	4
	3.2	NEON Science Requirements	5
	3.3	NEON Data Products	5
4	Pr	rotocol	6
	4.1	Sampling methods	6
	4.2	Spatial distribution of sampling	7
5	Q	uality Assurance and Control	9
6	Sa	ıfety	11
7	Pe	ersonnel Requirements	12
8	Tr	aining Requirements	13
9	Sa	ample Frequency and Timing	14
	9.1	Sampling Frequency and Timing	14
	9.2	Criteria for Determining Sampling Dates	14
	9.3	Sampling Frequency	15
	9.4	Sampling Timing Parameters	15
1	0	Standard Operating Procedures	.16
	SOP	A: Preparing for Sampling	.16
	1.	Field Equipment and Materials	.16
	2.	Gather necessary resources for field work	. 17
	SOP	B: Field Sampling – Trap Deployment	. 18

<i>Title</i> : TOS Protocol and Procedure: Litterfall and Fine Woody Debris	Author: K. Jones	Date: 9/9/2014
NEON Doc. #: NEON.DOC.001710		Revision: A

1.	Field	l Equipment and Materials	3
2.	Sele	cting litter trap location strategy19	Э
3.	Loca	ting targeted elevated trap location19	Э
4.	Loca	iting random elevated trap location20)
5.	Loca	iting ground trap clip strip23	3
5.	Elev	ated trap construction and installation23	3
SOP C	Field	Sampling25	5
1.	Field	Equipment and Materials2	5
2.	Fine	litter collection – Elevated traps	ô
3.	Woo	ody litter collection - Ground	7
SOP D	: Labo	pratory Processing and Analyses28	3
1.	Labo	pratory Equipment and Materials	3
2.	Labo	pratory processing	Ð
3.	Grin	ding dried litter for archive and chemical analysis32	1
SOP E:	Data	Entry and Verification	2
1.	Ente	ring and Uploading Field Data	2
2.	Equi	pment Maintenance, Cleaning and Storage33	3
11 R	efere	nces34	4
Appendix	хA	Quick references	5
Appendix	κВ	Checklists	ô
Appendix	кC	Site Specific Considerations	7
Appendix	кD	Site specific sampling dates	3
Appendix	ĸЕ	Using and Calibrating the TruPulse 360R Laser Rangefinder42	2

LIST OF TABLES AND FIGURES

Table 1. Size limits for functional groups collected in Elevated and Ground litter traps; litter material larger than	
described here will be collected according to the coarse woody debris protocol RD[10]	6
Table 2. Sample timing and frequency by vegetation type	15
Table 3. Field Equipment List for SOP A	16
Table 4. Field Equipment List for trap deployment	18
Table 5. Equipment list for Field Sampling of elevated and ground litter traps	25
Table 6. Prescribed "trapCondition" codes	26
Table 7. Modified trapCondition codes for ground traps.	27

<i>Title</i> : TOS Protocol and Procedure: Litterfall and Fine Woody Debris		Author: K. Jones	Date: 9/9/2014
NE	CON Doc. #: NEON.DOC.001710		Revision: A

Table 8. Laboratory Equipment List for SOP D	
Table 10. Ground trap litter functional group codes	
Table 11. Laser Target Modes available for the TruPulse 360 laser rangefinder/clinometer models	
Figure 1. Example of numbering system for qualifying patches of vegetation within a plot	
Figure 2. A 20 m x 20 m NEON plot) showing the locations of 0.5m x 3m clip-harvest "cells" (dashed blue lines). Larger	
plots will have different nested subplots, but the coordinate numbering system for the 20 m subplot within these plots	
will follow the same conventions as shown above21	
Figure 3. Fully constructed elevated litter trap, NEON traps will have legs attached on corners rather than center (photo	
from Muller-Landau and Wright 2010)24	
Figure 4. Example field collection label	
Figure 5. The tilt-sensor calibration routine for the TruPulse 360R laser rangefinder. The blue arrow and line indicate the	
direction of the lens at each calibration step43	
Figure 6. The internal compass calibration routine for the TruPulse 360R laser rangefinder	

1 DESCRIPTION

1.1 Purpose

The primary purpose of this document is to provide a change-controlled version of Observatory protocols and procedures. This document provides the content for training and field-based materials for NEON staff and contractors. Documentation of content changes (i.e. changes in particular tasks or safety practices) will occur via this change-controlled document, not through field manuals or training materials.

This document is a detailed description of the field data collection, relevant pre- and post-field tasks, and safety issues as they relate to this procedure and protocol.

1.2 Scope

This document relates the tasks for a specific field sampling or laboratory processing activity and directly associated activities and safety practices. This document does not describe:

- general safety practices
- site-specific safety practices
- general equipment maintenance

It does identify procedure-specific safety hazards and associated safety requirements such as safe handling of small mammals or safe use of required chemicals and reagents.

1.3 Acknowledgements

This protocol is modeled closely after the litter monitoring protocol written by Helene C. Muller-Landau and S. Joseph Wright (2010) for the CTFS Global Forest Carbon Research Initiative.

2 RELATED DOCUMENTS AND ACRONYMS

2.1 Applicable Documents

Applicable documents contain information that shall be applied in the current document. Examples are higher level requirements documents, standards, rules and regulations.

AD [01]	NEON.DOC.004300	EHS Safety Policy and Program Manual
AD [02]	NEON.DOC.004316	Operations Field Safety and Security Plan
AD [03]	NEON.DOC.000724	Domain Chemical Hygiene Plan and Biosafety Manual
AD [04]	NEON.DOC.000xxx	NEON Training Plan
AD [05]	NEON.DOC.050005	Field Operations Job Instruction Training Plan

2.2 Reference Documents

Reference documents contain information complementing, explaining, detailing, or otherwise supporting the information included in the current document.

RD [01]	NEON.DOC.000008	NEON Acronym List	
RD [02]	NEON.DOC.000243	NEON Glossary of Terms	
RD [03]	NEON.DOC.000914	NEON Science Design for Plant Biomass, Productivity, and Leaf Area	
		Index	
RD [04]	NEON.DOC.005003	NEON Scientific Data Products Catalog	
RD [05]	NEON.DOC.014051	Field Audit Plan	
RD [06]	NEON.DOC.000824	Data and Data Product Quality Assurance and Control Plan	
RD [07]	NEON.DOC.001271	Protocol for Manual Data Entry	
RD [08]	NEON.DOC.014037	TOS Protocol and Procedure: Measurement of Herbaceous Biomass	
RD [09]	NEON.DOC.001025	TOS Protocol and Procedure: Plot Establishment	
RD [10]	NEON.DOC.001711	TOS Field and Lab Protocol for Coarse Woody Debris	
RD [11]	NEON.DOC.001924	NEON Raw Data Ingest Workbook for TOS Litterfall and Fine Woody	
		Debris	
RD [12]	NEON.DOC.002132	Datasheets for TOS Protocol and Procedure: Litterfall and Fine	
		Woody Debris	

2.3 Acronyms

ANPP	Aboveground Net Primary Productivity	
SOP	Standard Operating Procedure	

2.4 Definitions

A **protocol** is a formal summary description of a procedure and its related rationale, and includes information on knowledge and resources needed to implement the procedure. A procedure is a set of prescribed actions that must take place to achieve a certain result, and can also be called a method. It differs from a science design in that science designs provide a more complete description of the rationale for selecting specific protocols. It differs from a training manual in that training manuals provide materials in support of skills acquisition in the topic areas including information on how to best train staff rather than detailing only the steps of the procedure.

Litterfall is defined as shed leaves and needles, reproductive parts (i.e. flowers, fruits, cones, seeds, etc.), and fine woody debris with butt-end diameter < 2 cm (modified from Clark et al. 2001, Bernier et al. 2008). Woody pieces with diameter ≥ 2 cm are considered coarse woody debris, and will be sampled according to the NEON Field and Lab Protocol for Coarse Woody Debris (RD[10]).

3 BACKGROUND AND OBJECTIVES

3.1 Background

Quantifying production of litterfall and fine woody debris is required to estimate annual Aboveground Net Primary Productivity (ANPP) at plot, site and continental scales, and will provide essential data for understanding vegetative C fluxes over time. Litterfall and fine woody debris production will be estimated within Tower plots on an annual basis. Sampling point selection within a plot or subplot will be random, sampling points will be selected from the same randomized list generated to guide clip strip locations for herbaceous clip harvest. In ecosystems where the overstory is non-continuous (i.e. patchy) litterfall and fine woody debris sampling will be targeted rather than random across the plot.

This design calls for sorting fresh litter into specified functional groups prior to drying if time permits. If it is logistically not feasible to sort fresh material before drying, litter may be sorted after drying as time allows. However, sorting freshly collected litter is preferable because dry litter is easily fragmented and identifying small litter fragments to functional group will introduce uncertainty in sorting accuracy.

