

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD)

EDDY-COVARIANCE STORAGE EXCHANGE (PROFILE) ASSEMBLY RAW DATA PROCESSING

PREPARED BY	ORGANIZATION	DATE
Natchaya Pingintha-Durden	FIU	03/14/2018
Hongyan Luo	FIU	03/14/2018

APPROVALS	ORGANIZATION	APPROVAL DATE
Kate Thibault	SCI	05/14/2018
Mike Stewart	SYS	05/10/2018

RELEASED BY	ORGANIZATION	RELEASE DATE
Judy Salazar	СМ	06/08/2018

See configuration management system for approval history.

The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Change Record

REVISION	DATE	ECO #	DESCRIPTION OF CHANGE
А	06/08/2018	ECO-05625	Initial release

TABLE OF CONTENTS

1	DES	SCRIPTION	16
	1.1	Purpose	
	1.2	Scope	
2	REL	ATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATU	RE19
	2.1	Applicable Documents	
	2.2	Reference Documents	
	2.3	Acronyms	
	2.4	Variable Nomenclature	20
3	ANA	ALYZER FOR CO2 AND H2O CONCENTRATION	21
	3.1	Data Product Description	21
	3.1.	1 Variables Reported	21
	3.1.	2 Input Dependencies	22
	3.1.	3 Product Instances	22
	3.1.	4 Temporal Resolution and Extent	22
	3.1.	5 Spatial Resolution and Extent	22
	3.2	Scientific context	22
	3.2.	1 Theory of Measurement	23
	3.2.	2 Theory of Algorithm	24
	3.3	Algorithm Implementation	25
	3.3.	1 Time regularization	25
	3.3.	2 Unit conversion	25
	3.3.	3 QA/QC Procedure	26
	3.4	Uncertainty	27
4	ANA	ALYZER FOR ISOTOPIC CO2	27
	4.1	Data Product Description	27
	4.1.	1 Variables Reported	27
	4.1.	2 Input Dependencies	
	4.1.	3 Product Instances	
	4.1.	4 Temporal Resolution and Extent	

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

		4.1.5	5	Spatial Resolution and Extent	30
	4.2	2	Scie	ntific context	31
		4.2.1	1	Theory of Measurement	31
		4.2.2	2	Theory of Algorithm	32
	4.3	3	Algo	prithm Implementation	
		4.3.1	1	Filter specific data stream by spectrum ID	33
		4.3.2	2	Time regularization	34
		4.3.3	3	Unit conversion	
		4.3.4	1	Sensor Flags	
		4.3.5	5	QA/QC Procedure	
	4.4	4	Unce	ertainty	
5		ANA	LYZE	R FOR ISOTOPIC WATER	37
	5.1	1	Data	a Product Description	
		5.1.1	1	Variables Reported	
		5.1.2	2	Input Dependencies	
		5.1.3	3	Product Instances	
		5.1.4	1	Temporal Resolution and Extent	
		5.1.5	5	Spatial Resolution and Extent	
	5.2	2	Scie	ntific context	
		5.2.1	1	Theory of Measurement	
		5.2.2	2	Theory of Algorithm	
	5.3	3	Algo	prithm Implementation	
		5.3.1	1	Time regularization	40
		5.3.2	2	Unit conversion	40
		5.3.3	3	Sensor Flags	40
		5.3.4	1	QA/QC Procedure	42
	5.4	4	Unce	ertainty	43
6		TEM	IPER/	ATURE SENSOR IN THE HUT	43
	6.1	1	Data	a Product Description	43
		6.1.1	1	Variables Reported	43

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

6.1.2	Input Dependencies
6.1.3	Product Instances
6.1.4	Temporal Resolution and Extent44
6.1.5	Spatial Resolution and Extent44
6.2 Scie	entific context
6.2.1	Theory of Measurement45
6.2.2	Theory of Algorithm
6.3 Algo	orithm Implementation45
6.3.1	Time regularization45
6.3.2	Unit conversion
6.3.3	Sensor Flags
6.3.4	QA/QC Procedure
6.4 Und	certainty
7 GAS CYL	INDER PRESSURE SENSOR48
7.1 Dat	a Product Description
7.1.1	Variables Reported
7.1.2	Input Dependencies
7.1.3	Product Instances
7.1.4	Temporal Resolution and Extent50
7.1.5	Spatial Resolution and Extent
7.2 Scie	entific context
7.2.1	Theory of Measurement
7.2.2	Theory of Algorithm
7.3 Algo	orithm Implementation51
7.3.1	Time regularization
7.3.2	Unit conversion
7.3.3	Sensor Flags
7.3.4	QA/QC Procedure:
7.4 Und	certainty53
8 ABSOLU	TE PRESSURE TRANSDUCER54

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

8.1 Da	ta Product Description54
8.1.1	Variables Reported54
8.1.2	Input Dependencies
8.1.3	Product Instances55
8.1.4	Temporal Resolution and Extent55
8.1.5	Spatial Resolution and Extent56
8.2 Sci	entific context
8.2.1	Theory of Measurement
8.2.2	Theory of Algorithm
8.3 Alg	orithm Implementation
8.3.1	Time regularization
8.3.2	Unit conversion
8.3.3	Sensor Flags
8.3.4	QA/QC Procedure
8.4 Un	certainty59
9 MASS F	LOW METER IN SAMPLE LINES59
	LOW METER IN SAMPLE LINES
9.1 Da	ta Product Description59
9.1 Da 9.1.1	ta Product Description
9.1 Da 9.1.1 9.1.2	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 Sci	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 Sci 9.2.1 9.2.2	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 Sci 9.2.1 9.2.2	ta Product Description
 9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 Sci 9.2.1 9.2.2 9.3 Alg 	ta Product Description
9.1 Da 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 Sci 9.2.1 9.2.2 9.3 Alg 9.3.1	ta Product Description

10	MAS	S FLC	DW CONTROLLER	.67
1(0.1	Data	Product Description	67
	10.1.	1	Variables Reported	67
	10.1.	2	Input Dependencies	68
	10.1.	3	Product Instances	69
	10.1.	4	Temporal Resolution and Extent	69
	10.1.	5	Spatial Resolution and Extent	69
1(0.2	Scier	ntific context	69
	10.2.	1	Theory of Measurement	69
	10.2.	2	Theory of Algorithm	70
1().3	Algo	rithm Implementation	70
	10.3.	1	Time regularization	70
	10.3.	2	Unit conversion	70
	10.3.	3	Sensor Flags	71
	10.3.	4	QA/QC Procedure	72
1(0.4	Unce	ertainty	72
1(11			ertainty	
11	SAM	PLE L	·	.72
11	SAM	PLE L Data	INE PUMPS	. 72 72
11	SAM 1.1	PLE L Data 1	INE PUMPS Product Description	. 72 .72 .73
11	SAM 1.1 11.1.	PLE L Data 1 2	INE PUMPS Product Description Variables Reported	. 72 .72 .73 .73
11	SAM 1.1 11.1. 11.1.	PLE L Data 1 2 3	INE PUMPS Product Description Variables Reported Input Dependencies	.72 73 73 73 74
11	SAM 1.1 11.1. 11.1. 11.1.	PLE L Data 1 2 3 4	INE PUMPS Product Description Variables Reported Input Dependencies Product Instances	.72 .73 .73 .73 .74 .74
11	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1.	PLE L Data 1 2 3 4 5	INE PUMPS Product Description Variables Reported Input Dependencies Product Instances Temporal Resolution and Extent	.72 .73 .73 .73 .74 .74 .74
11	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1.	PLE L Data 1 2 3 4 5 Scier	INE PUMPS Product Description Variables Reported Input Dependencies Product Instances Temporal Resolution and Extent Spatial Resolution and Extent	.72 72 73 73 74 74 74 74
11	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1. 11.2	PLE L Data 1 2 3 4 5 Scier 1	INE PUMPS Product Description Variables Reported Input Dependencies Product Instances Temporal Resolution and Extent Spatial Resolution and Extent	.72 72 73 73 74 74 74 74 74
11 1: 1:	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1. 11.2 11.2. 11.2.	PLE L Data 1 2 3 4 5 Scier 1 2	INE PUMPS Product Description Variables Reported Input Dependencies Product Instances Temporal Resolution and Extent Spatial Resolution and Extent tific context Theory of Measurement	.72 73 73 74 74 74 74 75 75
11 1: 1:	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1. 11.2 11.2. 11.2.	PLE L Data 1 2 3 4 5 Scier 1 2 Algor	INE PUMPS	.72 73 73 74 74 74 74 75 75 75
11 1: 1:	SAM 1.1 11.1. 11.1. 11.1. 11.1. 11.1. 11.2. 11.2. 11.2. 1.3	PLE L Data 1 2 3 4 5 Scier 1 2 Algor 1	INE PUMPS	.72 73 73 74 74 74 74 75 75 75 75

