CHANGE RECORD

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION OF CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>01/11/2018</td>
<td>Initial Release</td>
</tr>
<tr>
<td>B</td>
<td>03/01/2021</td>
<td>Major updates to workflow including added input tables, added data relationships, migration of gauge-pressure relationship data from being transitioned in IS to being transitioned in OS, updates to gauge and TROLL offset calculation, updates to flow series calculation, updates to systematic uncertainty propagation, and added information about including lake inflow and outflow locations in this data product.</td>
</tr>
</tbody>
</table>
Table of Contents

1 DESCRIPTION
1.1 Purpose ... 1
1.2 Scope .. 1

2 RELATED DOCUMENTS AND ACRONYMS
2.1 Associated Documents 2
2.2 Acronyms ... 3

3 DATA PRODUCT DESCRIPTION
3.1 Spatial Sampling Design 4
3.2 Temporal Sampling Design 4
3.3 Variables Reported 4
3.4 Spatial Resolution and Extent 6
3.5 Temporal Resolution and Extent 6
3.6 Associated Data Streams 6
3.7 Product Instances 7
3.8 Data Relationships 7

4 Algorithm Theoretical Basis
4.1 Theory of measurement 8
4.2 Theory of Algorithm 9
4.3 Algorithm Implementation 10

5 DATA QUALITY
5.1 Data Entry Constraint and Validation 11
5.2 Data Revision .. 11
5.3 Uncertainty .. 11
5.4 Quality Flagging 12

6 REFERENCES ... 12
LIST OF TABLES AND FIGURES

Table 1 List of input data for Continuous Discharge. Note: The sdr_c_gaugePressureRelationship table is processed as part of the Stream-discharge rating curves (DP4.00133.001) data product, but is published with the Continuous discharge (DP4.00130.001) data product; therefore, the table is described in this document and not described in NEON User Guide to Stage-Discharge Rating Curves (DP1.00133.001) AD[10].

Table 2 List of calibration inputs for Continuous Discharge.

Table 3 List of geolocation inputs for Continuous Discharge.

Figure 1 Example stage series and flow series output. Pictures taken from “Stage series” and “Flow series” documentation for BaRatinAGE (Le Coz et al., 2013; Le Coz et al., 2014).
1 DESCRIPTION

1.1 Purpose

This document provides an overview of the data included in this NEON Level 4 data product, which is generated from Level 4 OS data, Level 0 IS data, and associated metadata. In the NEON data products framework, the raw data collected in the field (i.e. staff gauge measurements from a single collection event or pressure transducer readouts at 1 min interval) are considered the lowest level (Level 0). Raw data that have been quality checked and simple metrics that emerge from the raw data are considered Level 1 data products. Level 4 data products rely on inputs of any level data, often from multiple input products, and may involve calculations that use data collected over a range of spatial or temporal scales.

The text herein provides a discussion of measurement theory and implementation, data product provenance, quality assurance and control methods used, and approximations and/or assumptions made during L4 data creation.

1.2 Scope

This document describes the steps needed to generate the L4 Continuous discharge (DP4.00130.001) data product - continuous stage and discharge calculated from water level measurements using the stage-discharge rating curve relationship - and associated metadata from input data and calculations. This document also provides details relevant to the publication of the data product via the NEON data portal, with additional detail available in the file, NEON Data Variables for Continuous Discharge (DP4.00130.001) (AD[03]), provided in the download package for this data product.

This document describes the process for performing custom calculations derived from L0 pressure transducer data, L1 gauge height data (DP1.20267.001), L4 wadeable stream morphology data (DP4.00131.001), L4 bathymetric and morphological maps data (DP4.00132.001), geolocation data, and L4 Stage-discharge rating curve data (DP4.00133.001). For information of the raw data that are ingested and processed for the source data product see the following: for L0 pressure transducer data, NEON Algorithm Theoretical Basis Document (ATBD): Surface Water Elevation (AD[05]); for gauge height, NEON User Guide to Gauge Height (DP1.20267.001) (AD[06]) and NEON Data Validations for Gauge Height (DP1.20048) (AD[07]); for wadeable stream morphology, NEON User Guide to Wadeable Stream Morphology (DP4.00131.001) (AD[08]); for bathymetric and morphological maps, NEON User Guide to Bathymetric and Morphological Maps (DP4.00132.001) (AD[09]); for stage-discharge rating curve, NEON User Guide to Stage-Discharge Rating Curves (DP1.00133.001) (AD[10]). Documents are available for download with the respective L1 or L4 data package. Please note that raw or lower level source data products (denoted by ‘DP0’) may not always have the same numbers (e.g., ‘20048’) as the corresponding L1 or L4 data product.
2 RELATED DOCUMENTS AND ACRONYMS