Elevated litter trap size has been selected to be consistent with existing standards and are the same dimensions (70 cm x 70 cm x 80 cm) as traps used by CTFS. To minimize the number or clip strips dedicated to fine woody debris sampling, which are therefore unavailable for herbaceous biomass sampling, ground traps will have the same dimensions as a single clip strip cell, 3 m x 0.5 m. If it is apparent that the volume of litterfall biomass collected from elevated and ground litter traps is too great to efficiently dry and process given limitations on drying oven space in the NEON laboratory, trap size or number may be reduced by Science Operations based on sample optimization analysis.

This protocol is divided into five Standard Operating Procedures (SOPs), each SOP addresses one discrete task and may be utilized as a standalone document as needed for specific field or lab tasks.

- **SOP A: Preparation for field work.** Includes gathering the necessary equipment and preloading the GPS with the necessary waypoints.
- **SOP B: Installation of Elevated and Ground Litter Traps.** Describes the steps for locating sampling points and establishing litter trap pairs.
- **SOP C: Litterfall and Fine Woody Debris Sampling**. Describes field collection of litterfall and fine woody debris from traps.
- **SOP D: Processing Litter Samples in the Laboratory**. Covers laboratory processing including drying and weighing of samples.
- **SOP E: Data Entry**. Provides guidance for manual data transcription from paper data sheets to the Access database.

3.2 NEON Science Requirements

This protocol fulfills Observatory science requirements that reside in NEON's Dynamic Object-Oriented Requirements System (DOORS). Copies of approved science requirements have been exported from DOORS and are available in NEON's document repository, or upon request.

3.3 NEON Data Products

Execution of this protocol procures samples and/or generates raw data satisfying NEON Observatory scientific requirements. These data and samples are used to create NEON data products, and are documented in the NEON Scientific Data Products Catalog (RD[04]).

PROTOCOL 4

Title:

To measure litterfall and fine woody debris, NEON will employ two types of sampling units: 1) square, elevated, mesh litter traps; and 2) rectangular, ground "traps" (Figure 2 SOP B). Elevated litter traps are designed to be large enough that the average size of abundant foliage and fine woody debris elements are easily intercepted by the trap. Ground traps are intended to intercept particularly large foliage elements that will not fit in elevated traps (e.g. palm fronds), and fine woody debris pieces that are too long to be sampled in elevated traps including small diameter branches.

4.1 Sampling methods

For both elevated and ground traps, only the portion of material that meets both the length and diameter criteria will be sampled (Muller-Landau and Wright 2010). Litter sampled from elevated traps will be sorted into functional groups following collection, using the groupings outlined in Table 1. Note these functional groups differ from those used in NEON's herbaceous clip harvest protocol (RD[08]).

Table 1. Size limits for functional groups collected in Elevated and Ground litter traps; litter material larger than described here will be collected according to the coarse woody debris protocol RD[10].

Functional Group	Elevated Traps	Ground Traps
Leaves	< 50 cm length	> 50 cm length
Needles	< 50 cm length	> 50 cm length
Twigs/branches	< 2 cm diameter AND < 50 cm length	< 2 cm diameter AND > 50 cm length
Woody material (e.g. cones, bark, etc)	< 2 cm diameter AND < 50 cm length	< 2 cm diameter AND > 50 cm length
Seeds	All	N/A
Flowers	All	N/A
Other (lichen, mosses, unidentifiable material, etc.)	All	N/A

To ensure the accuracy of annual litter production estimates, ground traps will be cleared of all relevant litter material following the annual sampling bout.

Sorted litter from both elevated and ground traps will be shipped to external laboratories to be analyzed for C, N, δ 13C and, δ 15N.

Laboratory processing

Title:

Following collection and sorting in the field, litter will be transported back to the laboratory and dried at 65°C until water weight has been removed, to within the allowed variance indicated in SOP D (minimum 48 hrs). The woody portion of litter will be cut to fit in the drying oven then dried at a higher temperature than litterfall, 105 °C to release bound water (Williamson and Wiemann 2010).

Equipment

Design of PVC elevated litter traps is adopted from the Smithsonian Tropical Research Institute Centre for Tropical Forest Studies (STRI/CTFS). Non-oxidizable metal rods (e.g. aluminum, galvanized steel, or equivalent) will be used to hold elevated litter traps in place. The corners of ground traps will be marked with non-oxidizable metal or plastic stakes to facilitate precise re-measurement of the selected sampling area.

4.2 Spatial distribution of sampling

Consistent with existing protocols, NEON will establish one elevated litter trap and one paired ground trap per 400 m² plot/subplot in Tower plots.

Only plots with woody vegetation present will be selected for litter sampling using this protocol. Vegetation surveys conducted during site characterization will inform plot selection. Initially, all tower plots will automatically be considered for litter sampling and then accepted according to the following criteria:

- 1) 1 or more individuals with DBH \geq 10 cm or;
- 2) 10 or more individuals with DBH \ge 5 cm

Plots that do not meet these criteria are not utilized for litter sampling.

Elevated traps

An elevated mesh litterfall trap (70.7 cm x 70.7 cm; 0.5 m², 0.8 m tall) will be placed at a random location within each plot/subplot, with trap locations selected from the herbaceous clip harvest list. Once set, traps will remain in the same location within the plot for sampling in subsequent years unless traps are removed for optimization. These traps will reliably sample shed leaves, needles, reproductive parts, and fine woody debris with butt-end diameter < 2 cm and length < 50 cm.. Traps will be sampled according the guidelines outlined in section 9 of this document. Deciduous forests will be sampled once in the spring then once every two weeks during leaf senescence. Evergreen systems including coniferous, xeric and tropical forests will be sampled year-round; the ideal sampling interval is every 4 weeks but may be extended to 8 weeks if dictated by logistical constraints.

In mixed woodland and grassland ecosystems (e.g. Domain 15 Onaqui, Domain 17 San Joaquin), woody vegetation cover is frequently patchy. As such, randomly placed litter traps are unlikely to adequately

capture litter dynamics from woody vegetation. In this case, NEON will target litter trap placement to randomly selected areas of the plot with woody cover, and then use remote sensing imagery from NEON's Airborne Observation Platform (AOP) to estimate woody vegetation percent cover of the plot to scale litter production from the trap to the plot level. Scaling of this data will occur as part of the preparation of data products and is not expressly part of this protocol.

Ground traps

Ground traps for collecting large leaves, fronds, and fine woody debris with butt-end diameter < 2 cm and length > 50 cm, will be randomly located in plots at least 2 meters from elevated traps, consistent with Muller-Landau and Wright (2010). To avoid interfering with other sampling within the plot, the basic ground trap sampling unit will be one randomly selected 0.5 m x 3 m herbaceous clip harvest grid cell within the same plot or subplot as the elevated trap (Figure 1, SOP B). Ground traps are cleared of all relevant litter one year prior to the onset of sampling so that any litter within the selected area can be assumed to be the result of annual production. Only portions of large fronds or long sections of fine woody debris that lie inside the ground traps will be sampled; these sample locations will not move from year to year and will be excluded from consideration as locations for herbaceous clip harvest.

QUALITY ASSURANCE AND CONTROL 5

Title:

The procedures associated with this protocol will be audited according to the Field Audit Plan (RD[05]). Additional quality assurance will be performed on data collected via these procedures according to the NEON Data and Data Product Quality Assurance and Control Plan (RD[06]).

When unexpected field conditions require deviations from this protocol, the following field implementation guidance must be followed to ensure quality standards are met:

Delay	Action	Adverse Outcome	Outcome for Data Product
Hours	If delay prevents completion of litter collection from a single trap, resume collection as soon as possible. If delay occurs between plots, resume litter trap collection as soon as possible.	None	None
1-7 days	 If delay prevents completion of litter collection from a single trap Store already collected litter in a cooler/refrigerator (okay), or sort and oven- dry as per protocol (best), Resume collection of litter trap ASAP with new labeled bags Combine dried biomass per functional group for weighing when all biomass is dry. If delay occurs between litter traps, resume collection of remaining litter traps as soon as possible. 	None	None
8-13 days or longer	If delay occurs between litter collection, resume harvest of next trap ASAP If all traps are not collected in a single bout, prioritize collection of litter from missed traps at the subsequent bout	Some litter mass may be lost from traps	More uncertainty in biomass and ANPP estimates

Within a given year or growing season, Metcalfe et al. (2008) point out that litterfall collection efforts often have high levels of uncertainty and require greater sample size to accurately estimate annual production than other biomass pools. Additional traps may be installed at additional random (clip strip) locations per plot should variance of the litterfall estimate be greater than ± 10% of the estimated mean based on analysis, conducted by Science Operations, of data from initial collection events (see RD[03] for details), and if technician labor is available.