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

12	HEAT	ER		j
1	L2.1 [Data F	Product Description	;
	12.1.1	LV	/ariables Reported76	;
	12.1.2	2 li	nput Dependencies	,
	12.1.3	8 P	roduct Instances	;
	12.1.4	ĻТ	emporal Resolution and Extent78	;
	12.1.5	5 S	patial Resolution and Extent78	;
1	12.2 5	Scient	ific context80)
	12.2.1	L T	heory of Measurement80)
	12.2.2	2 т	heory of Algorithm)
1	12.3 A	Algori	thm Implementation)
	12.3.1	L T	ime regularization	-
	12.3.2	<u>2</u> S	ensor Flags81	-
	12.3.3	3 ι	Init conversion	<u>)</u>
	12.3.4	t C	A/QC Procedure	2
1	L2.4 l	Jncer	tainty82	-
13	MEAS	URE	MENT TYPE SEPARATION82	2
1				
	13.1 [Data F	Product Description)
	13.1 [13.1.1		Product Description	
		ιv		2
	13.1.1	L V 2 II	/ariables Reported	2
	13.1.1 13.1.2	L V 2 li 3 P	/ariables Reported	<u>2</u> 3
	13.1.1 13.1.2 13.1.3	L V 2 II 3 P 1 T	/ariables Reported	2 3 1
1	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5	L V 2 II 3 P 1 T 5 S	Variables Reported	<u>></u> 3 4 4
1	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5	L V 2 li 3 P 4 T 5 S 6cient	Variables Reported	2 3 4 4
1	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.2	L V 2 II 3 P 4 T 5 S 6cient L T	Variables Reported	2344
	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.2 13.2.1 13.2.2	L V 2 II 3 P 4 T 5 S 5 S 6 Cient L T 2 T	Variables Reported	2344
	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.2 13.2.1 13.2.2	L V 2 II 3 P 4 T 5 S 5 S 6 S 6 S 7 T 2 T Algori	Variables Reported	2 3 4 4 5 5
	13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.2 13.2.1 13.2.2 13.2.2	L V 2 II 3 P 4 T 5 S 6cient L T Algori L T	Variables Reported	2 3 4 4 4 5 5 5

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

13.3.4	CRD CO ₂ measurement type86
13.3.5	CRD H ₂ O measurement type86
13.3.6	Sensor Flags
13.3.7	QA/QC Procedure
13.4 U	ncertainty
14 MEAS	UREMENT LOCATION SEPARATION87
14.1 D	ata Product Description87
14.1.1	Variables Reported
14.1.2	Input Dependencies
14.1.3	Product Instances92
14.1.4	Temporal Resolution and Extent93
14.1.5	Spatial Resolution and Extent93
14.2 S	cientific context
14.2.1	Theory of Measurement93
14.2.2	Theory of Algorithm
14.3 A	lgorithm Implementation93
14.3.1	Time regularization94
14.3.2	Replacing NaN values94
14.3.3	IRGA measurement location94
14.3.4	CRD CO ₂ measurement location95
14.3.5	CRD H_2O measurement location95
14.3.6	QA/QC Procedure96
14.4 U	ncertainty96
15 VALID	ATION TYPE SEPARATION96
15.1 D	ata Product Description96
15.1.1	Variables Reported96
15.1.2	Input Dependencies
15.1.3	Product Instances
15.1.4	Temporal Resolution and Extent98
15.1.5	Spatial Resolution and Extent99

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

1	5.2	Scie	ntific context	99
	15.2	2.1	Theory of Measurement	99
	15.2	2.2	Theory of Algorithm	
1	5.3	Algo	orithm Implementation	
	15.3	3.1	Time regularization	
	15.3	3.2	Replacing NaN values	101
	15.3	3.3	Validation/calibration gas type	101
	15.3	3.4	Validation gas type for crdH2o	102
	15.3	3.5	Validation injection number	102
	15.3	8.6	Validation H_2O type	
	15.3	3.7	QA/QC Procedure	
1	5.4	Unc	ertainty	
16	IRG	A ME	ASUREMENT TYPE SEPARATION	104
1	6.1	Data	a Product Description	104
	16.1	L.1	Variables Reported	
	16.1	L.2	Input Dependencies	104
	16.1	L.3	Product Instances	104
	16.1	L.4	Temporal Resolution and Extent	104
	16.1	L.5	Spatial Resolution and Extent	105
1	6.2	Scie	ntific context	
	16.2	2.1	Theory of Measurement	
	16.2	2.2	Theory of Algorithm	
1	6.3	Algo	prithm Implementation	
	16.3	3.1	IRGA measurement type	
	16.3	3.2	QA/QC Procedure	
1	6.4	Unc	ertainty	
17	GAS	5 CYLI	NDER CONCENTRATIONS	
1	7.1	Data	a Product Description	
	17.1	L.1	Variables Reported	
	17.1	L.2	Input Dependencies	

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

17.	1.3	Product Instances	
17.	1.4	Temporal Resolution and Extent	
17.	1.5	Spatial Resolution and Extent	
17.2	Scie	ntific context	
17.	2.1	Theory of Measurement	
17.	2.2	Theory of Algorithm	
17.3	Algo	prithm Implementation	
17.	3.1	Time regularization	
17.	3.2	Unit conversion	
17.	3.3	QA/QC Procedure	
17.4	Unc	ertainty	
18 REF	EREN	ICE WATER STANDARDS	
18.1	Dat	a Product Description	
18.	1.1	Variables Reported	
18.	1.2	Input Dependencies	
18.	1.3	Product Instances	
18.	1.4	Temporal Resolution and Extent	
18.	1.5	Spatial Resolution and Extent	
18.2	Scie	ntific context	
18.	2.1	Theory of Measurement	
18.	2.2	Theory of Algorithm	
18.3	Algo	prithm Implementation	
18.	3.1	Time regularization	
18.	3.2	QA/QC Procedure	
18.4	Unc	ertainty	
19 HD	F5 FIL	ES GENERATION	
19.1	Dat	a Product Description	
19.	1.1	Variables Reported	
19.	1.2	Input Dependencies	
19.	1.3	Product Instances	

1	9.1.4	Temporal Resolution and Extent116
1	9.1.5	Spatial Resolution and Extent116
19.2	2 Scie	ntific context
1	9.2.1	Theory of Measurement
1	9.2.2	Theory of Algorithm
19.3	B Algo	prithm Implementation
1	9.3.1	Organizing IRGA LOp preprocessed data123
1	9.3.2	Organizing CRD CO $_2$ LOp preprocessed data
1	9.3.3	Organizing CRD H2O L0p preprocessed data125
1	9.3.4	Organizing temperature sensor in the hut L0p preprocessed data126
1	9.3.5	Organizing gas cylinder pressure sensors preprocessed data127
1	9.3.6	Organizing delivery pressure sensors preprocessed data127
1	9.3.7	Organizing inlet absolute pressure transducers preprocessed data
1	9.3.8	Organizing mass flow meter LOp preprocessed data127
1	9.3.9	Organizing mass flow controller for field validation gases LOp preprocessed data128
1	9.3.10	Organizing mass flow controller for IRGA LOp preprocessed data
1	9.3.11	Organizing pumps L0p preprocessed data128
1	9.3.12	Organizing IRGA sample manifold LOp preprocessed data129
1	9.3.13	Organizing CRD CO $_2$ sample manifold LOp preprocessed data
1	9.3.14	Organizing CRD H_2O sample manifold LOp preprocessed data
1	9.3.15	Organizing validation manifold L0p preprocessed data
1	9.3.16	Organizing auxiliary valves LOp preprocessed data129
1	9.3.17	Organizing vaporizer 3-way valve L0p preprocessed data
1	9.3.18	Organizing inlet heater L0p preprocessed data130
1	9.3.19	Organizing gas cylinder concentration LOp preprocessed data
1	9.3.20	Organizing water standard LOp preprocessed data130
1	9.3.21	Organizing single aspirated air temperature sensor (SAATS) existing L1 data
	9.3.22 ata	Organizing triple redundancy aspirated air temperature sensors (TRAATS) existing L1 133
1	9.3.23	Organizing Shortwave and longwave radiation (net radiometer) existing L1 data 135

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

	19.3.24	3.24 Organizing soil heat flux plate existing L1 data13		
	19.3.25	Organizing soil temperature existing L1 data	142	
	19.3.26	Organizing soil water content and water salinity existing L1 data	144	
	19.3.27	Organizing barometric pressure existing L1 data	147	
	19.3.28	QA/QC Procedure	149	
1	.9.4 Uncer	tainty	149	
20	FUTURE PL	ANS AND MODIFICATION	149	
21	APENDIX		150	
2	1.1 HDF5	metadata	150	
22	22 BIBLIOGRAPHY			

LIST OF TABLES AND FIGURES

Table 1-1. List of sensors used in the EC profile assembly, including NEON Data Generating Device (DG	D)
number based on NEON.DOC.001104.docx.	. 16
Table 3-1: List of irgaStor-related LOp reported variables produced using this ATBD.	.21
Table 3-2: A full list of irga-related L0 DPs	. 22
Table 3-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flag	s).
	.26
Table 3-4: Parameters required for plausibility tests.	. 27
Table 4-1: List of crdCo2-related LOp reported variables that are produced in this ATBD	. 27
Table 4-2: List of crdCo2-related L0 DPs.	. 28
Table 4-3: Example of crdCo2 LO data streams. Note that only LO DPs of interest are shown in this table	e.
	. 33
Table 4-4: Spectrum ID and its corresponded L0 DPs	. 34
Table 4-5: Plausibility quality flags to be applied to all LOp DPs	.36
Table 4-6: Parameters required for plausibility tests.	. 36
Table 5-1: List of crdH2o-related L0p reported variables that produced in this ATBD	. 37
Table 5-2: A full list of crdH2o L0 DPs.	. 37
Table 5-3: Plausibility quality flags to be applied to all LOp DPs except for flags.	.42
Table 5-4: Parameters required for plausibility tests.	.42
Table 6-1: List of envHut-related LOp reported variables that are produced in this ATBD	.43
Table 6-2: List of envHut-related LO DPs that are transformed into LOp reported variables DPs in this	
ATBD	.44
Table 7-1: List of presValiRegOutStor and presValiRegInStor related L0p reported variables that	
produced in this ATBD	. 48

