
Welcome to Nicl

Nicl is NEON’s Ingest Conversion Language, a scripting language used to map and filter one set
of incoming values into another set of values. Nicl is meant to handle these values in a single
batch.

The Nicl Engine

The main driver to process data through the Nicl language is the Nicl Engine. The Nicl Engine
works on a set of registers called the Nicl Register Frame.

Each register starts with some initial value. All registers in the Register frame are evaluated left-
to-right as a batch, applying to each register its customized script of Nicl functions to arrive at
each output value.

Each register is named. The results of these registers are further processed and persisted to a
database or otherwise put into some document and displayed according to the context of that
register name.

Register Initial value Nicl Script
loc ←(3)[IDENT];

tax ←(4)[IDENT];

col ←()[loc + tax];

Table 1 Example Nicl Register Frame

The figure above shows a sample Register Frame. This frame has three named registers: loc, tax,
and col. loc and tax are given the initial values 3 and 4 respectively. Col does not have an initial
value. Instead, col is a calculated as the sum of loc and tax, as its Nicl Script shows. loc and tax
have only the call to the IDENT function. The output result set of this small example is expected
to be:

(loc:3|tax:4|col:7).

The evaluations of all registers in a frame are done as a batch. The ordering in which these
registers are written are not important. The example register frame above could have been in
the order: tax, col, loc, and the output would have been the same. This despite that the
equation for col uses values that are defined both before and after it.

Os L0 Parser Application

The Os L0 Parser Application (OsParser) uses the Nicl Engine to process Level 0 data from the
field, perform some transform and validation on the data, and then save the output as Activity
information in Neon’s PDR database.

OsParser gathers records from a set of Fulcrum UI query requests, or from rows of a set of
comma-separated spreadsheet (CSV) files, or from some other resource capable of providing a
stream of flat records of field data.

Each record of field data is evaluated in its own Nicl Register Frame. The record’s data is used to
populate the initial values of the Register Frame.

Example

I have an input CSV file containing four rows: One header row and three rows of data. I want to
process this CSV file using the Table 1 Example Nicl Register Frame from the previous section.

\ A B
1 loc tax
2 30 7
3 31 5
4 28 4

Table 2 Input 0 data as CSV

That the first row is the presumed header row, and the names in each header cell (loc, tax)
matches the name of the registers in the Register Frame that are to be initialized. The Register
Frame entries can be in arbitrary order, and so too the header columns. The above CSV columns
could have been reversed.

When the Nicl Engine runs through, we expect the following three result sets, one for each data
row:

1 (loc:30|tax:7|col:37)

2 (loc:31|tax:5|col:36)

3 (loc:28|tax:4|col:32)

From here OsParser will do further processing and data threading of this output and ultimately
generate Activity database records having this data.

OsParser Ingest Worksheets

Bundled with the raw Level 0 field data are metadata that identify which Register Frame to use
to process its particular payload. There are potentially hundreds of different types of CSV form
data, and there is a customized Register Frame for each.

For OsParser, each Register Frame is defined within an Ingest Worksheet. Within each Ingest
Worksheet defines one particular Register Frame, and each frame comprises:

x The list of registers that compose the frame. This includes both the input fields and
calculated fields.

x The name of each register, which is the Ingest Worksheet field’s Field Name.
x Custom Nicl script for each register.
x Mapping constructs that tell for example how to match csv header names to register

names in case they don’t match one for one.
x Mapping constructs that tell how to gather records from the Fulcrum UI’s Json

document.

The Ingest Worksheet also contains workflow information on how to process batches of
information and how that information is grouped, data types and underlying context types for
each field, and more information that won’t be covered in this section.

For OsParser, an Ingest Worksheet (and therefore a particular Register Frame) is defined by a
Data Product ID/Table Name combination, for example:

NEON.DOM.SITE.DP0.20066.001/apl_clipHarvest_in

See [HERE] for more details on the Ingest Worksheet and how it is processed.