Title:	Author: K. Jones	Date: [Publish Date]
NEON Doc. #: NEON.DOC.001710	Revision: *	

If it is apparent that the volume of biomass collected from elevated and ground litter traps is too great to efficiently dry and process given limited drying oven space in the NEON domain laboratories, trap size or number may be reduced if justified based on sample optimization analysis conducted by Science Operations.

6 SAFETY

Personnel working at a NEON site must be compliant with safe field work practices as outlined in the Operations Field Safety and Security Plan (AD[02]) and EHS Safety Policy and Program Manual (AD[01]). Additional safety issues associated with this field procedure are outlined below. The Field Operations Manager and the Lead Field Technician have primary authority to stop work activities based on unsafe field conditions; however, all employees have the responsibility and right to stop their work in unsafe conditions.

A laser rangefinder/hypsometer/compass instrument is used to locate randomly assigned trap locations. Safety considerations for this instrument include:

- Avoid staring directly at the laser beam for prolonged periods. The rangefinder is classified as eye-safe to Class 1 limits, which means that virtually no hazard is associated with directly viewing the laser output under normal conditions. As with any laser device, however, reasonable precautions should be taken in its operation. It is recommended that you avoid staring into the transmit aperture while firing the laser.
- Never attempt to view the sun through the scope. Looking at the sun through the scope may permanently damage the eyes.

Pipe glue used to attach PVC legs to the elevated trap is highly flammable and may cause skin and eye irritation. Vapors are also potentially dangerous if inhaled. Technicians using glue should familiarize themselves with the hazards associated with this product (refer to the SDS), and with proper handling techniques.

Personnel assigned the task of constructing elevated traps shall attend Hand and Power Tool Safety Training and Machine Shop Safety. Personnel shall be trained in the safe use, maintenance and cleaning of the Wiley[®] Mill or equivalent.

7 PERSONNEL REQUIREMENTS

Title:

The lead plant technician must possess the demonstrated ability to identify collected plant structures to functional group via visual inspection. Preferably, the technicians sorting biomass are the same technicians who harvested the biomass in the field.

TRAINING REQUIREMENTS 8

Title:

All technicians must complete required safety training as defined in the NEON Training Plan (RD[04]). Additionally, technicians must complete protocol specific training for safety and implementation of protocol as required in Field Operations Job Instruction Training Plan (RD[05]).

Technicians must be proficient in the use of handheld GPS units in order to successfully navigate to plots for sampling.

9 SAMPLE FREQUENCY AND TIMING

The primary objective is to generate annual or per growing season estimates of litterfall and fine woody debris production within the dominant vegetation type (i.e. within Tower plots). Estimates of deciduous litterfall will be calculated on a per annum basis, with all of the litter produced in a given year contributing toward the yearly estimate. Evergreen litterfall estimates within a given calendar year do not necessarily reflect annual production due to the multi-year and somewhat variable lifespan of needles; however, the long-term average (n = at least 3 years) will be used to estimate per annum needle production.

9.1 Sampling Frequency and Timing

Elevated traps

In predominantly deciduous systems with pronounced annual senescence, elevated litter traps will be sampled in the spring to account for winter production of fine woody debris, followed by biweekly sampling during the period of autumn senescence (Bernier et al. 2008). In systems dominated by plants that bear multi-year leaves or needles (e.g. D17 San Joaquin and D04 Guanica), elevated traps will be sampled throughout the year. Mixed forests with both evergreen and deciduous species will be sampled according to a hybrid approach; sampling should occur once a month with increased, bi-weekly sampling during senescence.

Litterfall in coniferous forests (e.g. D10 Rocky Mountain Park and D16 Wind River) or in xeric shrub systems (e.g. D14 Santa Rita and Jornada LTER) may be sampled with less frequency than deciduous broadleaf forests, but since there is no clear 'litterfall season' sampling will occur year round. NEON will sample litterfall in arid desert systems on a monthly basis (Table 2).

Once a month sampling is considered ideal to ensure data quality; however, sampling frequency at coniferous, xeric, tropical or mixed forest sites may be reduced to once every 8-weeks if dictated by logistical constraints.

Ground traps

Ground traps will be sampled annually in Tower plots.

9.2 Criteria for Determining Sampling Dates

Elevated trap sampling will vary depending on the vegetation present at a site (Table 2). Ground litter trap sampling will occur once a year and should occur within ± 2 weeks of the date on which sampling occurred the previous calendar year. Initiation of 2 week sampling intervals during leaf senescence may be determined by checking an elevated trap near the Tower; once litter material from falling leaves begins to accumulate in the trap, begin fall sampling. Data do not need to be collected on the 'indicator

trap' and the one selected for monitoring does not need to be recorded. The only stipulation is that the selected trap is surrounded by deciduous trees.

Table 2. Sample timing and frequency by vegetation type.

Climate / Ecosystem	When to sample elevated traps		
Temperate deciduous	- Once in the spring, approximately same time each year		
	- Every two weeks during leaf senescence period		
Coniferous / Evergreen /	Once a month* all year		
Tropical	- Once a month*, all year		
Arid shrub	- Once a month*, all year		
Mixed Deciduous/Evergreen	- Once a month*		
	 Every two weeks during leaf senescence period 		

* A 4 week sampling interval is ideal for purposes of data quality but may be decreased to once every 8weeks if dictated by logistical constraints.

9.3 Sampling Frequency

Sampling frequency of elevated traps will vary based on the vegetation present at a site (Table 2). Ground traps will be sampled once a year.

9.4 Sampling Timing Parameters

Litter traps left full in the field for longer than the specified sampling interval may be subject to granivory by small mammals, herbivory by insects, or increased decomposition and resulting loss of mass. In deciduous forests, elevated traps must be checked at least every two weeks during leaf senescence, as traps may fill in relatively short periods. Collection of litter during leaf senescence may occur at intervals less than two weeks if litter volume is high and sufficient resources exist to support additional sampling; this is left to the discretion of the Domain manager and will not be dictated by Science Operations.

10 STANDARD OPERATING PROCEDURES

SOP A: Preparing for Sampling

1. Field Equipment and Materials

		Quantit	Conditions	
Maximo Item No.	Item Description	У	Used	Action(s)
Suggested	GPS unit	1	All	 Charge Load target plot locations Pack extra batteries
Suggested	Compass, mirror- sight	1	All	 Check/set correct declination¹ May be used, in conjunction with less precise rangefinder as an alternative to TruPulse
MX100322	TruPulse 360R laser rangefinder and clinometer	1	Finding correct trap location during trap deploymen t	 Check battery, charge (if possible) Clean lenses with lens cloth or lens tissue (if necessary) Check/set correct declination¹. See Appendix E for details. Calibrate TruPulse tilt-sensor (only necessary after severe drop-shock; see Appendix E for details).
Suggested	Laser rangefinder, used for bird sampling		Measuring distances	 May be used, in conjunction with handheld compass as an alternative to TruPulse
Required	Per plot or subplot Clip Lists ² (from RD[08])	Variable	All	 Print on all-weather paper
Suggested	Random number list	1	Sites with targeted selection	• Generate randomized lists
Required	Datasheets for Litterfall and Fine Woody Debris (RD[12])	As needed	All	• Print on all-weather paper

¹ Declination changes with time and should be looked up annually per site: <u>http://www.ngdc.noaa.gov/geomag-web/</u>

² Provided separately by Science Operations on request once plot establishment has been completed.