Table 7-2: A full list of presValiRegOutStor and presValiRegInStor related L0 DPs	.49
Table 7-3: Plausibility quality flags to be applied to all LOp DPs except for flags	.53
Table 7-4: Parameters required for plausibility tests.	.53
Table 8-1: List of The presInlt-related LOp reported variables that produced in this ATBD	.54
Table 8-2: A full list of presInlt-related L0 DPs	. 55
Table 8-3: Ambient pressure at each NEON sites used for ATBD data processing	.57
Table 8-4: Plausibility quality flags to be applied to all LOp DPs except for flags	. 59
Table 8-5: Parameters required for plausibility tests.	. 59
Table 9-1: List of mfm-related L0p reported variables that produced in this ATBD	.60
Table 9-2: A full list of mfm-related L0 DPs	
Table 9-3: Plausibility quality flags to be applied to all LOp DPs except for flags	.66
Table 9-4: Parameters required for plausibility tests.	.66
Table 10-1: List of mfcValiStor and mfcSampStor related L0p reported variables that are produced in t	his
АТВО	.67
Table 10-2: List of mfcValiStor and mfcSampStor related L0 DPs.	.68
Table 10-3: Plausibility quality flags to be applied to all LOp DPs	.72
Table 10-4: Parameters required for plausibility tests.	.72
Table 11-1: List of pumpStor-related LOp reported variables that produced in this ATBD.	.73
Table 11-2: List of pumpStor-related LO DPs that are transformed into LOp reported variables in this	
ATBD	.73
Table 11-3: Plausibility quality flags to be applied to all LOp DPs except for flags	.75
Table 11-4: Parameters required for plausibility tests.	.76
Table 12-1: List of heatInlt related LOp reported variables that produced in this ATBD	.77
Table 12-2: List of relative humidity HMP 155 related L0 DPs that are transformed into L0p reported	
variables in this ATBD.	.77
Table 12-3: List of NEON heated sites	.78
Table 13-1: List of valvAux-related LOp reported variables that produced in this ATBD	. 82
Table 13-2: List of valvAux-related L0 DPs.	.83
Table 14-1: List of sample manifold-related L0p reported variables that produced in this ATBD.	. 87
Table 14-2: List of sample manifold-related L0 DPs that are transformed into L0p in this ATBD	.90
Table 15-1: List of valvValiStor and crdH2oValvVali L0p reported variables that produced in this ATBD.	96
Table 15-2: List of valvValiStor and crdH2oValvVali L0 DPs	.97
Table 16-1: List of measurement type-related L0p reported variables that produced in this ATBD	104
Table 16-2: List of input LOp DPs that are transformed into reported LOp in this ATBD	104
Table 16-3:Example of input and output for IRGA measurement type1	106
Table 17-1: List of gasRefe-related LOp reported variables that produced in this ATBD	108
Table 17-2: List of gasRefe-related L0 DPs that are transformed into L0p reported variables in this ATB	D.
	109

Table 17-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flags)
Table 17-4: Mapping between CVAL uncertainty terms and HDF5 metadata terms
Table 18-1: List of h2oRefe-related L0p reported variables that produced in this ATBD
Table 18-2: List of h2oRefe-related L0 DPs that are transformed into L0p reported variables in this ATBD. 114
Table 18-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flags) 115
Table 18-4: Mapping between CVAL uncertainty terms and HDF5 metadata terms
Table 19-1: Mapping between fieldName for tempAirLvl existing L1 data stream and fieldname (column) in HDF5 data table. 131
Table 19-2: Mapping between quality flag fieldName for tempAirLvl existing L1 data stream and fieldname (column) in hdf5 data table for generating basic hdf5 file
Table 19-3: Mapping between quality flag fieldName for tempAirLvl existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file
Table 19-4: Mapping between uncertainty fieldName for tempAirLvl existing L1 data stream and
fieldname (column) in hdf5 data table
Table 19-5: Mapping between fieldName for tempAirTop existing L1 data stream and fieldname
(column) in hdf5 data table
Table 19-6: Mapping between quality flag fieldName for tempAirTop existing L1 data stream and
fieldname (column) in hdf5 data table for generating basic hdf5 file134
Table 19-7: Mapping between quality flag fieldName for tempAirTop existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file
Table 19-8: Mapping between uncertainty fieldName for tempAirTop existing L1 data stream and
fieldname (column) in hdf5 data table 134
Table 19-9: Mapping between fieldName for radiNet existing L1 data stream and fieldname (column) in hdf5 data table
Table 19-10: Mapping between quality flag fieldName for radiNet existing L1 data stream and fieldname
(column) in hdf5 data table for generating basic hdf5 file
Table 19-11: Mapping between quality flag fieldName for radiNet existing L1 data stream and fieldname
(column) in hdf5 data table for generating expaned hdf5 file
Table 19-12: Mapping between uncertainty fieldName for radiNet existing L1 data stream and fieldname
(column) in hdf5 data table
Table 19-13: Mapping between fieldName for fluxHeatSoil existing L1 data stream and fieldname
(column) in hdf5 data table
Table 19-14: Mapping between quality flag fieldName for fluxHeatSoil existing L1 data stream and
fieldname (column) in hdf5 data table for generating basic hdf5 file140
Table 19-15: Mapping between quality flag fieldName for fluxHeatSoil existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file

Table 19-16: Mapping between uncertainty fieldName for fluxHeatSoil existing L1 data stream and
fieldname (column) in hdf5 data table
Table 19-17: Mapping between fieldName for tempSoil existing L1 data stream and fieldname (column)
in hdf5 data table142
Table 19-18: Mapping between quality flag fieldName for tempSoil existing L1 data stream and
fieldname (column) in hdf5 data table for generating basic hdf5 file142
Table 19-19: Mapping between quality flag fieldName for tempSoil existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file
Table 19-20: Mapping between uncertainty fieldName for tempSoil existing L1 data stream and
fieldname (column) in hdf5 data table
Table 19-21: Mapping between fieldName for h2oSoilVol existing L1 data stream and fieldname
(column) in hdf5 data table
Table 19-22: Mapping between quality flag fieldName for h2oSoilVol existing L1 data stream and
fieldname (column) in hdf5 data table for generating basic hdf5 file145
Table 19-23: Mapping between quality flag fieldName for h2oSoilVol existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file
Table 19-24: Mapping between uncertainty fieldName for h2oSoilVol existing L1 data stream and
fieldname (column) in hdf5 data table 146
Table 19-25: Mapping between fieldName for presBaro existing L1 data stream and fieldname (column)
in hdf5 data table147
Table 19-26: Mapping between quality flag fieldName for presBaro existing L1 data stream and
fieldname (column) in hdf5 data table for generating basic hdf5 file148
Table 19-27: Mapping between quality flag fieldName for presBaro existing L1 data stream and
fieldname (column) in hdf5 data table for generating expaned hdf5 file
Table 19-28: Mapping between uncertainty fieldName for presBaro existing L1 data stream and
fieldname (column) in hdf5 data table149
Table 21-1: List of metadata to be compiled and packaged in the HDF5 files

Figure 1. Schematic diagram of the LI-840A optical bench. Source:
https://www.licor.com/documents/y10gor2jal2p3t8ev4hm24
Figure 2. Schematic diagram of the components in the cavity ring-down spectroscopy analyzer. Source:
http://www.picarro.com/32
Figure 3. Left panel: a schematic of CRDS analyzer showing how a ring down measurement is carried out.
Right panel: CRDS measure the decay of light intensity in the cavity with and without a sample having
resonant absorbance. This demonstrates how optical loss (or absorption by gas) is rendered into a time
measurement. Source: http://www.picarro.com/
Figure 4. Diagram depicting the NEON HDF5 file structure following the NEON DP naming convention.
Note that PRNUM is replaced by the DPName associated with that PRNUM
Figure 5. Diagram depicting the general EC LOp HDF5 file structure

Title: NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Date: 06/08/2018 Exchange (Profile) Assembly Raw Data Processing Date: 06/08/2018		
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Figure 6. Diagram depicting the ECSE LOp HDF5 file structure	120
Figure 7. Diagram to show ECSE LOp HDF5 data tables.	121
Figure 8. Diagram to show ECSE L1 HDF5 data tables.	122

1 DESCRIPTION

The Eddy Covariance Storage Exchange Assembly (hereafter referred to as the EC profile assembly) consists of a suite of sensors such as CO₂ and H₂O gas analyzer and isotopic CO₂ and H₂O analyzers (full details/descriptions can be found in AD[01]). The EC profile assembly is served to provide the measurements of CO₂ and H₂O concentration, the stable isotope of δ^{13} C in CO₂, δ^{18} O, and δ^{2} H in water vapor in the atmosphere at each tower measurement level. The vertical profile measurements of CO₂ and H₂O concentration the storage fluxes which will be incorporated into the calculation of the net ecosystem exchange of CO₂ and H₂O.