Nicl Script Introduction

The basic Nicl construct is the Statement. A Statement should be thought of a pipeline of
expressions that transform from one value into another, from left to right. A Statement can
generate an output value most easily by just supplying a literal value or literal expression such
as:

4 * 3

This will be evaluated and will generate an output value of 12. A Statement can otherwise be
an If Statement or a Case Statement, which will be discussed later. All other Statements,
like 4*3 are Expressions.

Expressions

An expression can be some simple value, such as

'George'

The literal string of characters "George".

An Nicl expression may be an Identifier, which may be the name of a 0-argument function such
as TRUE, or the name of some value in the Nicl environment such as

systemDate

An expression may be some more elaborate construct, a combination of identifiers, literal data,
data structures, functions with or without parameters:

myAgeYears / 2 + 7 >= THRESHOLD(yourAgeYears)

By the usual naming convention myAgeYears and yourAgeYears look to be value identifiers
whose values come from registers of the same name in a Register Frame. THRESHOLD is a
function taking one parameter. This function may be a “canned” function that is available in
general, or may be a function written by you! More on that later.

From the expression above /, + and >= are each operators. They represent the familiar divide,
plus, and greater-than-or-equal-to operations. These are binary infix left-to-right (L-R)
operators, meaning the operator takes two operands, evaluates the left-hand operand before
the right-hand side, and sits typographically between its two operands. The usual operator
precedence with which you are most familiar applies to Nicl expressions. From the expression
above divide (/) takes a higher precedence than both + and >= and so myAgeYears / 2 is
evaluated first. Similarly the addition is performed before the comparison is made. Incidentally,
the parentheses in the term THRESHOLD(yourAgeYears) can also be considered an operator, and

it is bound most tightly, and will evaluate and bind its operators to the function and evaluate
that function ahead of any of the other operators around it.

 Control Flow

To move beyond a single expression Nicl allows you to execute a simple series of expressions by
putting your expression or other statement (remember that an Expression is a kind of Statement
in Nicl) inside a Block and then stringing these blocks together forming a Block Chain. Blocks
are formed by encasing expressions in square brackets (‘[‘ and ‘]’) and then chaining them
together left to right like this:

[Statement1][Statement2][Statement3]

At the head of the Nicl script, an implicit Incoming Value (inValue) may be provided from the
left side. This is the initial register value as described in The Nicl Engine section above. In the
case of the Os L0 Parser, this would be the cell of raw data from a CSV file from the field, for
example. The Block Chain statement is executed left to right, with the result from one Block fed
to the block on to its right, becoming the right’s inValue. The result from the last block of the
entire chain in the script will become the outcome of the Register.

Consider the example from above:

myAgeYears / 2 + 7 >= THRESHOLD(yourAgeYears)

This can also be enclosed in a single block like this:

[myAgeYears / 2 + 7 >= THRESHOLD(yourAgeYears)]

The value coming out of a block is by default the result of the (last) expression’s result, and so
this has the same outcome as the first expression. So far this hasn’t bought us anything. This can
be split up into a Block Chain like so:

[myAgeYears][/ 2][+7][>= THRESHOLD(yourAgeYears)]

On the face of it, this doesn’t look much different, and in fact looks to have merely added extra
characters. But this construct has some deep consequences on how expressions are evaluated in
Nicl as will become apparent.

Data Types

Strings
Numbers

Numbers in Nicl are represented as BigDecimals, carrying a default of 12 digits of precision.
They can be represented in Nicl in a variety of ways, as both signed and unsigned Integers,
floating point numbers, including exponents. Nicl numbers may also carry Units.

Note: Nicl’s number representation is not the same as the formats of incoming data from ingest
workbooks used by the OS L0 Parser and other such ancient tools.

Numeric literals are represented as a series of digits, with an optional decimal point, without
enclosing the sequence with quotes or any other delimiters. The following are each valid
numeric literal values:

0
1
9.070-
0.3

The biggest thing to notice here is that negative numbers are represented with a postfix minus
sign following the digits rather than the usual prefix notation (before the digits) to which you
may be used. When using the decimal point, the digits to the left and right of the dot are
optional. The following are equivalent:

.3-
0.3-

As are the following. Note that leading and trailing zeroes have no special meaning. All numbers
are treated as decimal base-10 except when using the hexadecimal notation discussed below.