2. Gather necessary resources for field work

Title:

- 1) Print clip strip lists for the plots that will be visited
 - Litterfall sampling locations will be selected from the plot-specific randomized lists created • for herbaceous clip harvest locations RD[08]. These lists are therefore essential for the completion of the trap deployment procedure (SOP B), and must be updated to reflect the fact that two of the clipID locations are occupied by litter traps (elevated and ground). For the purpose of this protocol, trap location and clipID are used interchangeably.
 - Make sure that all fields in the clip strip lists are up to date, that clip strips that have been harvested or rejected are current and indicated on the lists
- 2) Gather all field equipment
- 3) Load plot locations into GPS unit

SOP B: Field Sampling – Trap Deployment

1. Field Equipment and Materials

Table 4. Field Equipment List for trap deployment

Maximo			Conditions	
Item No.	Item Description ¹	Qty	Used	Purpose
	Elevated trap kits (NEON.DOC.001813)	40-50	All	Construct elevated traps
Required	PVC pipe cutter	1	All	Cut PVC as needed
Required	Pipe glue	1 jar		Permanently attach PVC from the elevated trap kits
Required	Bubble Level ~20 cm (e.g. "torpedo" or "carpenters" level)	1	All	To check the angle of the elevated trap
Required	Brightly colored Ground trap markers – PVC or non- oxidizable metal	4 per trap	All	Identify ground trap area
Required	Non-oxidizable metal rods (e.g. aluminum, galvanized steel, or equivalent) ~1 m length ²	4 per trap	All	Anchor trap to sampling location
Required	Per plot or subplot Clip Lists ³ (from RD[08])		All	Print on all-weather paper
MX100322	TruPulse 360R laser rangefinder and clinometer	1	All	Used to locate X, Y coordinates of within-plot trap location
MX103218	Foliage filter for laser rangefinder	2	Brushy vegetation	Facilitates use of TruPulse in very brushy conditions.
Suggested	Reflective surface (3-in white reflector or reflective tape on back of field notebook/clipboard)	1	Used with TruPulse	Aids in accurate location of clip- harvest strips with TruPulse in "FLT" mode, particularly in brushy vegetation.
Required	Extra battery for TruPulse (CR123A type)	2	Used with TruPulse	Battery backup
Suggested	Laser rangefinder, used for bird sampling		Measuring distances	May be used, in conjunction with handheld compass as an alternative to TruPulse
Suggested	Compass, mirror-sight	1	All	Check/set correct declination ¹ May be used, in conjunction with less precise rangefinder as an alternative to TruPulse
MX104361	Chaining pins, steel	2	All	Stretching tapes, plot boundary delineation
Required	Fiberglass meter tape (30m	1	Plot slope <	Locate clip-harvest strips within

	or longer)		10 deg; grassland, savannah	plots/subplots.
Suggested	Coin	1	Sites with targeted selection	Used to randomize selection of patches
Suggested	Random number list	1	Sites with targeted selection	Used to randomize selection of patches
Required	Datasheets for Litterfall and Fine Woody Debris	Vari- able	All	Record required data and metadata

¹All permanent marker material and color selection is contingent on approval by the NEON site host or local landmanager

² 1 meter is ideal but may be adjusted as needed to suit site conditions³ Provided separately by Science Operations on request once plot establishment has been completed.

2. Selecting litter trap location strategy

Litter traps will be deployed in pairs, one elevated and one ground trap per pair. There will be one set of paired traps for every 400 m² plot/subplot area. Because litter sampling will primarily occur in forested sites where plot size is typically 1600 m² or more, most plots will have at least four pairs of traps. Refer to the TOS Protocol and Procedure: Plot Establishment RD[09] for details on handling measuring tapes and plot delineation tips.

- 1) Navigate to the desired plot.
- 2) Determine whether targeted or random selection of litter trap location is required. Refer to Appendix C for general guidance. Trap location strategy is based on NLCD vegetation classification, select strategy based on the conditions of the plot, even if they differ from
 - **Targeted selection** for patchy vegetation, where overstory species ≥ 2 m height is present throughout < 50% of the plot area.
 - **Random selection** for forested sites with relatively continuous canopy

3. Locating targeted elevated trap location

- 1) Assess location of patches within the plot or subplot (depending on plot size)
- 2) Give each patch a numeric value. Assign values sequentially, left to right, bottom to top, beginning in the SW corner (Figure 1)
- 3) Use either a random number list or a series of coin flips to randomly select a patch to target for litterfall and fine woody debris sampling.
- 4) Once a patch is selected, select a location under the canopy, central to the patch to place an elevated litter trap.
- 5) Use the range finder to measure the distance to plot/subplot edges.
- 6) Determine where the nearest clip strip centroid is located.

- 7) If practical, center trap over that point, this will minimize the number of clips that will be removed from consideration for herbaceous clip harvest.
 - In the example provided in Figure 1, the coordinates associated with nearest clip strip centroid from the center of patch 4 are, x = 3.7, y = 11.5.
 - Not centering the trap over a centroid is acceptable but not ideal as there will be more cells excluded from consideration for herbaceous clip harvest.
- 8) Place a pin flag at the selected trap location.

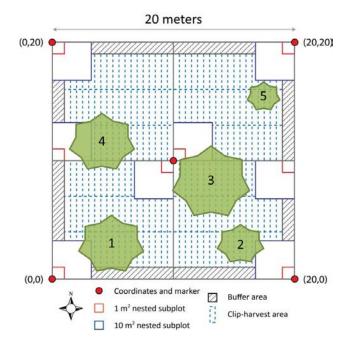
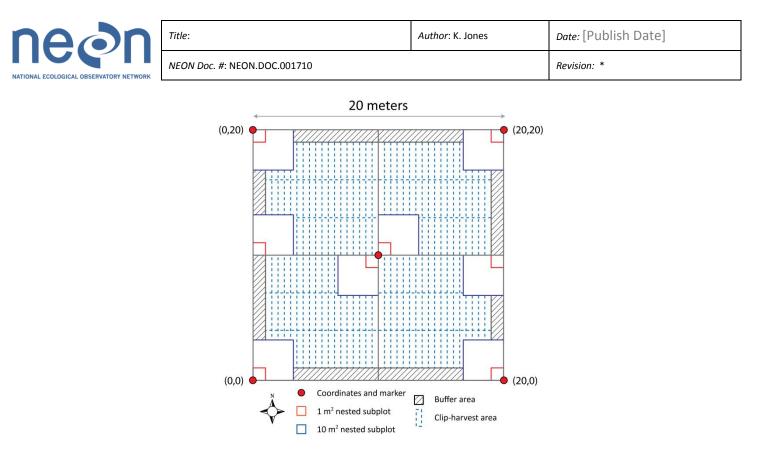



Figure 1. Example of numbering system for qualifying patches of vegetation within a plot

4. Locating random elevated trap location

Use the plot- or subplot-specific Clip List ([plotID]_clipList.csv) to identify the first potential clip-strip location that has not already been sampled or rejected. Where relevant, subplot number is included in the file name and is also provided as a field in the spreadsheet.

1) Navigate to the SW corner of the desired clipID:

Figure 2. A 20 m x 20 m NEON plot) showing the locations of 0.5m x 3m clip-harvest "cells" (dashed blue lines). Larger plots will have different nested subplots, but the coordinate numbering system for the 20 m subplot within these plots will follow the same conventions as shown above.

If the Y-coordinate is < 10:

- a) Run a tape East/West along the south edge of the plot or subplot between the (0,0) \rightarrow (20,0) plot markers (Figure 1), and stretch the tape taut.
- b) Place a pin flag at the desired relative X-coordinate.
- c) Standing directly over the pin flag that was just placed at the X-coordinate, use the TruPulse in **HD** mode with a reflective surface to locate the Y-coordinate.
 - Make sure the azimuth is 0° (True North) when shooting the TruPulse to find the Ycoordinate (see Appendix E).
 - Note: if TruPulse is not available, the same routine described here may be completed using a handheld compass to verify azimuth and a laser rangefinder or additional tape measure for distance.
- d) Place a pin flag at the clip-strip (X,Y) location.

If the Y-coordinate is > 10:

a) Run a tape East/West from the plot/subplot centroid (10,10) to either the (0,10) position or the (20,10) position (Figure 1):

X-coordinate	Tape Layout ¹
1 < X < 10	From (10,10) to (0,10) ¹
10 < X < 20	From (10,10) to (20,10) ¹

¹ Use the TruPulse in **AZ** mode to guide the tape along the correct azimuth

- b) Place a pin flag at the desired relative X-coordinate.
- c) Standing directly over the pin flag that was just placed at the X-coordinate, use the TruPulse in **HD** mode with a reflective surface to locate the Y-coordinate.
 - Make sure the azimuth is 0° (True North) when shooting the TruPulse to find the Ycoordinate (see Appendix E).
 - Note: if TruPulse is not available, the same routine described here may be completed using a handheld compass to verify azimuth and a laser rangefinder or additional tape measure for distance.
- d) Place a pin flag at the clip-strip (X,Y) location.

BEST PRACTICE TIPS

- Use the TruPulse laser rangefinder in HD mode to place the initial pin flags if the plot slope is > 10 %, or there is significant brush or obstacles that prevent accurately stretching a tape.
- Plot slope can be quickly estimated using the inclinometer in the TruPulse (**INC** mode) or the inclinometer on the handheld compass.
- 2) Assess the suitability of the strip for an elevated litter trap:
 - Accept the strip if there is a canopy formed by woody vegetation, directly overhanging the strip.
 - If the strip is not acceptable for placement of an elevated litter trap, move to the next strip on the list but do NOT record the strip status as rejected for herbaceous biomass sampling.
- 3) Navigate to center of the strip (1.5 m north, 0.25 m east), place a pin flag. Elevated traps will be centered over this point.
 - If there is no vegetation directly overhanging the litter trap at strip center, the trap may be shifted up to 1 meter North or South to a location where litter falling in a straight line from the canopy will be intercepted by the trap.
 - Record clip-strip as selected for litter on the Clip List sheet but this does not need to be reported with the clip harvest data.