1.1 Purpose

This document details the algorithms used for creating NEON preconditioned (LOp) data outputs from Level 0 (LO) DPs associated with the EC profile assembly and ancillary data as defined in this document (such as calibration data) obtained via instrumental measurements made by the EC profile assembly. It includes a detailed discussion of measurement theory and implementation, appropriate theoretical background, data product provenance, quality assurance and control methods used, approximations and/or assumptions made.

1.2 Scope

The theoretical background and entire algorithmic process used to derive preconditioned data from Level 0 data for the EC profile assembly is described in this document. The sensors defined in Table 1-1 are used for the EC profile assembly. This document does not provide computational implementation details, except for cases where these stem directly from algorithmic choices explained here.

DGD Number	Sensor	
0330600000	Sensor G2131-i Gas Analyzer for Isotopic CO2 240VAC, with 125 sccm internal orifice	
0328050000	Sensor, L2130-i Analyzer for isotopic water vapor 90 to 240VAC 60HZ	
CA07140000	Assembly, Pressure Transducer 0-100psi and Cable Small	
CA07150000	CA07150000 Assembly, Pressure Transducer 0-3000psi and Cable Small	
0347780000	Remote Thermometer Hygrometer Barometer with PoE	
CD06640001	Harness, Grape Digital Out, 8 Solenoid Control	
CD06640002	Harness, Grape Digital Out, 4 Solenoid Control	

 Table 1-1. List of sensors used in the EC profile assembly, including NEON Data Generating Device (DGD) number based on NEON.DOC.001104.docx.

Title: NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Date: 06/08/2018 Exchange (Profile) Assembly Raw Data Processing Date: 06/08/2018		
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

0341500000	Controller, Mass Flow, 5 SLPM, ID Eeprom	
CD06640001	Harness, Grape Digital Out, 8 Solenoid Control	
0341570000	Controller, Mass Flow, 5 SLPM, Whisper Series, EEPROM	
CD08340000	Assembly, IRGA Sensor and EPROM DB9 Serial Adaptor	
0341530000	Meter, Mass Flow, 20 SLPM, Whisper Series, ID EEPROM	
CA08830000	Assembly, pressure transducer, 0-30 PSI, 4-20MA, enclosure	
CD07150000	Assembly, 24VDC Pump and Control	

Further detailed sensor info under each DGD is as following:

- Under DGD 0330600000, *Picarro G2131-i Gas Analyzer for Isotopic CO2* (NEON P/N 0330600000). It is used to make measurements of high precision CO2 concentration, H₂O concentration and isotopic CO₂ (δ¹³C) for air samples drawn from tower profile measurement levels. The reference document for the Picarro G2131-i Analyzer for Isotopic CO₂ is RD [03].
 - Operating System Software: Windows 7.
 - System Firmware: ver 1.5.0-n
 - Customized design with a critical orifice to allow 125 sccm flow rate through laser cavity
- Under DGD 0328050000, *Picarro L2130-i Analyzer for Isotopic Water Vapor* (NEON P/N 0328050000). It will be used in the measurements of δ^{18} O, δ^{2} H, and H₂O concentration for air samples drawn from tower profile measurement levels. The reference documents for the Picarro L2130-i Analyzer for Isotopic H2O are RD [04] and RD [05].
 - Operating System Software: Windows 7
 - System Firmware: ver 1.5.0-n
 - Other accessories:
 - A0211 Liquid Sample High Precision Vaporizer [NEON P/N: 0300280001]
 - A0325 HTC-xt Auto Sampler (NEON P/N 0328050001)
 - A0912 Switching valve and accompanying software (NEON P/N 0328050002)
- Under DGD CD08340000, LI840A CO2/H2O gas analyzer: LICOR P/N: LI840A-03 (NEON P/N: 0340570000). It will be used to measure the CO2 and water vapor (H2O) concentration for air samples drawn from tower profile measurement levels, which will be eventually used to determine the storage term of CO2 and H2O. The reference document is RD [08].

- Equip 2 Swagelok fittings (Union, Bulkhead, SS, 0.25" OD Swagelok Part No.: SS-400-61) at the gas inlet and outlet of the sensor per NEON request.
- Firmware version: 2.1.0
- Power Requirements: Input Voltage 12-30 VDC
- Under DGD 0347780000, Temperature sensor in the instrument hut: Comet P/N: T7610. Remote Thermometer Hygrometer Barometer with Ethernet. POE Temp Sensor. NEON P/N: 0347780000
- Under DGD 0341530000, *Mass Flow Meter:* Alicat Scientific P/N: MW-20 SLPM-NEON. Meter, Mass Flow, 20 SLPM, Whisper Series, ID EEPROM, NEON P/N: 0341530000. The reference document for this sensor is RD [06]
- Under DGD 0341570000, Mass Flow Controller for Li840A IRGA: Alicat Scientific P/N: MCRW-5 SLPM-DS-NEON. Controller, Mass Flow, 5 SLPM, Whisper Series, EEPROM. NEON P/N: 0341570000. The reference document for this sensor is RD [07]
- Under DGD 0341500000, *Mass Flow Controller* for Validation Gas: Alicat Scientific P/N: MC-5 SLPM-NEON. Controller, Mass Flow, 5 SLPM, ID Eeprom. NEON P/N: 0341500000. The reference document for this sensor is RD [07]
- Under DGD CA07150000, Cylinder Pressure Sensor: Omega Engineering P/N: PX319-3KGI. Transducer, 0-3000 psi Gage Pressure (PT), 3000 psi Gage pressure range, DIN connection style. NEON P/N: 0335480000
- Under DGD CA07140000, *Delivery Pressure Sensor:* Omega Engineering P/N: PX319-100GI. Transducer, 0-100 psi Gage Pressure (PT), 100 psi Gage pressure range, DIN connection style. NEON P/N: 0335490000
- Under DGD CA08830000, *Inlet Pressure Sensor:* Omega Engineering P/N: PX319-030AI. 0-30 psi Absolute Pressure Transducer (PT) 30 psi absolute pressure range, DIN connection style. NEON P/N: 0335460000
- Under DGD CD07150000, Sampling line vacuum pump, Gast Manufacturing, Inc. P/N: 2032-101-G644. Pump, Rotary Vane Vacuum, 24V DC Brushless, 7.2 Amp, 3000 RPM, 0.13 HP, 0.10 KW, 9 Lbs. NEON P/N: 0334770000

Other important parts:

- Solenoid Valve: Components for Automation P/N: C9-211N105-41. Solenoid, 2-Way 24VDC .125 inch NPT Stainless Steel .0945 inch, Orifice Normally Closed. NEON P/N: 0309720000
- Dehumidifier in the instrument hut: General Electric P/N: ADEL50LR. Dehumidifier, 23 5/8 x 15 3/8 x 11 inches. NEON P/N: 0347810000

2 RELATED DOCUMENTS, ACRONYMS AND VARIABLE NOMENCLATURE

2.1 Applicable Documents

AD[01]	NEON.DOC.000465	Eddy Covariance Storage Exchange Assembly C ³
AD[02]	NEON.DOC.011081	ATBD QA/QC plausibility tests
AD[03]	NEON.DOC.000783	ATBD De-spiking and time series analyses
AD[04]	NEON.DOC.001069	Preprocessing for TIS Level 1 Data Products
AD[05]	NEON.DOC.000302	C ³ Single Aspirated Air Temperature
AD[06]	NEON.DOC.000723	Triple Point Temperature Calibration Fixture
AD[07]	NEON.DOC.000385	C ³ Triple Aspirated Air Temperature
AD[08]	NEON.DOC.002651	Data Product Naming Convention
AD[09]		
AD[10]		
AD[11]		
AD[12]		

2.2 Reference Documents

RD[01]	NEON.DOC.000008 NEON Acronym List			
RD[02]	NEON.DOC.000243 NEON Glossary of Terms			
RD [03]	Picarro G2131-i Analyzer for Isotopic CO ₂ - User's Guide Rev 03/06/12. Picarro, Inc. 3105			
	Patrick Henry Dr. Santa Clara California, 95054 USA.			
RD [04]	Installation: L2130-i or L2120-i Analyzer and its Peripherals - User's Manual. Revision B, 8-			
	7-2012. Picarro, Inc. 3105 Patrick Henry Dr. Santa Clara California, 95054 USA			
RD [05]	Operation, Data Analysis, Maintenance, Troubleshooting L2130-i or L2120-i analyzer and			
	its Peripherals User's Manual. Revision 8-7-2012. Picarro, Inc. 3105 Patrick Henry Dr.			
	Santa Clara California, 95054 USA			
RD [06]	Precision Gas Mass Flow Meters Operating Manual. 1/10/2014 Rev. 28. DOC-ALIMAN16.			
	Alicat Scientific. 7641 N Business Park Drive, Tucson, AZ 85743 USA			
RD [07]	Precision Gas Mass Flow Controller Operating Manual. 09/18/2013 Rev. 29. DOC-			
	ALIMAN16C. Alicat Scientific. 7641 N Business Park Drive, Tucson, AZ 85743 USA			
RD [08]	LI-840A CO2/H2O gas analyzer instruction manual. Jan 2011. Publication Number 984-			
	10690. LI-COR, Inc. 4421 Superior Street Lincoln, Nebraska 68504 USA			

2.3 Acronyms

Acronym	Explanation	
AIS	Aquatic Instrument System	
ATBD	Algorithm Theoretical Basis Document	
CI	NEON Cyberinfrastructure	
CVAL	NEON Calibration, Validation, and Audit Laboratory	
DAS	Data Acquisition System	

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

DP	Data Product	
FDAS	Field Data Acquisition System	
GRAPE	Grouped Remote Analog Peripheral Equipment	
Hz	Hertz	
LO	Level 0	
LOp	Level 0 prime	
L1	Level 1	
PRT	Platinum resistance thermometer	
QA/QC	Quality assurance and quality control	
SAATS	Single Aspirated Air Temperature	
TRAATS	Triple Redundancy Aspirated Air Temperature	

2.4 Variable Nomenclature

The symbols used to display the various inputs in the ATBD, e.g., calibration coefficients and uncertainty estimates, were chosen so that the equations can be easily interpreted by the reader. However, the symbols provided will not always reflect NEON's internal notation, which is relevant for Cl's use, and or the notation that is used to present variables on NEON's data portal. Therefore a lookup table is provided in order to distinguish what symbols specific variables can be tied to in the following document.