9.0
9.
009.00.

You can express numbers as exponents using the familiar ‘E’ notation. The following literals each
represent the value 55.340 x 103

55.34E3
55.340e3
55.34E03

Note: ‘E’ (or ‘e’) must be surrounded by digits. Also, no embedded spaces are allowed.
Extraneous embedded characters are also disallowed. None of these will work:

55.34 E3

55 .34
<= WRONG! 3.4z4.

.

You can use a Hexadecimal format to represent integer values. Note that decimal notation and
exponential (‘E’) notation does not mix with the hexadecimal representation. The following is the
decimal value 65535:

0xffff

You can embed underscores (‘_’) in your numeric literal in order to group digits for better
readability. Note that underscores used in this manner must be both preceded and followed by
a digit. The underscores have no effect on the meaning of the value. All of the following have
the same value:

1900089E-45.002103
1_900_089E-45.002_103
1_900_089e-45.002_103

Boolean (TRUE and FALSE) expressions

Some Neon functions and many NICL expressions evaluate to either TRUE or FALSE. This section
gives several examples of how that happens.

Boolean expressions typically are not Transformed into a final output value, but rather are used
in Nicl conditionial statements (IF and CASE statements) directing the script to perform
some Validation or Transform function.

True and false constant values are represented in Nicl as the literal
values TRUE and FALSE respectively. These should not be put into quotes. Boolean functions
evaluate to TRUE and FALSE. TRUE and FALSE can be used in expressions directly. The equal
sign =is Nicl's operator to check for equality between two boolean values. != is Nicl's Not

equals operator, which returns TRUE if its two arguments (left and right hand side expressions)
are not the same. The exclamation sign ! is Nicl's NOT operator, which toggles
between TRUE and FALSE values. The following list of examples illustrate this.

Input Nicl Script Remarks

-

[TRUE = !FALSE]
[!FALSE]
[TRUE]
[TRUE = TRUE]
[TRUE != FALSE]
[TRUE = !FALSE]
[FALSE != TRUE]
[FALSE = FALSE]

These each evaluate to TRUE.

NOT is a keyword in Nicl, and it is an operator that is synonymous to the ! operator.

Input Nicl Script Remarks

-
[TRUE = NOT FALSE]
[NOT FALSE]

These both evaluate to TRUE as well.
Note though that NOT= is not a thing:
it is not a substitue for Nicl's Not equals operator, !=.

Input Nicl Script Remarks

-

[FALSE]
[TRUE != TRUE]
[TRUE = FALSE]
[FALSE = TRUE]
[FALSE != FALSE]
[TRUE != TRUE]
[TRUE = !TRUE]
[TRUE = NOT TRUE]
[!TRUE]
[NOT TRUE]

Lists

Lists are collections of other primitive values in Nicl, and a list can be passed around and
operated on by functions as if it were a primitive value. A list is an ordered collection of 0 or

more values. The values within one list typically share a common base type, but that isn’t a
requirement.

Lists are formed in the Nicl language by listing the list elements surrounded by parentheses and
separated by commas like so:

(a, b, c)

As in other places in the Nicl language, spaces after commas and whitespace in general is
ignored.

Note again that the order of the list is relevant: The following lists are not equal due to the
ordering of their elements:

(a, b, c) <> (a, c, b)

Sets

Sets in Nicl are a purer, more restricted form of list. Sets are an unordered collection of unique
primitive values and/or tuples. Like lists, sets can be operated upon by functions that take
collections to operate upon.

Sets are formed in the Nicl language by listing the elements in any order, separated by the OR
operator like so:

(a OR b OR c)

A few things to note about sets vs lists.

x The elements of a set are unique. Trying to place two of the same value in a set will cause
the element to collapse down to a single element.

x The parentheses in the set are optional, and are used here merely for expression
grouping in the same way as parentheses are used to group algebraic terms.

x The vertical-bar operator (|) is synonymous with OR.