5. Locating ground trap clip strip

Title:

- 1) Using the same procedure described above, in subsections 3 and 4, select an appropriate location for the ground trap
 - Targeted selection repeat the process for randomly selecting a patch in which to locate the ground trap. Do not exclude the patch selected for the elevated trap from consideration. The ground trap location does need to be within a single clip strip cell.
 - Random selection- continue using the randomized clip strip locations in sequential • order, assess the suitability of the next potential clip-strip location that has not previously been sampled or rejected.
 - Reject the trap location if the selected strip is < 2 meters from the elevated trap
- Delineate the 3 m x 0.5 m clip strip that will be used for the ground trap using meter tape and compass or TruPulse to ensure that the trap is oriented to the cardinal directions.
- Hammer in brightly colored stakes in each of the four corners leaving ~20cm visible above ground.
- 4) Remove all large leaves, large fronds, and ALL fine woody debris from within the ground trap area.
 - It is not necessary to remove small leaves, fronds, etc. that are normally sampled with the elevated litter traps.

5. Elevated trap construction and installation

- 1) Center square trap frame over pin flag placed in the center of the selected clip strip cell
- 2) Mark plot corners with pin flags
 - The trap frame is 70.7 cm wide, since a clip strip cell is 50 cm wide, trap legs will be anchored 10 cm into the adjoining cells on either side of the selected cell
- 3) Hammer non-oxidizable metal stakes into ground at the pin flag locations to anchor trap legs, leaving 50 cm above ground
- 4) Attach trap legs to square frame, glue in place
- Cut the trap legs so that, once installed, the square frame is level (use bubble level to check), approximately 0.8 m above the ground.
- 6) Slide trap legs over stakes.

- 7) Attach screen to square frame with the provided zip ties (Figure 3).
 - The pre-cut screen is larger than the trap area and should not be taut across the trap, some sag is necessary to prevent litterfall from blowing away.
- 8) Record tagIDs of individuals overhanging the trap on the "Trap Deployment Datasheet" (RD [12]).

Figure 3. Fully constructed elevated litter trap, NEON traps will have legs attached on corners rather than center (photo from Muller-Landau and Wright 2010).

SOP C: Field Sampling

1. Field Equipment and Materials

Table 5. Equipment list for Field Sampling of elevated and ground litter traps.

Maximo			Conditions	
ltem No.	Item Description	Quantity	Used	Purpose
MX100322	TruPulse 360R laser	1	Thick	Used to locate X, Y coordinates
	rangefinder		brush	of trap if thick brush prevents
				visual trap location.
MX103218	Foliage filter for laser	2	Brushy	Facilitates use of TruPulse in
	rangefinder		vegetation	very brushy conditions.
Suggested	Extra battery for TruPulse	2	Used with	Battery backup
	(CR123A type)		TruPulse	
Required	Cloth bags, two colors,	2 per	All	Storage and transport of fresh,
	numbered and marked with	trap pair		potentially wet, litter samples.
	an E or G (for E levated or			
	Ground trap identification)*			
Suggested	Heavy duty clippers	1		For cutting branches up to 2 cm
				diameter
Suggested	Measuring stick ⁺	1		Quick measurement of 50cm
Required	Bubble Level ~20 cm (e.g.	1	All	To check the angle of the
	"torpedo" or "carpenters"			elevated trap
	level)			
Required	Calipers	1	All	Measure branch diameters
Suggested	Window screen patch kit	1		For repairing minor holes in
	(small pieces of screen, wire,			screen material
	wirecutters)			
Required -	Elevated trap kits	2	All	Replace damaged traps
EB07670000				
Suggested	Replacement stakes for	4	All	Replace damaged ground traps
	ground traps			
Required	General Purpose Manila Tags,	2 per	All	Label collection bags
	Pre-strung, 4-3/4" x 2-3/8"	trap pair		
Required	Nylon cord	1, 8 m	All	Delineate ground trap

* <u>http://www.statelinebagwholesale.com/store/p/40-12-x-20-Premium-Single-Drawstring-Cotton-</u> Muslin-Bags-100-Count.aspx or http://muslinbag.com/import.html or similar.

⁺ May also mark 50cm on plot frame with permanent marker.

2. Fine litter collection – Elevated traps

- 1) Navigate to plot
- 2) Assess and record the **trapCondition** (Table 6)

 Table 6. Prescribed "trapCondition" codes.

Code	Description		
1	Litter collected - Trap in good shape, no issues		
2	Litter not collected – Trap empty		
3	Litter not collected - Holes large enough for leaves to pass through. Holes near the base of the screen (the lowest hanging point) are worse than holes on the side of the screen.		
4	Litter not collected – trap blocked. Large branches or leaves (especially palm fronds) present in the trap which may have prevented trap from collecting litter or diverted falling litter away from the trap		
5	Litter not collected – trap tilted ≥ 10° (use clinometer on compass to measure)		
6	Litter not collected – trap broken, requires replacement		

- 3) If the trap is not in good condition (3-6), discard the litter and make necessary repairs. Broken traps should be replaced immediately if possible.
- 4) If the trap is in good condition (1) continue with collection procedure.
- 5) Discard litter > 50 cm in length, this material is not reliably collected in the elevated traps and will be sampled in ground traps
- 6) All woody material > 2 cm diameter will be measured according to the Coarse Wood Debris (CWD) protocol. Use calipers to measure diameter of woody branches
 - a. Discard branches > 2 cm at narrowest point
 - b. For branches that taper to ≤ 2 cm, cut off and discard the portion > 2 cm diameter, discarded portion of branches may be dropped, haphazardly (i.e. do not group or stack discarded material), beside the elevated litter trap
- 7) Transfer all other material, including parts hanging out of the trap, into the cloth bag designated for elevated trap litter
- 8) Create label with clipID, date, trap type, and technicianID (Figure 3Figure 3), and attach to bag.

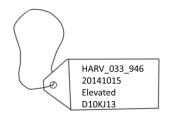


Figure 4. Example field collection label.

- 9) Knot cloth bag to prevent material from falling out while in transport, do not use draw strings if present on bags
- 10) Record remarks if necessary.

3. Woody litter collection - Ground

- 1) Locate stakes marking ground trap location
- 2) Assess and record trapCondition (Table 7)

Code	Description
1	Litter collected - Trap in good shape, no issues
2	Litter not collected – trap blocked. Large branches or tree > 10 cm diameter have fallen over trap which may have diverted falling litter away from the trap

- If trap condition is blocked (code=2), do not collect. If obstruction cannot be cleared, move ground trap to a new location from the clip strip list.
 - i. Record the new trap location/clip strip ID in the **trapMoved** field
 - ii. Clear all litter from the new strip
 - iii. Do not collect
- 3) Wrap nylon cord around the four staked corners of the ground trap, delineating the trap edges.
- 4) Identify qualifying litter which is:
 - > 50 cm length and
 - < 2 cm diameter
- 5) Cut off and discard portions of qualifying litter which overhang the trap edges even if this means creating pieces < 50 cm in length.
- 6) Cut off and discard portions of woody branches > 2 cm diameter
- 7) Collect all remaining qualifying litter from within the ground trap, transfer material to the cloth bag designated for ground trap litter
 - Pieces may be cut to smaller lengths if they are too long to fit in the cloth collection bags.
- 8) Create label with clipID, date, trap type, technicianID (Figure 3), and attach to bag.
- 9) Knot cloth bag to prevent material from falling out while in transport, do not use draw strings if present on bags
- 10) Record remarks if necessary.

SOP D: Laboratory Processing and Analyses

1. Laboratory Equipment and Materials

Table 8. Laboratory Equipment List for SOP D.

Maximo			Conditions	
Item No.	Item Description	Qty	Used	Purpose
Suggested	Large plastic bag (black trash bag or equivalent); e.g. Uline # S-5111	Box of 100	All	Temporary storage of oven dried samples before they are weighed
Required	Sample microsplitter (small capacity)	1	Relatively little litter mass per biomassCode per trap	Creates identical sub-samples from relatively small volumes of ground sample
Required	Sample splitter (large capacity)	1	Relatively large litter mass per biomassCode per trap	 Creates identical sub-samples from relatively large volumes of ground sample Useful with fibrous leaves.
Required	Hi-back pans for sample splitter (sized to match splitter size)	2 per splitter	All	Receives sub-samples generated by splitter
Required	20 mL Scintillation vials with caps	As needed	All	Containers for storing ground split samples for shipment to archive or chemical analysis
Required	Paper bags, 8# kraft or similar	50	All	Temporary storage of litter, sorted to functional group
Required	Datasheets: • Lab Drying QC Datasheet • Lab Weighing Datasheet	As needed	All	Recording dry weight of herbaceous biomass

2. Laboratory processing

- 1) If litter and bags are very wet (i.e. dripping), hang bags to air dry before further processing.
- 2) Sort litter from each "E" and "G" bag per trap to functional group.
 - a. Clear adequate bench space in the laboratory.
 - b. Empty the a cloth bag filled with litter onto the bench, and sort litter pieces to the functional groups in Table 9 ("E" bags) or Table 10 ("G" bags).