Symbol	Internal	Description		
	Notation			
fdMoleCO2	CVALC0	Dry mole fraction of CO ₂		
d13CO2	CVALD0	Ratio of 13C:12C in CO ₂		
fdMole12CO2	CVALA0	Dry molar fraction of 12CO ₂		
fdMole13CO2	CVALB0	Dry molar fraction of 13CO ₂		
d2HWaterLow	CVALA1	δ^2 H in water standard Low		
d18OWaterLow	CVALB1	δ^{18} O in water standard Low		
d2HWaterMed	CVALA2	δ^2 H in water standard Med		
d18OWaterMed	CVALB2	δ^{18} O in water standard Med		
d2HWaterHigh	CVALA3	δ^2 H in water standard High		
d18OWaterHigh	CVALB3	δ^{18} O in water standard High		
		Calibration coefficient. Standard deviation of the variable during the		
sd	U_CVALA2	given time period		
		Calibration coefficients. Degrees of Freedom for calculating		
dfUcrtRaw	U_CVALD1	combined uncertainty using raw data		
		Calibration coefficients. Combined uncertainty calculated using raw		
ucrtRaw	U_CVALA1	data		

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Symbol	Internal	Description
	Notation	
		Calibration coefficients. Combined uncertainty calculated using
ucrtAve	U_CVALA3	average data
		Calibration coefficients. Degrees of Freedom for calculating
dfUcrtAve	U_CVALD3	combined uncertainty using averaged data
		Calibration coefficients. Degrees of Freedom for calculating
dfSd	U_CVALD2	repeatability (Standard deviation)

3 ANALYZER FOR CO2 AND H2O CONCENTRATION

3.1 Data Product Description

This section describes the processes to convert L0 DPs from the LI-COR LI-840A (hereafter referred to as IRGA) under the DGD 0353710000 into 1 Hz L0p DPs. The IRGA referred to as irgaStor in reference to DPs.

3.1.1 Variables Reported

The irgaStor LOp variables provided by the algorithms documented in this ATBD are displayed in Table Table 3-1.

LOp DP	L0p fieldName	L0p DP	L0p Units	Input L0 fieldNames
		Frequency		
CO ₂ wet mole fraction	rtioMoleWetCo2	1 Hz	mol mol ⁻¹	fwMoleCO2
H ₂ O wet mole fraction	rtioMoleWetH2o	1 Hz	mol mol ⁻¹	fwMoleH2O
Cell Temperature	temp	1 Hz	К	tempCell
Cell Pressure	pres	1 Hz	Ра	presCell
CO ₂ Absorption	asrpCo2	1 Hz	dimensionless	asrpCO2
H ₂ O Absorption	asrpH2o	1 Hz	dimensionless	asrpH2O
CO ₂ dry mole fraction	rtioMoleDryCo2	1 Hz	mol mol ⁻¹	rtioMoleWetCo2* rtioMoleWetH2o*
H ₂ O dry mole fraction	rtioMoleDryH2o	1 Hz	mol mol ⁻¹	rtioMoleWetH2o*

Table 3-1: List of irgaStor-related LOp reported variables produced using this ATBD.

*: These LOp DPs are used as inputs for CI to generate LOp DPs: rtioMoleDryCo2 and rtioMoleDryH2o.

3.1.2 Input Dependencies

Table 3-2 lists all irgaStor-related LO DPs and specifies which LO DPs will be used to produce LOp reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	L0 DP Units	Data Product Number	DPs that are used to produce LOp (Y/N)*
CO ₂ wet mole fraction	fwMoleCO2	1 Hz	µmol mol⁻¹	NEON.DOM.SITE.DP0.0010 5.001.02316.700.000.000	Y
H ₂ O wet mole fraction	fwMoleH2O	1 Hz	mmol mol ⁻¹	NEON.DOM.SITE.DP0.0010 5.001.02348.700.000.000	Y
Cell Temperature	tempCell	1 Hz	°C	NEON.DOM.SITE.DP0.0010 5.001.02349.700.000.000	Y
Cell Pressure	presCell	1 Hz	kPa	NEON.DOM.SITE.DP0.0010 5.001.02350.700.000.000	Y
CO ₂ Absorption	asrpCO2	1 Hz	dimensionles s	NEON.DOM.SITE.DP0.0010 5.001.02189.700.000.000	Y
H ₂ O Absorption	asrpH2O	1 Hz	dimensionles s	NEON.DOM.SITE.DP0.0010 5.001.02184.700.000.000	γ

*: Only the LO DPs in "Y" are selected to transform into LOp DPs reported in this ATBD.

3.1.3 **Product Instances**

All terrestrial sites across the NEON observatory have the IRGA analyzers; individual instances of all LOp data outputs from this analyzer are in Table 3-1.

3.1.4 Temporal Resolution and Extent

The temporal resolution of the reported LOp variables in Table 3-1 is 1 Hz.

3.1.5 Spatial Resolution and Extent

The IRGA analyzer will be located within the tower hut infrastructure. However, the analyzer's measurements reflect the points in space where the sample inlets are located on the tower infrastructure, which are site-specific.

3.2 Scientific context

The balance of carbon, water and heat exchange over ecosystems are important research fields to understand and forecast climate change. Eddy-covariance is one of the most direct methods for evaluating CO₂, H₂O and heat exchanges (i.e., fluxes) between ecosystems and the atmosphere. Principally, the net exchange can be calculated from a mass balance consisting of transport into or out of a control volume, and enrichment or depletion in the volume. The latter term is also called storage flux, and can have large contributions to the net exchange over short time scales (minutes to hours),

particularly within a closed forest with a tall canopy (Ohkubo et al., 2008): Ecosystems can be highly variable from the ground surface to the canopy top and above, and vertical profiling is a very important method for evaluating storage fluxes and understanding the process of gas exchange (Ohkubo et al., 2008). The H₂O and CO₂ vertical profiles and storage flux can be estimated by measuring their concentration at multiple vertical levels. At each NEON site, a LI-840A CO₂/H₂O Gas Analyzer will be used to measure CO₂ and H₂O concentration in air samples from multiple heights (varies from 4 to 8 levels, depending on the canopy height at individual site).

3.2.1 Theory of Measurement

The LI-840A CO_2/H_2O is an absolute, non-dispersive, infrared (NDIR) gas analyzer based upon a single path, dual wavelength, infrared detection system. The CO_2 and H_2O measurements are a function of the absorbed energy in the IR as it travels through the optical path. Concentration measurements are based on the difference ratio in the IR absorption band between a reference and sample signal. Reference and sample channels measure infrared gas absorption in a single path through the use of narrow band optical filters with appropriately selected bands. The CO_2 sample channel uses an optical filter centered at 4.26 micrometers, corresponding to an absorption band for CO_2 . The reference channel for CO_2 has an optical filter centered at 3.95 micrometers, which has no absorption due to CO_2 . The H₂O sample channel uses an optical filter centered at 2.595 micrometers, corresponding to an absorption band of H₂O. The reference channel for H₂O has an optical filter centered at 2.35 micrometers, which is a non-absorbing region for H₂O.

The LI-840A CO_2/H_2O Gas Analyzer optical path is a thermostatically controlled IR detection system. The optical bench operation is based upon a broad band IR source and a pyroelectric detector. The source is mounted in a parabolic reflector to collimate the light and increase energy throughput down the optical path to the detector. The reflector and optical path are gold plated to further increase energy transmission. The detectors are pyroelectric devices that operate based on thermal energy received. The narrowband optical filters allow only the wavebands of interest to illuminate the detector, allowing for the determination of CO_2 and H_2O concentrations in the presence of other infrared absorbing gases.

The detectors respond to thermal energy, so it is necessary to precisely regulate the detectors' temperature. This allows for differentiation of thermal gradient noise from the received signals from the optical path. The detection system is shown in Figure 1 below.