Therefore, all of the following Set expressions are equivalent:

(a OR b OR c)
(a | b | c)
a | b | c
a | c | b | b
a OR b | c

Nicl Operators

This is a list of the operators available in the Nicl language. These are listed in what is more or
less highest to lowest precedence order. This determines how tightly bound one operator is
compared to another, in the absence of grouping parentheses.

For example, because multiplication is of a higher precedent than addition, the following
equalities hold:

 5 * 3 + 2 = 2 + 5 * 3 = (5 * 3) + 2 = 17

Use parentheses to change the order of evaluation:

 5 * (3 + 2) = 25

Operator
Name

Symbol Alternate
Symbol

Remarks

Function
Arguments

f()

Highest Precedence. A function tightly
binds to its argument list, if it has one.

Negate x -

Negates a number. [4-] yields negative four.
This is not to be confused with

Power ^

Raises one number to the power of
another. [9 ^ (1/2)] yields 3.0.

Multiply *

Multiplies two numbers together. [8 *

2] yields 16.0

Divide /

Divides two numbers. [8 / 2] yields 4.0

Add +

Adds two numbers together. [38.9 +

1.1] evaluates to 40.0

Subtract a - b

Subtracts two numbers. [45 - 23] evaluates
to 22.0

In <: IN Determines if one value is in the set of
another. ['grass' IN ('twigs', 'grass')]
returns TRUE

Operator
Name

Symbol Alternate
Symbol

Remarks

Contains :> CONTAINS Determines if one set contains some value
(the inverse of IN). [('twigs', 'grass') CONTAINS

'weeds'] returns FALSE

Less Than <

Compares two numbers. [3 < 5] yields TRUE,
for example.

Less Than or
Equal

<=

Compares two numbers.
[5 <= 5] returns TRUE.

Greater Than >

Compares two numbers.
[3 > 5] returns FALSE.

Greater Than
or Equal

>=

Compares two numbers.
[5 >= 5] returns TRUE. Not to be confused
with the forwarding arrow of the case
statement, which is =>

Equal =

Compares any two things for equality.

Not Equal !=

Compares any two things for inequality.

Almost Equal ~=

Compares any two numbers, and returns
true if their absolute difference is within
1/10000th.

Logical Not ! NOT returns the inverse of a logical (true/false)
value, so that TRUE becomes FALSE and vice
versa.

Logical And & AND Compares two logical (true/false) values
and returns TRUE if both are TRUE

Logical Or | OR Compares two logical (true/false) values
and returns TRUE if either is TRUE

List Or | OR Builds a list of values, ['Me' OR 'You'] yields
the set ('Me', 'You')

Bind ->

Binds a value to a temporary variable in one
field's script

Operator
Name

Symbol Alternate
Symbol

Remarks

Assign <-

Assigns a value to a form-level identifier.

If statement IF cond ,
 stmt

Evaluates the boolean conditional
expression cond, and if TRUE executes the
statement.

Case
statement

? cond
 => stmt

CASE cond
=> stmt

Evaluates the boolean conditional
expression cond, and if TRUE executes the
statement

Nicl Algebra Examples

The following rows contain the results from various Nicl statements and expressions.

The first column is the NICL script that will be evaluated. The second column are the results,
followed by any remarks.

Nicl Script Results Remarks

[1 + 3] 4.0 '+' adds two numbers

[(5-) * 4]
[5- * 4]
[(0-5) * 4]
[4 * (5-)]
[4 * 5-]

-20.0

'*' multiplies two numbers,
'-' subtracts. '-' is also a "unary" negation
operator
Each of these lines are equivalent

[8 * 3 - 1 / 2 ^ 2] 23.75
'/' divides. '^' is the power function.
The usual Operator Precedence applies.

[(8 * 3) - (1 / (2 ^ 2))] 23.75
Parentheses are used for grouping expressions.
This grouping is equivalent to the one above.