Table 9. Elevated trap litter functional group codes

biomassCode	Description
ELVS	Leaves (including petioles, rachis and non-woody tendrils)
ENDL	Needles from coniferous species
ETWI	Twigs/branches < 2 cm diameter and < 50 cm length
EWDY	Woody material (e.g. bark, cones, etc.)
ESDS	Seeds
EFLR	Flowers (including pedicels)
EOTR	Other (lichen, mosses, unidentifiable material, etc.)

Table 10. Ground trap litter functional group codes

biomassCode	Description				
GLVS	Leaves and needles > 50 cm length (including petioles, rachis and non- woody tendrils)				
GTWI	Twigs/branches < 2 cm diameter and > 50 cm length				

- 3) Label paper bags to hold sorted litter functional groups from each trap. Include sampling information from tag on cloth bag, as well as the appropriate litter "biomassCode".
 - a. For each cloth "E" bag, label 7 paper bags. Choose either 8# or 25# kraft bags, depending on the quantity of litter.
 - b. For each cloth "G" bag, label 2 paper bags. Again, choose bag size depending on the quantity of litter.
- 4) Label the time (24 hr time, e.g. 1645 for 4:45 pm) and date (YYYYMMDD) that bags are placed in the drying oven on the back side of the tag.
 - a. *Critical step*: Labeling bags allows assessment of how long different batches of bags have been in the oven, especially when harvests from multiple days occupy the same oven. Additionally, organizing the oven by grouping samples from a given day in the same area will streamline the re-measurement process; 48-hour samples may be located and removed for weighing without requiring a complete unloading of the contents of the oven.
- 5) Place bags of litter (excluding ETWI, EWDY and GTWI) in a drying oven set to 65° C for 48h 120h (2d 5d), until constant mass is attained.

- 6) Check the drying progress of litter bags using the "Lab Drying QC" datasheet.
 - a. Check the weight of the same subset of n=10 bags per date after day 1, 2, 3, etc.
 - b. Calculate the difference in weight between the latest two time points for each bag.
 - c. Samples are dry when the average weight difference between the latest two timepoints = 0 (averaged across all n=10 bags, ± 0.05 g or 1%, whichever is greater)
- 7) Clean off any dirt attached to litter from ground traps.
- 8) Place bags of ETWI, EWDY and GTWI litter in a drying oven set to 101-105° C for 24-72 hours, until constant mass is attained. If multiple drying ovens are available, steps 5-6 and 8-9 may be occur simultaneously, otherwise, complete drying of litter material at 65° C before increasing the temperature to dry FWD. Woody material requires higher drying temperatures to release bound water.
- 9) Check the drying progress of litter bags using the "Lab Drying QC" datasheet.
 - a. Check the weight of the same subset of n=10 bags per date after day 1, 2, 3, etc.
 - b. Calculate the difference in weight between the latest two time points for each bag.
 - c. Samples are dry when the average weight difference between the latest two timepoints = 0 (averaged across all n=10 bags, \pm 0.05g or 1%, whichever is greater)
- 10) Store sorted material in labeled paper bags (8# or 25# kraft bags, or similar), inside a larger, sealed, plastic bag (e.g. a black plastic garbage bag or equivalent). Placing samples in a bag is important as paper bags and dried samples may absorb water from the air as they cool, particularly in humid environments. Once dried and sealed in a bag, samples may be stored indefinitely prior to weighing.
 - a.
- 11) Weigh material from each functional group on mass balance (0.01g accuracy).
- 12) Record the mass to the nearest 0.01g on the "Litter Weight" datasheet. For large volumes of biomass that do not readily fit into a large weigh boat, use any of the following strategies:
 - Use a paper bag or a large cardboard box lid (or equivalent) instead of a weigh boat.
 - Crush or chop the biomass to reduce volume so it will fit into a weigh boat.
 - Avoid splitting the biomass into subgroups for weighing, as uncertainty values must be added each time a subgroup is created.
- 13) Once all weights have been recorded, return biomass to the large plastic bag, seal, and place in temporary storage. Samples in temporary storage can then be prepared as time permits for bioarchive and chemical analysis.

3. Grinding dried litter for archive and chemical analysis

Title:

Select samples from one trap per plot from one collection event per year to submit for bioarchive and chemical analysis. In coniferous evergreen systems, collect a sample for archive from the October collection event broadleaf evergreen vegetation (including tropical sites) may likewise ground and archived in October. In deciduous and mixed forest systems, select a sample from the period of peak senescence, this date may vary from site to site and from year to year, . Refer to the site specific appendix D for suggested sampling windows, use assessment of local conditions to ultimately drive this decision.

- 1) Coarsely grind each functional group per clipID (trap) with a Wiley Mill (0.85mm, 20 mesh size).
- 2) Use an appropriately sized splitter/microsplitter to generate two representative sub-samples of approximately 20 mL volume:
 - Sample 1: Bioarchive sample
 - Sample 2: Chemical analysis sample
 - Note : In order to meet data product requirements, NEON must provide chemical • analysis of litter material therefore this sample, Sample 2, is the priority. If total ground material is <0.5g, only fill the chemical analysis sample vial.

BEST PRACTICE TIPS

- If the split sub-sample is too large to fit into the vial in its entirety, continue splitting until a sub-sample of the desired size is generated.
- DO NOT create sub-samples with a scoopula or spatula. These tools should only be used • to transfer an ENTIRE sub-sample into a vial.
- 3) Place the split sub-samples into 20 mL polypropylene scint vials, and label the vials with:
 - a. date
 - b. clipID
 - c. Functional group code (i.e. biomassCode)

SOP E: Data Entry and Verification

Title:

Following the completion of each field or lab data sampling bout, all data recorded manually on datasheets must be entered electronically in the provided MS Access database and saved to the NEON server. Any questions that arise while in the field should be answered as soon as possible to avoid losing information.

The data ingest document contains at least the following spreadsheets:

- ItrFieldSummary_in: Spreadsheet summarizing each data ingest table, and defining table field names and ingest rules.
- ltr_pertrap_in: Metadata describing trap placement
- Itr_fielddata_in: Metadata describing individual sampling events on a per trap per plotID per sampling date basis.
- Itr_labdata_in: Oven-dried biomass data for each functional group per clipID per eventDate, as well as weighing QA data.

1. Entering and Uploading Field Data

- 1) For data collected on paper datasheets: Transcribe data into appropriate MS Access "litter" database template in accordance with data entry and data QA/QC protocols (RD[06]).
- 2) Data entry fields mirror the datasheet, do not change formatting on the provided spreadsheet.
- Example entries of each data field are provided in the 'ltrFieldSummary_in' tab of the 'litterfall and fine woody debris' ingest workbook (RD [11]) or the 'ltrFieldSummary' tab of the 'ltr_dataIngest_2014' MS Access database. Consult this table for appropriate values and formats for each field in the subsequent worksheets.
- 4) If this is the first bout at a site or a trap had to be moved to a new clipID, transcribe data from the 'SOP B: Trap Deployment' Datasheets to the "ltr_pertrap_in" ingest table.
- 5) For collection events, record metadata for date, trapCondition and bags used in the 'ltr_fielddata_in'. If the trapMoved field has a new clipID location, make sure that this is also captured in the 'ltr pertrap in'.
- 6) Following completion of lab processing, record the weights of each functional group in the 'ltr_labdata_in' ingest table.
- Update permanent digital versions of the "clip-strip coordinate" lists with "date" and "status" data recorded in the field.
- 8) Lab Drying QC data are not transcribed for ingest into the NEON CYI.
- 9) Once all data from the most recent sampling bout have been collected and transcribed, save only the data from the most recent bout to a .csv file for ingest by NEON CYI.
- 10) For data collected on the NEON digital data collection device: Download all data according to the protocols for data handling. Address any QA/QC concerns.

2. Equipment Maintenance, Cleaning and Storage

- 1) Charge/replace TruPulse batteries, if necessary.
- 2) Charge GPS unit.
- 3) Clean grinding mill and splitters.