2.1 Associated Documents

<table>
<thead>
<tr>
<th>AD[01]</th>
<th>NEON.DOC.000001</th>
<th>NEON Observatory Design (NOD) Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD[02]</td>
<td>NEON.DOC.002652</td>
<td>NEON Level 1, Level 2 and Level 3 Data Products Catalog</td>
</tr>
<tr>
<td>AD[03]</td>
<td>DP4.00130.001_variables.csv</td>
<td>NEON Data Variables for Continuous Discharge (DP4.00130.001)</td>
</tr>
<tr>
<td>AD[04]</td>
<td>NEON.DOC.001152</td>
<td>NEON Aquatic Sampling Strategy</td>
</tr>
<tr>
<td>AD[05]</td>
<td>NEON.DOC.001198vB</td>
<td>NEON Algorithm Theoretical Basis Document (ATBD): Surface Water Elevation</td>
</tr>
<tr>
<td>AD[06]</td>
<td>NEON_gaugeHeight_userGuide.pdf</td>
<td>NEON User Guide to Gauge Height (DP1.20267.001)</td>
</tr>
<tr>
<td>AD[07]</td>
<td>DP1.20267.001_validation.csv</td>
<td>NEON Data Validations for Gauge Height (DP1.20048)</td>
</tr>
<tr>
<td>AD[12]</td>
<td>NEON.DOC.000243</td>
<td>NEON Glossary of Terms</td>
</tr>
<tr>
<td>AD[13]</td>
<td>NEON.DOC.000927</td>
<td>NEON Calibration and Sensor Uncertainty Values</td>
</tr>
</tbody>
</table>
2.2 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Discharge</td>
</tr>
<tr>
<td>L0</td>
<td>Level Zero (Unprocessed) Data</td>
</tr>
<tr>
<td>L1</td>
<td>Level One (Processed) Data</td>
</tr>
<tr>
<td>L4</td>
<td>Level Four (Derived and Processed) Data</td>
</tr>
<tr>
<td>QAQC</td>
<td>Quality Assurance Quality Checking</td>
</tr>
<tr>
<td>S1</td>
<td>Aquatic Sensor Set One</td>
</tr>
<tr>
<td>S2</td>
<td>Aquatic Sensor Set Two</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>AOS</td>
<td>Aquatic Observational System</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>wk</td>
<td>Week</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascal</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>BaM</td>
<td>Bayesian Modeling</td>
</tr>
<tr>
<td>BaRatinAGE</td>
<td>Bayesian Rating Curve Advanced Graphical Environment</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
</tbody>
</table>
3 DATA PRODUCT DESCRIPTION

The Continuous discharge (DP4.00130.001) data product provides calculated stage, discharge, and associated uncertainty values every minute at stream, river, and lake inflow/outflow locations. One minute resolution continuous discharge and stage data are derived from once per minute pressure readings, empirical gauge heights, pre-developed gauge height-water column height regressions, and stage-discharge rating curves.

3.1 Spatial Sampling Design

Continuous discharge is developed at the site level (except for Toolik Lake, where two stations will have continuous discharge produced at the inflow and outflow to the lake) using data collected at either sensor set #1 or sensor set #2, whichever is closer to the staff gauge in wadeable streams, at the nearshore sensor set (AKA sensor set #1) at large rivers, or at sensor sets located at the inflow and outflow locations of Toolik Lake. The geospatial information related to the input data is published as part of the data product package, including: siteID - the 4 character NEON site code, stationHorizontalID - the 3 digit code for the sensor set (e.g., S1 = 101/131, S2 = 102/132), and namedLocation - the configured location of the pressure transducer L0 input data.

As much as possible, sampling occurs in the same locations over the lifetime of the Observatory. However, over time some sampling locations may become impossible to sample, due to disturbance or other local changes. When this occurs, the location and its location ID are retired. A location may also shift to slightly different coordinates. Refer to the locations endpoint of the NEON API for details about locations that have been moved or retired: https://data.neonscience.org/data-api/endpoints/locations/

3.2 Temporal Sampling Design

Level 0 pressure transducer is collected at a 1 min resolution. The 1 min resolution is retained in the L4 continuous discharge data product.