[8 * (3 - 1) / 2 ^ 2] 4.0

[8 * (3 - 1 / 2) ^ 2] 50.0

[(8 * 3 - 1 / 2) ^ 2] 552.25

[8 * ((3 - 1) / 2) ^ 2] 8.0

Nicl Script Results Remarks

[(8 * ((3 - 1) / 2)) ^ 2]
[(8 * (3 - 1) / 2) ^ 2]

64.0

Nicl as a Desktop Calculator

TODO

Negation and the Minus Operator

TODO

Transform Functions

This section provides the Transform Functions from both the Nicl core library and the Neon
custom library. Transform functions are those that convert its input value(s) to some other value.
A Transform function fails only on bad input. Boolean functions also convert its input values to
some other value, namely TRUE or FALSE, but that is a large enough slice of functionality that
they are listed separately. Also, Boolean functions typically are not used to transform data to
output values, but are used as the conditional parameter to IF and CASE statements.

Nicl Validation Functions

This lists the Validation Functions that are part of the Nicl core library and the Neon custom
library.

Validation Functions differ from Boolean Functions. Boolean functions work on its arguments
and return either TRUE or FALSE. Boolean Functions fail only on bad input.

A Validation function on the other hand determines whether its input is valid or not. When valid,
the Validation function "passes through" its input value (coming in from the left) to its output
result (going out of the right). When invalid, the Validation function short-circuits the field
evaluation, and delivers a FAIL state.

Most of the following functions allow an "implied" first parameter, which is the value that is
coming in from the immediate left of the expression. This is called the invalue. A function that
takes a single "implied" parameter means that it will take no parameters when the invalue is to
be used, otherwise it takes a single explicit value, in which case the invalue is ignored. Similarly,
a function that takes two parameters, where the first one is "implied" means that it will take 1
parameter when the invalue is to be used, otherwise it takes two explicit values, in which case
the invalue is ignored. And so on.

In the listing below, the implied functions are marked with a special bullet (●) as its first
parameter.

Nicl “Canned” Functions

COUNT

Function COUNT counts all of the non-blank elements
in the given parameter list. The parameters can be any
type. If a parameter is a list of items (such as ('grass',

'leaves')) then COUNT does a deep dive into these items
and counts each of those elements.

Each of the parameters, whether in comes from the
explicit parameter list or from the implicit value (the invalue), is assumed to be a tuple of
elements. Each of the elements of that tuple is counted separately and deeply. If the value is not
a tuple, but is VOID or an Error, it counts as 0. All other non-tuple values count as 1.

COUNT does not fail. COUNT is part of the Nicl Canned Library.

COUNT Signature

COUNT
COUNT(@)

Counts the list of elements in the implicit value (the invalue), treated as a tuple of values. The
second form COUNT(@) does the same thing explicitly. Note that the at-sign symbol (@, “the

sponge”) indicates the invalue.

COUNT(param, ...)

The first form (without any parameters) counts the implicit value (the invalue). The second
form COUNT(@) does the same thing explicitly. Note that the at-sign symbol (@) indicates
the invalue.

COUNT Example

Given these variable assignments:

empty <- ‘’
plotId <- ‘ltr.01’
sampleType <- ‘soil’
after <- 10

COUNT’s function footprint
Signature: Explicit 0-arg

Validating: No
Exceptions: None

Result: Integer

The following expressions are equivalent. Each evaluate to 5, because nope is VOID, and not
counted:

[COUNT(empty | nope | plotId | sampleType | after | 'foo')]
[(empty | nope | plotId | sampleType | after | 'foo')][COUNT]
[(empty | nope | plotId | sampleType | after | 'foo');COUNT]
[(empty | nope | plotId | sampleType | after | 'foo');COUNT(@)]

IDENT
FALSE
TRUE
IS_BLANK

Function IS_BLANK returns TRUE if and only if its parameter is null, empty or blank.

IS_BLANK(●)

The function takes a single, implied input value of any type. It does not fail. IS_BLANK is part of
the Neon Custom Library.

Input Nicl Script Result Remarks

- [IS_BLANK('')] TRUE Explicit blank string argument

- [IS_BLANK(nope)] TRUE Assuming the nope identifier isn't defined
anywhere

empty <- ' ' [IS_BLANK(empty)] TRUE Explicit parameter's value is blank.

invalue <-
4.8

[IS_BLANK] FALSE Implicit invalue is not blank.

invalue <- ' ' [IS_BLANK] TRUE Implicit invalue is blank.