11 REFERENCES

Title:

- Bernier, P., P. J. Hanson, and P. S. Curtis. 2008. Measuring litterfall and branchfall. Pages 91-101 in C. M. Hoover, editor. Field measurements for forest carbon monitoring. Springer, New York.
- Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni. 2001. Measuring net primary production in forests: Concepts and field methods. Ecological Applications **11**:356-370.
- Metcalfe, D., P. Meir, L. E. O. C. Aragv£o, A. da Costa, S. Almeida, A. Braga, P. Gonvßalves, J. Athaydes, Y. Malhi, and M. Williams. 2008. Sample sizes for estimating key ecosystem characteristics in a tropical *terra firme* rainforest. Forest Ecology and Management **255**:558-566.
- Muller-Landau, H., and S. J. Wright. 2010. Litterfall monitoring protocol. CTFS Global Forest Carbon Research Initiative:1-16.
- Williamson, G. B., and M. C. Wiemann. 2010. Measuring wood specific gravity...Correctly. American Journal of Botany 97:519-524.

Title:	Author: K. Jones	Date: [Publish Date]
NEON Doc. #: NEON.DOC.001710		Revision: *

APPENDIX A QUICK REFERENCES

Title:	Author: K. Jones	Date: [Publish Date]
NEON Doc. #: NEON.DOC.001710		Revision: *

APPENDIX B CHECKLISTS

APPENDIX C SITE SPECIFIC CONSIDERATIONS

Burning – litter will need to be collected and traps removed before planned management activities, then replaced soon after.

APPENDIX D SITE SPECIFIC SAMPLING DATES

The dates listed here are estimated by MODIS averaged EVI values from 2001-2009 and are the 'average Greenness Increase' date a proxy for the beginning of spring, the time period when sampling for winter litterfall, and the beginning and average end of senescence. As the priority for litter sampling is on the Tower plots the sampling dates in this table are based on MODIS data for and area centered on the NEON flux tower; NLCD vegetation classification listed is based on the dominant vegetation found in the tower airshed. Sampling schedules may be modified based on local conditions, for example, if the NLCD vegetation class is identified as 'Mixed Forest' but plots are almost entirely coniferous trees, sampling may be shifted to 'Monthly, Year Round' even though the table specified 'Spring + Senescence' sampling schedule. Dates are only listed for sites with forests where intensive sampling during fall senescence is anticipated; all other sites will be sampled once a month all year or not at all.

Domain	Site code	primary airshed NLCD	Trap Location Selection	Suggested Sampling Schedule	Average Greenness Increase	Beginning of Senescence	Average End of Senescence
1	BART	Mixed Forest	Random	Spring + Senescence	120	220	300
1	SAWB	Deciduous Forest	Random	Spring + Senescence	110	220	315
1	HARV	Mixed Forest	Random	Spring + Senescence	110	220	300
2	BLAN	DeciduousForest / PastureHay	Targeted	Spring + Senescence	75	210	310
2	SCBI	Deciduous Forest	Random	Spring + Senescence	85	150	320
2	SERC	Deciduous Forest	Random	Spring + Senescence	80	220	325
3	DSNY	Grassland Herbaceous		None			
3	JERC	#N/A					
3	OSBS	#N/A	Monthly, Year Round				
4	GUAN	Evergreen Forest	Random	Monthly, Year Round			
4	LAJA	Cultivated Crops		None			
4	MAME	Evergreen Forest	Random	Monthly, Year Round			
5	STEI	Deciduous Forest*	Random	Spring + Senescence	120	215	250
5	TREE	Deciduous Forest	Random	Spring + Senescence	120	215	250

Domain	Site code	primary airshed NLCD	Trap Location Selection	Suggested Sampling Schedule	Average Greenness Increase	Beginning of Senescence	Average End of Senescence
5	UNDE	Woody Wetlands	Targeted	Spring + Senescence	125	215	285
6	KONA	Cultivated Crops		None			
6	KONZ	Grassland Herbaceous		None			
6	KUFS	Deciduous Forest	Random	Spring + Senescence	75	210	330
7	GRSM	Deciduous Forest	Random	Spring + Senescence	90	215	310
7	MLBS	Deciduous Forest	Random	Spring + Senescence	110	220	310
7	ORNL	Deciduous Forest	Random	Spring + Senescence	90	210	315
8	снос	Woody Wetlands	Targeted	Spring + Senescence	70	200	335
8	DELA	Woody Wetlands	Targeted	Spring + Senescence	60	205	330
8	TALL	Evergreen Forest	Random	Monthly, Year Round	75	195	330
9	DCFS	Grassland Herbaceous		None			
9	NOGP	Grassland Herbaceous		None			
9	WOOD	Grassland Herbaceous		None			
10	CPER	Grassland Herbaceous		None			
10	RMNP	Evergreen Forest	Random	Monthly, Year Round	120	210	315
10	STER	Cultivated Crops		None			
11	CLBJ	Grassland Herbaceous		None			
11	KLEM	#N/A					
11	TBD	#N/A					
12	BOZE	Grassland Herbaceous		None			
12	PARA	Grassland Herbaceous		None			

Domain	Site code	primary airshed NLCD	Trap Location Selection	Suggested Sampling Schedule	Average Greenness Increase	Beginning of Senescence	Average End of Senescence
12	YELL	Shrub Scrub	TBD	TBD	120	190	280
13	MOAB	Shrub Scrub	TBD	TBD	85	225	300
13	NIWO	Grassland Herbaceous		None			
13	TBD	#N/A					
14	JORN	Shrub Scrub	TBD	TBD	80	245	320
14	SRER	Shrub Scrub	TBD	None	150	240	330
14	TBD	#N/A					
15	ONAQ	Shrub Scrub	TBD	TBD	75	170	280
15	TBD	#N/A					
15	RBUT	Deciduous Forest	Random	Spring + Senescence	105	190	310
16	ABBY	Grassland Herbaceous		None			
16	THAY	Evergreen Forest	Random	Monthly, Year Round			
16	WREF	Evergreen Forest	Random	Monthly, Year Round			
17	SJER	#N/A	Targeted	Monthly, Year Round	270	95	155
17	SOAP	Evergreen Forest	Random	Monthly, Year Round	90	185	290
17	TEAK	Evergreen Forest	Random	Monthly, Year Round	120	205	300
18	BARO	Sedge Herbaceous		None			
18	TOOL	Dwarf Scrub		TBD	160	205	240
19	BONA	Deciduous Forest	Random	Spring + Senescence	135	TBD	250
19	DEJU	Evergreen Forest	Random	Monthly, Year Round			
19	HEAL	Shrub Scrub	TBD	TBD	135	210	245
19	POKE	Deciduous Forest	Random	Spring + Senescence	135	205	250
20	OLAA	Evergreen Forest	Random	Monthly, Year Round			
20	PUFO	Shrub Scrub	Random	TBD	0	NA	365
20	PUGR	Grassland		None			

Domain	Site code	primary airshed NLCD	Trap Location Selection	Suggested Sampling Schedule	Average Greenness Increase	Beginning of Senescence	Average End of Senescence
		Herbaceous					

* Site information has been updated from NLCD or MODIS data based on local observations

APPENDIX E USING AND CALIBRATING THE TRUPULSE 360R LASER RANGEFINDER

Setting the Declination Offset

- 1) Press the "Power/Fire" button to turn on the unit. The viewfinder will display the main "Measurement Mode" screen.
- 2) Press and hold ▼ for 4 s to enter "System Setup Mode".
- 3) Press ▼ until **H_Ang** is displayed in the viewfinder, then press "Power/Fire".
- 4) **dECLn** will be displayed in the viewfinder, press "Power/Fire".
- 5) **no** and **dECLn** will blink. Press ▼ until **YES** and **dECLn** blink, then press "Power/Fire" again. The current declination is shown in the viewfinder.
- 6) If this is the correct value, press and hold \blacktriangle to return to the main "Measurement Mode" screen.
- 7) If the displayed value is incorrect for your current location:
 - a) Press either \blacktriangle or \triangledown to change the tenths value, press "Power/fire".
 - b) Press either \blacktriangle or \blacktriangledown to change first integer value, press "Power/fire".
 - c) Press either \blacktriangle or \triangledown to change second integer value, press "Power/fire".
 - d) The value just entered will blink. Press "Power/fire" to confirm and return to the "Measurement Mode" screen.