The gauge heights that are published in the gauge-pressure relationship data retain the resolution of the L1 data, which is measured whenever field technicians work at an aquatic site. This is at least bi-weekly for stream sites and monthly for lake and river sites.

3.3 Variables Reported

All data and geolocation variables used as inputs for continuous discharge are listed in Table 1, Table 2, and Table 3. For more information on calibration and validation assessment of sensors repeatability, see AD[13]. All variables reported in the published data (L4 data) are also provided separately in the file, NEON Data Variables for Continuous Discharge (DP4.00130.001) (AD[03]).

Some variables described in this document may be for NEON internal use only and will not appear in downloaded data.
Table 1: List of input data for Continuous Discharge. Note: The sdrc_gaugePressureRelationship table is processed as part of the Stream-discharge rating curves (DP4.00133.001) data product, but is published with the Continuous discharge (DP4.00130.001) data product; therefore, the table is described in this document and not described in NEON User Guide to Stage-Discharge Rating Curves (DP1.00133.001) AD[10].

<table>
<thead>
<tr>
<th>Data Source</th>
<th>DPID</th>
<th>table</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Gauge Height</td>
<td>DP1.20267</td>
<td>gag_fieldData</td>
</tr>
<tr>
<td>L4 Stream Morphology Map</td>
<td>DP4.00131.001</td>
<td>geo_controlInfo</td>
</tr>
<tr>
<td>L4 Stream Morphology Map</td>
<td>DP4.00131.001</td>
<td>geo_priorParameters</td>
</tr>
<tr>
<td>L4 Stream Morphology Map</td>
<td>DP4.00131.001</td>
<td>geo_curveIdentification</td>
</tr>
<tr>
<td>L4 Stream Morphology Map</td>
<td>DP4.00131.001</td>
<td>geo_gaugeWaterColumnRegression</td>
</tr>
<tr>
<td>L4 Bathymetric and Morphological Maps</td>
<td>DP4.00132.001</td>
<td>bat_controlInfo</td>
</tr>
<tr>
<td>L4 Bathymetric and Morphological Maps</td>
<td>DP4.00132.001</td>
<td>bat_priorParameters</td>
</tr>
<tr>
<td>L4 Bathymetric and Morphological Maps</td>
<td>DP4.00132.001</td>
<td>bat_curveIdentification</td>
</tr>
<tr>
<td>L4 Bathymetric and Morphological Maps</td>
<td>DP4.00132.001</td>
<td>bat_gaugeWaterColumnRegression</td>
</tr>
<tr>
<td>L4 Stage-Discharge Rating Curves</td>
<td>DP4.00133.001</td>
<td>sdrc_stageDischargeCurveInfo</td>
</tr>
<tr>
<td>L4 Stage-Discharge Rating Curves</td>
<td>DP4.00133.001</td>
<td>sdrc_sampledParameters</td>
</tr>
<tr>
<td>L4 Stage-Discharge Rating Curves</td>
<td>DP4.00133.001</td>
<td>sdrc_gaugeDischargeMeas</td>
</tr>
<tr>
<td>L4 Stage-Discharge Rating Curves</td>
<td>DP4.00133.001</td>
<td>sdrc_gaugePressureRelationship</td>
</tr>
</tbody>
</table>

Table 2: List of calibration inputs for Continuous Discharge.

<table>
<thead>
<tr>
<th>Internal Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVAL_B0</td>
<td>Calibration coefficient for LT500 pressure sensor</td>
</tr>
<tr>
<td>CVAL_B1</td>
<td>Calibration coefficient for LT500 pressure sensor</td>
</tr>
<tr>
<td>CVAL_B2</td>
<td>Calibration coefficient for LT500 pressure sensor</td>
</tr>
<tr>
<td>U_CVALA2</td>
<td>LT500 pressure sensor repeatability</td>
</tr>
</tbody>
</table>
Table 3: List of geolocation inputs for Continuous Discharge.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>field</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEON geolocation database</td>
<td>location startDate</td>
<td>SITE.AOS.gauge</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location endDate</td>
<td>SITE.AOS.gauge</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location elevation</td>
<td>SITE.AOS.gauge</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location zOffset</td>
<td>SITE.AOS.gauge</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location startDate</td>
<td>CFGLOC</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location endDate</td>
<td>CFGLOC</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location elevation</td>
<td>CFGLOC</td>
</tr>
<tr>
<td>NEON geolocation database</td>
<td>location zOffset</td>
<td>CFGLOC</td>
</tr>
</tbody>
</table>

3.4 Spatial Resolution and Extent

The finest spatial resolution at which data are reported is a site, except at Toolik Lake (TOOK) where data is published from two stations.