- [42.3][IS_BLANK] FALSE Implicit version

Input Nicl Script Result Remarks

- [42.3;IS_BLANK] FALSE Implicit version

- [' '; IS_BLANK] TRUE Implicit version

IS_NOT_BLANK

Function IS_NOT_BLANK returns TRUE if and only if its parameter is not null, empty or blank.

IS_NOT_BLANK(●)

The function takes a single, implied input value of any type. It does not fail. IS_NOT_BLANK is part
of the Neon Custom Library.

Input Nicl Script Result Remarks

- [IS_NOT_BLANK('')] FALSE Explicit blank string argument

- [IS_NOT_BLANK(nope)] FALSE Assuming the nope identifier isn't defined
anywhere

empty <- ' ' [IS_NOT_BLANK(empty)] FALSE Explicit parameter's value is blank.

invalue <-
'Hi'

[IS_NOT_BLANK] TRUE Implicit invalue is not blank.

invalue <- ' ' [IS_NOT_BLANK] FALSE Implicit invalue is blank.

MATCHES
MATCHES_EXACT
STARTS_WITH
ENDS_WITH
VOID
INT
NUM
BOOL
STRING
DATE
LIST
SET
MICROSECONDS
MILLISECONDS
SECONDS
MINUTES
HOURS
DAYS
PI
NEG
ABS
MIN
MAX
SUM
MEAN
DECR
INCR
SQRT
VARIANCE
STDDEV
PVARIANCE
PSTDDEV

Neon Custom Functions

This table describes the set of canned NEON functions and their usage. When Nicl evaluates any
function there shall always be an implicitly provided upstreamValue. The upstreamValue comes
either from the result of the previous expression in this statement, or comes from the value of
a Tablet Form Field. Many functions have an Implicit Form which assumes that it will use
the upstreamValue as its argument, as well as a secont Explicit Form in which an explicit value is
provided as the first argument to be processed instead of the upstreamValue. Each form of each
Neon function is detailed below.

NA

Alias for IDENT

CREATE_UID

This Transform Function generates a unique universal user id (UUID) string of the
form "7e4f528c-7ee3-4f80-a54e-0cb623fa3893".

Syntax

[CREATE_UID]

This function takes no parameters and returns a UID string. The upstreamValue is ignored.

Usage

(_) -> [CREATE_UID] -> ('9ac412e4-ff23-0234-ff67-ff65a2b01cd4')

DEFAULT_TO

Transform function provides a default value to this statement block when the upstreamValue is
missing or empty. This is an implicit 2-argument function: When only one argument is provided,
it is assumed that the first argument should be the upstreamValue.

Implicit Syntax

[DEFAULT_TO(default-value)]

Explicit Syntax

[DEFAULT_TO(in-value , default-value)]

Here default-value and in-value can be any expressions. For the Implicit Syntax form
the upstreamValue is used as the in-value. The in-value is evaluated. If it is VOID or undefined, or

if its trimmed string value is empty, then default-value is used as this function's result.
Otherwise in-value is the result.

Usage

() -> [DEFAULT_TO(45.6)] -> (45.6)

('active') -> [DEFAULT_TO('inactive')] -> ('active')

('2006-03-15 14:00') -> [AS_DATE][DEFAULT_TO(NOW)] -> (2006-03-15T14:00)

(_) -> [DEFAULT_TO('good', 'bad')] -> ('good')

(_) -> [DEFAULT_TO((), 'inactive')] -> ('inactive')

SPLIT_BY

Transform function splits a value's string into an ordered tuple of values. This resultant tuple is
suitable for further processing downstream.

Implicit Syntax

[SPLIT_BY(default-value)]

Explicit Syntax

[SPLIT_BY(in-value , default-value)]

Here default-value and in-value can be any valid string expressions. For the Implicit Syntax form
the upstreamValue is used as the in-value. The string value of in-value is split into a sequence of
individual string values at the occurrence of the default-value separator, which is typically a
comma or a vertical bar. The separators are not included in the output. The split strings are
trimmed when put into the output. Empty strings, resulting from two adjacent separators, are
allowed in the output.