Tilt Sensor Calibration

- 1) Press the "Power/Fire" button to turn on the unit. The viewfinder will display the main "Measurement Mode" screen.
- 2) Press and Press and hold ▼ for 4 s to enter "System Setup Mode".
- 3) Press ▼ until **inC** is displayed in the viewfinder, then press "Power/Fire"..
- 4) **no** and **CAL** will blink. Press ▼ until **yes** and **CAL** blink, then press "Power/Fire" again.
 - a) Calibration can be aborted by pressing "Power/Fire" when **no** and **CAL** are alternately displayed.
- 5) **C1_Fd** will be displayed in the view finder.
- 6) Place the TruPulse on a flat, relatively flat surface (within 15deg of level). Follow the sequence outlined in Figure 4.
 - a) At each step wait approximately 1 second before pressing "Power/fire", then wait another second before moving to the next position. It is important that the unit is held steady when you press "Power/fire".
 - b) To abort and return to previous calibration at any point hold \blacktriangle or \triangledown for 4 sec.

ne¢n
NATIONAL ECOLOGICAL OBSERVATORY NETWORK

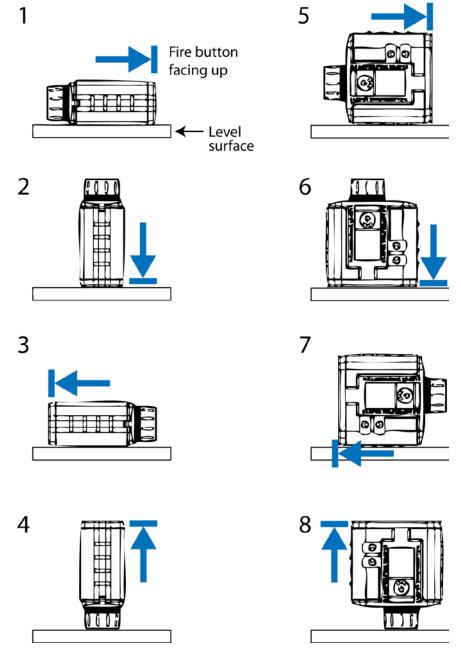


Figure 5. The tilt-sensor calibration routine for the TruPulse 360R laser rangefinder. The blue arrow and line indicate the direction of the lens at each calibration step.

- 7) After all 8 positions have been run through, look through the eyepiece. Either a **PASS** or **FAIL** message appears in the view finder.
 - a) **PASS**: Press the "Power/Fire" Button to return to the measurement mode.
 - b) **FAiL1**: Excessive motion during calibration. Unit was not held steady.
 - c) FAiL2: Magnetic saturation error. Local magnetic field too strong.
 - d) FAiL3: Mathematical fit error.
 - e) FAiL4: Calibration convergence error.
 - f) **FAiL6**: Orientations were wrong during the calibrations.
- 8) If **FAiL** appears, press the "Power/Fire" button. **No** and **CAL** will alternately blink allowing you to do a new calibration. IF the calibration fails, the unit reverts to the previous calibration.

Using and Calibrating the TruPulse 360R Compass

Like any compass, the internal compass of the TruPulse is susceptible to error and to interference from common metallic objects. The following objects may affect the compass performance, and should be kept at least 50 cm (20 in) away from the TruPulse during operation:

Batteries	Nails
Data collectors or computers	Pin flags w/ metal stakes
Portable electronics	Steel-rimmed eyeglasses
Metal watch bands	Eyeglass spring-hinges
Non-aluminum tripods	

When using the TruPulse compass, it is good practice to check the compass performance against a standard mirror-site compass or a previously established plot-line at the beginning of each day, or when beginning a new plot. In addition, ALWAYS CHECK AND RECALIBRATE THE COMPASS AFTER CHANGING THE BATTERIES. It is common for the compass calibration to be inaccurate when the low battery indicator is displayed in the viewfinder, and you should always replace the batteries when this indicator appears.

If the compass requires calibrating, you must first determine that you are in an area free from local magnetic interference. Either of the following simple tests can be used in the field to test for local magnetic interference:

- 1) Choose a target at least 100 m away, and shoot to it. Note the azimuth. Then step backward or forward 1 m along the sight-line to the target and shoot again. Note the second azimuth.
 - The second azimuth should be within 1/10 to 5/10 of a degree of the first azimuth. If it is, you are likely in an anomaly-free area.
 - For increased confidence, repeat the test with a second target at 90° to the azimuth of the first target.
- 2) Select a target at least 10 m away, shoot to it, and note the azimuth. Move to the target that was just shot, and shoot back toward the spot that was just occupied. Note the second azimuth.

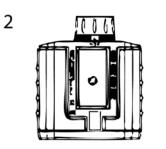
• The two azimuths should be 180° different, plus or minus no more than a few tenths of a degree.

Once you have ascertained that the current location is free from local magnetic interference, complete the following steps to calibrate the TruPulse 360R compass:

- 1) Press the "Power/Fire" button to turn on the unit. The viewfinder will display the main "Measurement Mode" screen.
- 2) Press and hold ▼ for 4 s to enter "System Setup Mode".
- 3) Press ▼ until **H_Ang** is displayed in the viewfinder, then press "Power/Fire"..
- 4) **dECLn** is displayed. Press ▼ to display the **HACAL** option, then press "Power/Fire" again.
- 5) No and HACAL will alternately blink. Press \blacktriangle or \triangledown to display YES and CAL, then press "Power/Fire" to begin calibration.
 - Calibration can be aborted by pressing "Power/Fire" when **no** and **CAL** are alternately displayed.
- 6) **C1_Fd** will be displayed in the view finder.
- 7) Use a standard mirror-site compass to determine the direction of *magnetic* North. Holding the TruPulse 360R and facing close to *magnetic* North (± 15°), the lenses should be facing as shown in Figure 5. To complete the calibration routine, follow the sequence outlined in Figure 5.
 - At each step wait approximately 1 second before pressing "Power/fire", then wait another second before moving to the next position. It is important that the unit is held steady when you press "Power/fire".
 - To abort and return to previous calibration at any point hold \blacktriangle or \triangledown for 4 sec.
- After all 8 positions have been run through in sequence, look through the eyepiece. Either a PASS or FAIL message appears in the view finder.
 - **PASS**: Press the "Power/Fire" Button to return to the measurement mode.
 - **FAiL1**: Excessive motion during calibration. Unit was not held steady.
 - FAiL2: Magnetic saturation error. Local magnetic field too strong.
 - **FAiL3**: Mathematical fit error.
 - FAiL4: Calibration convergence error.
 - FAiL6: Orientations were wrong during the calibrations.

If **FAiL** appears, press the "Power/Fire" button. **No** and **CAL** will alternately blink allowing you to do a new calibration. If the calibration fails, the unit reverts to the previous calibration.

1


6

TruPulse 360R facing magnetic North and Fire button facing up

TruPulse 360R facing magnetic North and Fire button facing right

3

4

0

Figure 6. The internal compass calibration routine for the TruPulse 360R laser rangefinder.

8

Measuring Distance from a Known Point

- 1) Press "Power/Fire" to turn on the TruPulse.
- 2) Set the unit to Target Mode = Filter
 - a) Press ▲ for 4 seconds. The active Target Mode appears in the viewfinder. Press ▲ or ▼ to cycle through available Target Modes.

Available Target Modes are:

Table 11. Laser Target Modes available for the TruPulse 360 laser rangefinder/clinometer models.

Target		
Mode	Definition	When to Use
Std	Standard, single-shot	Clear shot to unobstructed target
Con	Continuous; pressing and holding "Power /Fire" will continuously acquire targets	Useful for scanning trees in order to find the highest point
	for up to 10 s	
CLO	Closest; pressing and holding "Power /Fire" will acquire multiple targets, the viewfinder displays the closest target	Narrow targets in the foreground
FAr	Farthest; identical to CLO, but the view- finder displays the farthest target	Target partially obscured by brushFinding highest point of a tree
Flt	Filter; the sensor sensitivity is reduced to only detect laser pulses returned from a reflective surface; 'F' appears in the viewfinder	 Measuring targets through thick brush In very heavy brush, the optional foliage filter can be used in this mode (but is not required)

- b) Choose "Flt" and press "Power/Fire" to make the chosen Target Mode active.
- 3) Press either the ▲ or ▼ button until HD (i.e. Horizontal Distance) appears in the viewfinder.
- 4) Person 1: Hold the reflective surface at the base of the stem so that it is visible to Person 2.
- 5) Person 2: Look through the TruPulse viewfinder, aim the crosshairs at the reflective surface held by Person 1, and press and hold "Power/Fire" until the distance is displayed in the viewfinder; record this distance.

Measuring Azimuth from a Known Point

1) After recording the **HD** to the stem above, press ▲ three times until **AZ** (i.e. azimuth from True North) appears in the viewfinder and the angle in degrees is displayed; record this angle.

The angle should be preceded by a "d" indicating that declination has been set for the TruPulse at your current location (as described previously).