3.5 Temporal Resolution and Extent

The finest temporal resolution at which gauge-pressure relationship data are reported is the date and time of a set of pressure measurements and corresponding empirical staff gauge reading for the sdr_c_gaugePressureRelationship table. The finest temporal resolution at which continuous stage and discharge data are reported is 1 min for the csd_continuousDischarge table.

3.6 Associated Data Streams

The data from this L4 data product shares the same L0 pressure input data as the L1 Elevation of surface water (DP1.20016.001) data product. While the same L0 inputs are used for the two data products, the units and temporal resolution of the output data are different.

The data from this L4 data product are derived from a L1 data product: Gauge Height (DP1.20267.001). These data products can be linked by gag_fieldData:eventID and sdr_c_gaugePressureRelationship:gageEventID.

For wadeable streams, the data from this L4 data product are derived from a L4 data product: Stream Morphology Map (DP4.00131.001). For rivers and Toolik Lake locations, the data from this L4 data product are derived from a L4 data product: Bathymetric and Morphological Maps (DP4.00132). Data in this L4 data product are linked to the Stream Morphology Map and Bathymetric and Morphological Maps data products by the same fields in both data products:

- csd_continuousDischarge and sdr_c_gaugePressureRelationship can be linked to geo/bat_gaugeWaterColumnRegression by regressionID.
• csd_continuousDischarge can be linked to geo/bat_curvIdentification by curveID.
• csd_continuousDischarge can be linked to hydraulic controls (priors) data by first linking to geo/bat_curvIdentification by curveID then linking geo/bat_curvIdentification:controlSurveyEndDateTime to geo/bat_controlInfo:endDate and geo/bat_priorParameters:endDate.

The data from this L4 data product are derived from a L4 data product: Stage-Discharge Rating Curves (DP4.00133.001). Data in csd_continuousDischarge can be linked to stage discharge rating curve data by curveID.

3.7 Product Instances

The NEON Observatory contains 24 wadeable streams, 3 large rivers, and 1 lake site containing measurable inflow and outflow.

At each site or location, this data product yields a maximum of 104 gauge and mean pressure readings per year (~2 per wk) in the sdrc_gaugePressureRelationship table and 525,600 records per year (~1 per min) in the csd_continuousDischarge table.

3.8 Data Relationships

The algorithm used for this L4 data product produces as many records in sdrc_gaugePressureRelationship as there are for a site in the gag_fieldData table of the Gauge Height (DP1.20267.001) data product for a given water year (October 1st to September 30th). The values may differ between the two tables because a record from gag_fieldData will not be processed into the sdrc_gaugePressureRelationship table if there are no L0 pressure transducer measurements within 20 min of the gag_fieldData record’s collectDate. The sdrc_gaugePressureRelationship table reports the relationship between measured gauge heights and calculated stage values derived from previously-developed gauge height-water column height linear regressions. The data in this table is used as an to calculate systematicUncertainty in csd_continuousDischarge. Processing of sdrc_gaugePressureRelationship data will occur annually for the previous water year following the end of the water year when the L4 Stage-discharge rating curves (DP4.00133.001) data product is processed.

Data in both sdrc_gaugePressureRelationship and csd_continuousDischarge use staff gauge and pressure transducer offset values to correct data after infrastructure changes location. Offsets are calculated using information derived from the NEON geolocation database (Table 3). The processes for calculating offsets in both staff gauge and pressure transducer infrastructure is the same: (1) a total reference elevation is calculated for a location as the sum of its elevation above sea level (m) and zOffset (vertical correction needed in order for the location to be relatable to previous locations; m), (2) the total reference elevation for the initial location is subtracted from each subsequent location to obtain the offset value for each subsequent location, (3) every measurement (stage measurement for staff gauges and calibrated water column height for pressure transducers) between the start date and end date of a specific location will have the appropriate offset applied.
One record is created in csd_continuousDischarge per min regardless of whether the pressure transducer was producing data. For timestamps when the pressure transducer is not streaming, records in csd_continuousDischarge are produced containing the timestamp, applicable flags, and metadata, but no stream or flow series data. Some NEON sites are seasonal due to climate or logistical constraints. Records will not be processed and published at seasonal sites when infrastructure was intentionally deactivated or removed from the site.