D n		<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
atory Network	¢.	NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Figure 1. Schematic diagram of the LI-840A optical bench. Source: https://www.licor.com/documents/y10gor2jal2p3t8ev4hm

The instrument uses digital signal processing techniques to determine the temperature and pressure corrected CO_2 and H_2O concentrations based on the optical bench signals using a radiometric computation. The data are passed through a double rectangular hyperbola (CO_2) or 3rd order polynomial (H_2O) that performs linearization of the detector signal to a mole fraction in air given in µmol CO_2 per mole of air (ppm), and mmol H_2O per mole of air (ppt) as NEON LO DPs.

3.2.2 Theory of Algorithm

The LI-840A computes CO₂ and H₂O concentrations using an equation of the general form

$$c = f(\alpha g(\alpha, P))S(\alpha))T$$
(3.1)

where *c* is concentration, *f*() is the calibration function, α is the absorptance, *g* (α ,*P*) is the pressure correction, *S*(α) is the span, and *T* is the temperature (Kelvin) of the gas in the cell, typically 324.65 Kelvin (51.5 °C). Absorptance is computed from

$$a = (1 - \frac{V}{V_0}Z)$$
(3.2)

where V and V_0 are the raw detector sample and reference readings, and Z is the zeroing parameter. Span is a linear function of absorptance.

$$S(\alpha) = S_0 + S_1 \alpha \tag{3.3}$$

For the detailed equations to calculate H₂O concentration, they can be found on page B-2 of RD[08].

For the detailed equations to calculate CO_2 concentration, they can be found on page B-3 to B-7 2 of RD[08].

3.3 Algorithm Implementation

Data flow for LOp signal processing is outlined in the following order.

- 1. Select LO data streams for further data processing. See Table 3-2.
- 2. Regularize time stamp as described in section 3.3.1. Generate a complete 1 Hz LOp data set (fill in NAs) by converting LO DPs under LI-840A in accordance with AD[04].
- Convert fwMoleCO2 (μmol mol-1 , L0 DP) to rtioMoleWetCo2 (mol mol-1 , L0p DP) according to Eq. (3.4);
- 4. Convert fwMoleH2O (mmol mol-1 , L0 DP) to rtioMoleWetH2o (mol mol-1 , L0p DP) according to Eq. (3.5);
- 5. Calculate rtioMoleDryCo2 (mol mol-1) from rtioMoleWetCo2 (mol mol-1) and rtioMoleWetH2o (mol mol-1) according to Eq. (3.6);
- 6. Calculate rtioMoleDryH2o (mol mol-1) from rtioMoleWetH2o (mol mol-1) according to Eq. (3.7);
- 7. Convert tempCell (°C) to temp (K) according to Eq. (3.8);
- 8. Convert presCell (kPa) to pres (Pa) according to Eq. (3.9). See info below in section 3.3.2.

3.3.1 Time regularization

Data collected from IRGA is at ~1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

3.3.2 Unit conversion

Measurements (L0 DPs) output from the IRGA analyzers are provided in their standard units using their own internal propriety algorithm. We need to convert some of them to NEON standard units. See below:

fwMoleCo2 (μ mol mol-1 , L0 DP) is total wet mole fraction of CO₂ in the air. It will be converted to rtioMoleWetCo2 (mol mol-1 , L0p DP) below:

rtioMoleWetCo2(mol mol - 1) =
$$\frac{\text{fwMoleCo2} (\mu \text{mol mol} - 1)}{1000000}$$
(3.4)

fwMoleH2o (mmol mol-1, L0 DP) is total wet mole fraction of water vapor in the air. It will be converted to rtioMoleWetH2o (mol mol-1, L0p DP) below:

rtioMoleWetH2o(mol mol - 1) =
$$\frac{\text{fwMoleH2o (mmol mol - 1)}}{1000}$$
(3.5)

Calculate CO₂ dry mole fraction rtioMoleDryCo2 (mol mol - 1) from wet mole fraction of CO₂ rtioMoleWetCo2 (mol mol-1, LOp DP) and wet mole fraction of water vapor rtioMoleWetH2o (mol mol-1, LOp DP):

$$rtioMoleDryCo2 = \frac{rtioMoleWetCo2}{(1 - rtioMoleWetH2o)}$$
(3.6)

Calculate H_2O dry mole fraction rtioMoleDryH2o(mol mol - 1) from wet mole fraction of H_2O rtioMoleWetH2o (mol mol-1, LOp DP):

$$rtioMoleDryH2o = \frac{rtioMoleWetH2o}{(1 - rtioMoleWetH2o)}$$
(3.7)

tempCell (°C) should be converted to temp (K):

$$temp (K) = tempCell (°C)+273.15$$
(3.8)

presCell (kPa) should be converted to pres (Pa):

$$pres (Pa) = presCell (kPa) \times 1000$$
(3.9)

3.3.3 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for flags. An associated pass/fail flag will be generated for each test according to AD[02]. (Note: Gap, null and de-spiking plausibility tests will not be run.) Quality reports will be generated for temporally-averaged L1 DPs in a separate L1 ATBD document (to be written).

Flag	Term modifier	Description
QF _{Cal}	qfCal	Quality flag for the Invalid Calibration test
QF _{Pers}	qfPers	Quality flag for the Persistence test
QF_{Rng}	qfRng	Quality flag for the Range test
QF _{Step}	qfStep	Quality flag for the Step test

Table 3-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flags).

When perform the Invalid Calibration test, CI should use the latest calibration coefficients for the test if no new calibration coefficients set is available, even after the valid date range is already expired.

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for Cell Temperature will be "qfStepTemp".

The following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description
Thsh _{Pers}	Threshold for the Persistence test
Time _{Pers}	Time parameter for the Persistence test
Thsh _{Rng,min}	Minimum threshold for the Range test
Thsh _{Rng,max}	Maximum threshold for the Range test
Thsh _{Step}	Threshold for the Step test

Table 3-4: Parameters required for plausibility tests.

3.4 Uncertainty

NA

4 ANALYZER FOR ISOTOPIC CO₂

4.1 Data Product Description

This section describes the processes to convert L0 DPs from the isotopic CO_2 analyzer (Picarro G2131-i, *hereafter* referred to as CRD CO_2) under the DGD 0330600000 into 1 Hz L0p DPs. The CRD CO_2 is referred to as crdCo2 in reference to DPs.

4.1.1 Variables Reported

The crdCo2-related LOp reported variables as provided by the algorithms documented in this ATBD are displayed in **Error! Reference source not found.**.

L0p DP	L0p fieldName	L0pDP Frequency (Hz)	Units	Input L0 DPs or L0p - fieldNames
Instrument status	sensStus	1	NA	instStat
Instrument status flag	qfSensStus	1	NA	sensStus*
Cavity pressure	pres	1	Ра	presCavi
Cavity temperature	temp	1	К	tempCavi

Table 4-1: List of crdCo2-related LOp reported variables that are produced in this ATBD.

Title: NEON Algorithm Theoretical Backbox Exchange (Profile) Assembly Raw Date	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	L0p fieldName	LOpDP	Units	Input L0 DPs or L0p -
		Frequency		fieldNames
		(Hz)		
Warm box temperature	tempWbox	1	к	tempWarmBox
Gas spectrum ID	idGas	1	NA	specID
CO2 wet mole fraction	rtioMoleWetCo2	1	mol mol ⁻¹	fwMoleCO2
CO2 dry mole fraction	rtioMoleDryCo2	1	mol mol ⁻¹	fdMoleCO2
12CO2 wet mole fraction	rtioMoleWet12CCo2	1	mol mol ⁻¹	fwMole12CO2
12CO2 dry mole fraction	rtioMoleDry12CCo2	1	mol mol ⁻¹	fdMole12CO2
13CO2 wet mole fraction	rtioMoleWet13CCo2	1	mol mol ⁻¹	fwMole13CO2
13CO2 dry mole fraction	rtioMoleDry13CCo2	1	mol mol ⁻¹	fdMole13CO2
$\delta^{13}C$	dlta13CCo2	1	‰	d13CO2
H2O wet mole fraction	rtioMoleWetH2o	1	mol mol ⁻¹	percentFwMoleH2O
H2O dry mole fraction	rtioMoleDryH2o	1	mol mol ⁻¹	rtioMoleWetH2o*

*LOp DP is used as an input to generate other LOp DPs.