Usage

('a|b|c') -> [SPLIT_BY('|')] -> ('a','b','c')

(_) -> [SPLIT_BY('start by | ending-by | who', '|')] -> ('start by','ending-
by','who')

(_) -> [SPLIT_BY(' ; start by ; ending-by ; who;', ';')] -> ('','start by','ending-
by','who','')

REQUIRE

Validating Function REQUIRE determines if its parameter is not blank and not an error. The
function "passes through" the input value to the output result on success. The function FAILs if
there the parameter is an error or is blank.

REQUIRE(●)

REQUIRE is part of the Neon Custom Library.

REQUIRE_NULL

Validating Function REQUIRE_NULL determines if its parameter is blank or is an error. The
function "passes through" the input value to the output result on success. The function FAILs if
there the parameter is not null.

REQUIRE_NULL(●)

REQUIRE_NULL is part of the Neon Custom Library.

DICT
LOV
CONVERT_TO_UTC
NAMED_LOCATION_TYPE

Validating Function NAMED_LOCATION_TYPE

NAMED_LOCATION_TYPE(● , list-of-named-location-types)

NAMED_LOCATION_TYPE is part of the Neon Custom Library.

ELEMENT_OF

Validating Function ELEMENT_OF

ELEMENT_OF(●, arg-list ...)

ELEMENT_OF is part of the Neon Custom Library.

GREATER_THAN
GREATER_THAN_OR_EQUAL_TO
LESS_THAN
LESS_THAN_OR_EQUAL_TO
DEFAULT_TO
DERIVE_FROM_SAMPLE_TREE
MATCH_REGULAR_EXPRESSION

Validating Function MATCH_REGULAR_EXPRESSION passes through its first implicit parameter if
that first parameter is found anywhere within the Regular expression pattern given by the
second parameter. The function "passes through" the input value to the output result on
success. The function FAILs if there is not a match. Both parameters are treated as strings.

MATCH_REGULAR_EXPRESSION(● , pattern)

MATCH_REGULAR_EXPRESSION is part of the Neon Custom Library.

NOT_MATCH_REGULAR_EXPRESSION

Validating Function NOT_MATCH_REGULAR_EXPRESSION passes through its first implicit
parameter if that first parameter is not found anywhere within the Regular expression pattern
given by the second parameter. The function "passes through" the input value to the output
result on success. The function FAILs if there is there is no match. Both parameters are treated as
strings.

NOT_MATCH_REGULAR_EXPRESSION(● , pattern)

NOT_MATCH_REGULAR_EXPRESSION is part of the Neon Custom Library.

MATCH_EXACT_REGULAR_EXPRESSION

Validating Function MATCH_EXACT_REGULAR_EXPRESSION passes through its first implicit
parameter if that first parameter exactly matches the Regular expression pattern given by the
second parameter. The function "passes through" the input value to the output result on
success. The function FAILs if there is not an exact match. Both parameters are treated as strings.

MATCH_EXACT_REGULAR_EXPRESSION(● , pattern)

MATCH_EXACT_REGULAR_EXPRESSION is part of the Neon Custom Library.

NOT_MATCH_EXACT_REGULAR_EXPRESSION

Validating Function NOT_MATCH_EXACT_REGULAR_EXPRESSION passes through its first implicit
parameter if that first parameter does not foundexactly match the Regular expression pattern
given by the second parameter. The function "passes through" the input value to the output
result on success. The function FAILs if there is there is an exact match. Both parameters are
treated as strings.

NOT_MATCH_EXACT_REGULAR_EXPRESSION(● , pattern)

NOT_MATCH_EXACT_REGULAR_EXPRESSION is part of the Neon Custom Library.

DEFAULT_TO_LAB_LOGGED_IN
DOES_NOT_EXIST
EXISTS
MIGHT_EXIST
UPLOAD_DATE