When a new water year starts, csd_continuousDischarge data will be published provisionally using input data (Table 1) from the most recent previous water year following the publication schedule described in Section 3.2 of this document. At the end of a water year, NEON scientists will develop, review, and publish input data (see Table 1 for list of inputs) for each site or location. Upon publication of the previous water year’s input data, csd_continuousDischarge data will be reprocessed and re-published to be included in that year’s data release.

The regression equations used to calculate stage in both sdrc_gaugePressureRelationship and csd_continuousDischarge tables are published in the geo_gaugeWaterColumnRegression table for stream sites and bat_gaugeWaterColumnRegression for river sites and lake locations. These tables are available as part of the expanded download packages for this data product. Information on the regression table used to develop continuous discharge can be found in AD[08] for stream sites and AD[09] for river sites and lake locations.

sdrc_gaugePressureRelationship.csv -> One record expected per staff gauge reading collected for a site or location in the past water year that also has at least 1 min of L0 pressure data available within 20 min of the staff gauge reading.

csd_continuousDischarge.csv -> One record expected per min regardless of available L0 pressure data except at seasonal sites, which will contain gaps in data.

geo_gaugeWaterColumnRegression -> One record expected per unique gauge height - water column height linear regression developed at a stream site. Every record in this table will contain a unique identifier as the regressionID variable.

bat_gaugeWaterColumnRegression -> One record expected per unique gauge height - water column height linear regression developed at a river site or lake inflow and outflow locations. Every record in this table will contain a unique identifier as the regressionID variable.

regressionID can be used to link sdrc_gaugePressureRelationship, csd_continuousDischarge, and geo/bat_gaugeWaterColumnRegression data.

4 Algorithm Theoretical Basis

4.1 Theory of measurement

Continuous discharge is the volume of water flowing through a stream over time and is a function of the height of the water column, channel cross-sectional area, and water velocity. Practically, a stage-discharge rating curve can be developed to enable the conversion of stage, a relative measure of water column height, to stream discharge (Figure 1).
Figure 1: Example stage series and flow series output. Pictures taken from “Stage series” and “Flow series” documentation for BaRatinAGE (Le Coz et al., 2013; Le Coz et al., 2014).

4.2 Theory of Algorithm

Pressure transducers are installed at all NEON sites and are used to develop a continuous discharge record at wadeable streams and large rivers. For more information on the NEON pressure transducers, see AD[05]. Calibrated pressure can be used to estimate stage by first converting to water column height and applying an offset from the site survey (Equation 1) and then by applying the appropriate water column height-gauge height linear regression to the offset estimated water column height (Equation 2).

\[h_{wc} = \frac{P_{sw}}{\rho \cdot g} \cdot 1000 + h_{stage} \]

where,

- \(h_{wc} = \) offset estimated water column height, m
- \(P_{sw} = \) calibrated surface water pressure, kPa
- \(\rho = \) Density of water, 999 kg/m\(^3\)
- \(g = \) Acceleration due to gravity, 9.81 m/s\(^2\)
- 1000 = conversion from kPa to Pa (1 Pa is equivalent to 1 kg·m\(^{-1}\)·s\(^{-1}\))
- \(h_{stage} = \) offset between pressure transducer and staff gauge reading, m

\[h = m_{reg} \cdot h_{wc} + b_{reg} \]

where,

- \(h = \) estimated stage, m
- \(m_{reg} = \) slope of the water column height-gauge height linear regression, unitless
- \(b_{reg} = \) intercept of the water column height-gauge height linear regression, m
The estimated stage timeseries is converted to discharge using the stage-discharge rating curve (DP4.20133.001). The NEON Stage-discharge rating curves and Continuous discharge stage series are developed using a Bayesian modeling technique developed by the Bayesian Rating Curve Advanced Graphical Environment (BaRatinAGE) development team (Le Coz et al., 2013; Le Coz et al., 2014). The executable and/or a GUI is available freely with an individual license by sending an email to: baratin.dev@lists.irstea.fr.