4.1.2 Input Dependencies

Table 4-2 lists all crdCo2-related L0 DPs and specifies which L0 DPs will be used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
Instrument status	instStat	~1 Hz	NA	NEON.DOM.SITE.DP0.00102.0 01.02306.700.000.000	Y
Cavity pressure	presCavi	~1 Hz	torr	NEON.DOM.SITE.DP0.00102.0 01.02307.700.000.000	Y
Cavity temperature	tempCavi	~1 Hz	С	NEON.DOM.SITE.DP0.00102.0 01.02308.700.000.000	Y
Temperature inside chassis	tempDas	~1 Hz	С	NEON.DOM.SITE.DP0.00102.0 01.02309.700.000.000	N
Etalon temperature	tempEtal	~1 Hz	С	NEON.DOM.SITE.DP0.00102.0 01.02310.700.000.000	N

Table 4-2: List of crdCo2-related L0 DPs.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce L0p (Y/N)	
Warm box	tempWarmBox	~1 Hz	С	NEON.DOM.SITE.DP0.00102.0	Y	
temperature				01.02311.700.000.000		
State of external	posiMPV	~1 Hz	NA	NEON.DOM.SITE.DP0.00102.0	N	
rotary valve				01.02312.700.000.000		
Digitizer value of outlet proportional valve	valvOutl ~1 Hz NA NEON.DOM.SITE.DP0.00102.0 01.02313.700.000.000		NEON.DOM.SITE.DP0.00102.0 01.02313.700.000.000	N		
State of external	valvSol	~1 Hz	NA	NEON.DOM.SITE.DP0.00102.0	N	
solenoid valves				01.02314.700.000.000		
Gas spectrum ID	specID	~1 Hz	NA	NEON.DOM.SITE.DP0.00102.0 01.02315.700.000.000	Y	
CO2 wet mole fraction	fwMoleCO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02316.700.000.000	Y	
CO2 dry mole fraction	fdMoleCO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02191.700.000.000	Y	
12CO2 wet mole fraction	fwMole12CO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02317.700.000.000	Y	
12CO2 dry mole fraction	fdMole12CO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02318.700.000.000	Y	
13CO2 wet mole fraction	fwMole13CO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02319.700.000.000	Y	
13CO2 dry mole fraction	fdMole13CO2	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0 01.02320.700.000.000	Y	
2 minutes box averaging of δ^{13} C	2Mind13CO2	~1 Hz	‰	NEON.DOM.SITE.DP0.00102.0 01.02321.700.000.000	N	
30 seconds box averaging of δ^{13} C	30Secd13CO2	~1 Hz	‰	NEON.DOM.SITE.DP0.00102.0 01.02322.700.000.000	N	
5 minutes box averaging of δ^{13} C	5Mind13CO2	~1 Hz	‰	NEON.DOM.SITE.DP0.00102.0 01.02323.700.000.000	N	
δ ¹³ C	d13CO2	~1 Hz	%	NEON.DOM.SITE.DP0.00102.0 01.02324.700.000.000	Y	
H2O wet mole fraction in percent	percentFwMole H2O	~1 Hz	%	NEON.DOM.SITE.DP0.00102.0 01.02325.700.000.000	Y	
2 minutes box averaging of isotope CO2 ratio	2MinCO2IsoRati o	~1 Hz	dimensionless	NEON.DOM.SITE.DP0.00102.0 01.02326.700.000.000	N	
30 seconds box averaging of isotope CO2 ratio	30SecCO2IsoRa tio	~1 Hz	dimensionless	NEON.DOM.SITE.DP0.00102.0 01.02327.700.000.000	N	

Title: NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	LO DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce
					L0p (Y/N)
5 minutes box	5MinCO2IsoRati	~1 Hz	dimensionless	NEON.DOM.SITE.DP0.00102.0	N
averaging of	0			01.02328.700.000.000	
isotope CO2 ratio					
Isotope CO2 ratio	CO2IsoRatio	~1 Hz	dimensionless	NEON.DOM.SITE.DP0.00102.0	N
				01.02329.700.000.000	
CH4 wet mole	fwMoleCH4	~1 Hz	µmol mol-1	NEON.DOM.SITE.DP0.00102.0	N
fraction				01.02330.700.000.000	
CH4 dry mole	fdMoleCH4	~1 Hz	µmol mol-1	NEON.DOM.SITE.DP0.00102.0	N
fraction				01.02331.700.000.000	
CH4 high	fwMoleHPCH4	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0	N
precision wet				01.02332.700.000.000	
mole fraction					
CH4 high	fdMoleHPCH4	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00102.0	N
precision dry				01.02333.700.000.000	
mole fraction					
Peak height of	peakHeigH2O	~1 Hz	partsPerBillionPerC	NEON.DOM.SITE.DP0.00102.0	N
H2O line			entimeter	01.02334.700.000.000	
Maximum of the	spliFitCH4	~1 Hz	partsPerBillionPerC	NEON.DOM.SITE.DP0.00102.0	N
spline fit to the			entimeter	01.02335.700.000.000	
CH4 line					
Peak height of	peakHeig12C	~1 Hz	partsPerBillionPerC	NEON.DOM.SITE.DP0.00102.0	N
12C line			entimeter	01.02336.700.000.000	
Peak height of	peakHeig13C	~1 Hz	partsPerBillionPerC	NEON.DOM.SITE.DP0.00102.0	N
13C line			entimeter	01.02337.700.000.000	

*: Only the L0 DPs in "Y" are selected to transform into L0p DPs reported in this ATBD.

4.1.3 Product Instances

All terrestrial sites across the NEON observatory have the CRD CO₂ analyzers; individual instances of all analyzer-related LOp data outputs are in **Error! Reference source not found.**.

4.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in **Error! Reference source not found.** is 1 Hz.

4.1.5 Spatial Resolution and Extent

The CRD CO_2 analyzer will be located within the tower hut infrastructure. However, the analyzer's measurements reflect the points in space where the sample inlets are located on the tower infrastructure, which are site-specific.

4.2 Scientific context

Measurements of isotopic CO₂ exchange between the biosphere and atmosphere provide a powerful tool to advance the understanding of carbon cycle processes on different temporal and spatial scales (Werner and Gessler, 2011). When stable CO₂ isotope measurements are used in conjunction with flux measurements (e.g., with eddy-covariance technique) further insight can be gained concerning partitioning of net ecosystem CO₂ fluxes into gross respiration and photosynthesis (Yakir and Wang, 1996; Bowling et al., 2001). Partitioning of net ecosystem CO₂ fluxes would increase understanding of how environmental factors affect ecosystem respiration and photosynthesis separately at relatively large spatial scales from ecosystem to region (Yakir and Wang, 1996; Griffis, 2013). In addition, comparing stable CO₂ isotopes among sites and domains can be used to determine the contribution of fossil fuel carbon in the free atmosphere. This will provide researchers with tracer information of how large changes in air masses interact with the surface environments at regional to continental scales (Randerson et al. 2002a, 2002b).

4.2.1 Theory of Measurement

The Picarro G2131-i is a laser-based analyzer that uses the cavity ring-down spectroscopy (CRDS) technique to measure the stable isotope of $\delta^{13}C$ in CO₂. The principle of CRDS is to determine the optical absorbance of a particular gas species of interest by measuring the rate of exponential decay of light intensity inside a stable optical resonator called the ring-down cavity (Busch and Busch, 1997; Balslev-Clausen, 2011; Wahl et al., 2006; Crosson, 2008). The main components in a typical CRDS system are a laser, a high-finesse optical cavity consisting of two or more high-reflectivity mirrors, and a photo detector (Figure 2). When the measurement is carried out, the light with characteristic wavelength from a laser source is injected into the cavity through one of the partially reflecting mirrors. The light intensity in the cavity starts to build up over time and once a preset intensity level is reached, the laser is shut-off. Then, the decay of the stored light transmitted out of the cavity through one of partially reflecting mirrors is monitored by the photo detector (Figure 2; Wahl et al., 2006).

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Figure 3. Left panel: a schematic of CRDS analyzer showing how a ring down measurement is carried out. Right panel: CRDS measure the decay of light intensity in the cavity with and without a sample having resonant absorbance. This demonstrates how optical loss (or absorption by gas) is rendered into a time measurement. Source: http://www.picarro.com/

4.2.2 Theory of Algorithm

Following Beer-Lambert law, the transmitted light, I(t), from the cavity is given by:

$$I(t) = I_0 e^{-t/\tau}$$
(4.1)

where I_0 is the initial transmitted light intensity (i.e. at the time the laser is switched off), t is time, and τ is the ring-down time constant which describes how long it take for the intensity of light to reach 1/e of I_0 . For an empty cavity, the transmitted light intensity decreases over time following an exponential decay characterized by a ring-down rate $(1/\tau)$ that depends on the reflectivity of the mirrors, the separation between the mirrors, and the speed of light in the cavity (Wahl et al., 2006; Zare et al., 2009). If a gas species that absorbs the laser light is introduced into the cavity, the ring-down rate decreases compared with that for the empty cavity (Figure 2). This decay is proportional to the total optical losses inside the ring-down cavity including the round-trip scattering, mirror-transmission losses and the absorbance of a sample. Then, the mole fraction or isotopic ratio of the sample can be determined from the obtained absorption spectrum by calculating the difference between decay rates of the empty cavity and a cavity containing a sample (Wheeler et al., 1998; Korkiakoski, 2014).

For the Picarro G2131-i analyzer, the stable isotope of δ^{13} C is measured by measuring the absorption of two separate 12 CO₂ and 13 CO₂ spectral lines in the near-infrared region of the spectrum and the ratio of

the peak heights of the lines is a measure of the ratio of the mole fractions of each of the two isotopologues (<u>http://www.picarro.com/</u>).

4.3 Algorithm Implementation

Data flow for LOp signal processing is outlined in the following order.

- 1. Select L0 data streams as indicated as "Y" in Table 4-2 in for further data processing.
- Generate complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 4.3.2 for selected L0 data streams in step 1.
- 3. Identify timestamp corresponding to specID 105 and 11 and select all required data (Table 4-4) using these timestamps.
- 4. Generate complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 4.3.2 for all L0 DPs listed in Table 4-4.
- 5. Apply unit conversion to:
 - a. cavity pressure (presCavi),
 - b. cavity temperature (tempCavi),
 - c. warm box temperature (tempWarmBox),
 - d. wet and dry mole fraction of CO₂ (fwMoleCO2 and fdMoleCO2), 12CO₂, (fdMole12CO2, fwMole12CO2), 13CO₂ (fdMole13CO2, fwMole13CO2), and
 - e. percentFwMoleH2O.