The rating curve relies on a “prior” rating curve that is developed for the hydraulic controls. The physical dimensions of the channel, the number of hydraulic controls selected, and the physical dimensions of the hydraulic controls are derived from cross-section survey data. Exponential equations for each control are then calculated (Equation 3). A “posterior” rating curve is then fit using the “prior” rating curve and the gauging records using Bayesian estimation of the rating curve and a Markov Chain Monte Carlo (MCMC) sampling (Le Coz, 2014). Equation 3 and text below are taken from “Rating curve equation” documentation for BaRatinAGE (Le Coz et al., 2013).

\[
Q(h) = \sum_{r=1}^{N_{\text{segment}}} \left(\left[I_{K_{r-1}:K_r}(h) \right] \times \sum_{j=1}^{N_{\text{control}}} M(r, j) \times a_j(h - b_j)^{c_j} \right)
\]

(3)

In the above equation, \(M(r, j) \) is the matrix of controls, and the notation \(I_I(h) \) denotes a function equal to 1 if \(h \) is included in the interval \(I \), and zero otherwise. This equation shows that the stage discharge relation is a combination of power functions, and the matrix of controls is used to specify how this combination operates (succession or addition of controls). For more information on the development of NEON stage-discharge rating curves, see AD[10].

4.3 Algorithm Implementation

The NEON IS transition system runs a Docker container containing R code to estimate stage and flow series data at 1 min resolution (similar infrastructure to Metzger, 2017 without the use of HDF5 file formats).

Within the Docker container:

1. L0 pressure data for the site and day of continuous discharge is queried from the NEON database.
2. Calibration factors for the L0 pressure data are queried from the NEON database.
3. Geolocation information for the staff gauge location (SITE.AOS.gauge) and level TROLL (CFGLOC) is queried from the NEON database.
4. Calibration factors and geolocation data are used to convert raw pressure transducer to estimated stage.
5. L4 gauge-pressure relationship data are queried from the NEON OS database.
6. Calibration uncertainty and gauge-pressure relationship uncertainty are combined to estimate uncertainty in calculated stage.
7. L4 stage-discharge relationship and hydraulic controls data are queried from the NEON OS database to use as inputs to BaM.
8. Configuration files for BaM are created.
9. BaM executable is run.
10. BaM outputs are written to the L4 data tables in the NEON database for publication to users.

5 DATA QUALITY

5.1 Data Entry Constraint and Validation

Many quality control measures are implemented at the point of data entry (i.e., the L1 data that is used as an input for this data product) within a mobile data entry application or web user interface. See NEON User Guide to Gauge Height (DP1.20267.001) (AD[06]) and NEON Data Validations for Gauge Height (DP1.20048) (AD[07]) for more details.

5.2 Data Revision

All data are provisional until a numbered version is released; the first release of a static version of NEON data, annotated with a globally unique identifier, is planned to take place in 2020. During the provisional period, QAQC is an active process, as opposed to a discrete activity performed once, and records are updated on a rolling basis as a result of scheduled tests or feedback from data users. The Change Log section of the data product readme, provided with every data download, contains a history of major known errors and revisions.

This data product was not included in the first release of versioned NEON data. Therefore, all data in the Continuous discharge (DP4.00130.001) data are provisional until the second NEON data released scheduled to take place in 2021.

5.3 Uncertainty

One of the benefits of using BaM and MCMC sampling is that there are a large number of realizations from the posterior distribution, which can be used to quantify uncertainty associated with the maximum likelihood posterior parameters (BaRatin statistical model documentation and Le Coz et al., 2014). NEON publishes both the parametric and remnant (structural) error based off of 500 realizations from the posterior distribution.

Note that the uncertainty published in the NEON data downloads is expanded uncertainty, i.e. multiplied by a factor of 1.96 to cover two standard deviations. When using the BaRatin GUI tool the uncertainty should be represented the same was as NEON publishes it. For the BaM executable, though, uncertainty is represented as one standard deviation. So, the NEON data should be divided by a factor of 1.96 before writing out data and configurations.
5.4 Quality Flagging

This data product contains a `dataQF` field in each data record that is a quality flag for known errors applying to the record in the `csd_pressureGaugeRelationship` table. Please see below for an explanation of `dataQF` codes specific to this product.

For the quality flags in the `csd_continuousDischarge` table, see the descriptions in AD[14] and AD[15] for more details on the automated quality flagging associated with instrument data.

<table>
<thead>
<tr>
<th>fieldName</th>
<th>value</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataQF</td>
<td>legacyData</td>
<td>Data recorded using a paper-based workflow that did not implement the full suite of quality control features associated with the interactive digital workflow</td>
</tr>
</tbody>
</table>

6 REFERENCES