Details are provided in section 4.3.3

- Determine and assign the instrumentation status flag (qfSensStus, i.e. '0' if there is no error and '1' if error is detected during the operation) to corresponding 1 Hz data, details are provided in section 4.3.4.
- 7. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided in section 4.3.5.

4.3.1 Filter specific data stream by spectrum ID

The CRD CO₂ is capable of measuring multiple gas species, but measures only one gas species at a time and the analyzer will update only the most recent measured values. This will create duplicates of data in the data stream (see example in Table 4-3). The spectrum ID (specID) L0 DP, which indicates which gas species are being measured, will be used to filter only the raw measurement data for each L0 DPs in Table 4-4.

Table 4-3: Example of crdCo2 L0 data streams. Note that only L0 DPs of interest are shown in this table.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

timeStamp	instStat s	specID	fwMoleCO2	fdMoleCO2	fwMole12CO2	fdMole12CO2	fwMole13CO2	fdMole13	d13CO2	percentFwMoleH2O	fwMoleCH4	fdMoleCH4	fwMoleHPCH4	fdMoleHPCH4 (CO2IsoRatio
2015-09-24T14:21:00.597Z	963	105	453.033997	465.119995	446.813995	458.738007	4.939	5.071	-11.62	1.539	0.011	2.044	2.082	2.047	2.081
2015-09-24T14:21:01.864Z	963	29	453.036987	465.122009	446.813995	458.738007	4.942	5.074	-11.077	1.539	0.011	2.047	2.084	2.047	2.081
2015-09-24T14:21:02.220Z	963	25	453.036987	465.122009	446.813995	458.738007	4.942	5.074	-11.077	1.539	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:03.403Z	963	105	453.483002	465.579987	447.253998	459.190002	4.947	5.079	-11.077	1.539	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:04.386Z	963	105	453.531006	465.630005	447.308014	459.244995	4.941	5.073	-12.42	1.539	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:06.458Z	963	11	453.53299	465.588013	447.309998	459.20401	4.941	5.072	-12.483	1.534	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:07.542Z	963	105	454.02301	466.091003	447.794006	459.700012	4.946	5.078	-12.483	1.534	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:08.526Z	963	105	454.04599	466.11499	447.812988	459.720001	4.95	5.082	-11.687	1.534	0.011	2.047	2.084	2.048	2.082
2015-09-24T14:21:09.778Z	963	29	454.049011	466.118011	447.812988	459.720001	4.953	5.085	-11.133	1.534	0.011	2.043	2.08	2.048	2.082
2015-09-24T14:21:10.132Z	963	25	454.049011	466.118011	447.812988	459.720001	4.953	5.085	-11.133	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:11.330Z	963	105	453.959991	466.026001	447.725006	459.630005	4.952	5.084	-11.133	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:12.314Z	963	105	453.873993	465.937988	447.63501	459.537994	4.956	5.088	-10.133	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:14.401Z	963	11	453.871002	465.938995	447.63501	459.541992	4.953	5.085	-10.756	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:15.493Z	963	105	454.014008	466.085999	447.777008	459.687012	4.954	5.086	-10.756	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:16.465Z	963	105	453.838989	465.906006	447.604004	459.509003	4.952	5.084	-10.734	1.534	0.011	2.043	2.08	2.047	2.081
2015-09-24T14:21:17.721Z	963	29	453.835999	465.903015	447.604004	459.509003	4.95	5.082	-11.284	1.534	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:18.075Z	963	25	453.835999	465.903015	447.604004	459.509003	4.95	5.082	-11.284	1.534	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:19.258Z	963	105	454.036011	466.108002	447.799988	459.710999	4.952	5.084	-11.284	1.534	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:20.240Z	963	105	453.743011	465.808014	447.513	459.415985	4.948	5.08	-11.509	1.534	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:22.334Z	963	11	453.742004	465.822998	447.511993	459.431	4.947	5.079	-11.593	1.536	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:23.433Z	963	105	453.824005	465.907013	447.592987	459.514008	4.948	5.08	-11.593	1.536	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:24.432Z	963	105	453.710999	465.790985	447.479004	459.397003	4.95	5.082	-10.984	1.536	0.011	2.05	2.087	2.047	2.081
2015-09-24T14:21:25.679Z	963	29	453.709991	465.789001	447.479004	459.397003	4.948	5.08	-11.288	1.536	0.011	2.034	2.071	2.047	2.081
2015-09-24T14:21:26.033Z	963	25	453.709991	465.789001	447.479004	459.397003	4.948	5.08	-11.288	1.536	0.011	2.034	2.071	2.048	2.082
2015-09-24T14:21:27.239Z	963	105	453.966003	466.052002	447.730988	459.656006	4.951	5.083	-11.288	1.536	0.011	2.034	2.071	2.048	2.082
2015-09-24T14:21:28.227Z	963	105	453.761993	465.842987	447.545013	459.464996	4.934	5.066	-14.404	1.536	0.011	2.034	2.071	2.048	2.082
2015-09-24T14:21:30.327Z	963	11	453.769989	465.878998	447.544006	459.490997	4.943	5.075	-12.524	1.54	0.011	2.034	2.071	2.048	2.082
2015-09-24T14:21:30.551Z	963	11	453.769989	465.878998	447.544006	459.490997	4.943	5.075	-12.524	1.54	0.011	2.034	2.071	2.048	2.082

Table 4-4: Spectrum ID and its corresponded L0 DPs.

Spectrum ID (specID)	L0 DPs
105	fwMoleCO2
	fdMoleCO2
	fwMole12CO2
	fdMole12CO2
	fwMole13CO2
	fdMole13CO2
	d13CO2
11	percentFwMoleH2O

4.3.2 Time regularization

CRD CO₂ measures data at ~1 Hz. To generate complete L0p data with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

4.3.3 Unit conversion

CRD CO₂ outputs in its standard units using its own internal propriety algorithm. However, some measurements need to be converted to NEON standard units as follow:

The unit of cavity pressure (presCavi) shall be converted to Pascal (Pa) by:

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

pres in Pa =
$$101325/760 * \text{ presCavi in torr}$$
 (4.2)

The units of cavity temperature (tempCavi) and warm box temperature (tempWarmBox) shall be converted to kelvin. The units of wet and dry mole fraction of CO₂ (fwMoleCO2 and fdMoleCO2), 12CO₂, (fdMole12CO2, fwMole12CO2) and 13CO₂ (fdMole13CO2, fwMole13CO2) are needed to convert to mole mole-1 by:

$$X = 10^{-6} * Y$$
 (4.3)

/ **-** - **·**

where, X is rtioMoleWetCo2, rtioMoleDryCo2, rtioMoleWet12CCo2, rtioMoleDry12CCo2, rtioMoleWet13CCo2, or rtioMoleDry13CCo2 in mol mol⁻¹ and Y is fwMoleCO2, fdMoleCO2, fdMole12CO2, fdMole12CO2, fwMole13CO2, or fdMole13CO2 in μ mol mol⁻¹.

The total wet mole fraction in percent of water vapor (percentFwMoleH2O) is needed to convert to mol mol⁻¹ by:

$$rtioMoleWetH2o = 10^{-2} * percentFwMoleH2O$$
(4.4)

and then dry mole fraction of water vapor can be calculated as:

$$rtioMoleDryH2o = \frac{rtioMoleWetH2o}{(1-rtioMoleWetH2o)}$$
(4.5)

4.3.4 Sensor Flags

Instrumentation status flag will be generated as part of the LOp report variables to indicate that the analyzer was working properly and no error occurred during operation, which is defined as:

$$\begin{array}{ll} 0 \text{ if sensStus} = 963 \\ 1 \text{ if sensStus} \neq 963 \\ -1 \text{ if sensStus} = \text{NaNand continous sequence of NaNs} \\ > 3 \text{s duration} \\ \end{array}$$

Additionally, to distinguish between NaNs that resulted from time regularization and NaNs that resulted from true missing values, the latter will be replaced by -1, see Eq. (4.6).

4.3.5 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for qfSensStus, sensStus, and idGas. An associated pass/fail flag will be generated for each test according to AD[02]. Note: Gap, null, and despiking plausibility tests will not be run, due to the gap-filling described in section 4.3.1 Time Regularization. Quality reports will be generated for temporally-averaged L1 DPs at a later stage.

Flag	Term modifier	Description
QF _{Cal}	qfCal	Quality flag for the Invalid Calibration test
QF _{Pers}	qfPers	Quality flag for the Persistence test
QF_{Rng}	qfRng	Quality flag for the Range test
QF _{Step}	qfStep	Quality flag for the Step test

Table 4-5: Plausibility quality flags to be applied to all LOp DPs

When performing the Invalid Calibration test, CI should use the latest calibration coefficients for the test if no new calibration coefficients set is available, even after the valid date range is already expired.

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for δ^{13} C will be "qfStepDlta13CCo2".

The following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description
Thsh _{Pers}	Threshold for the Persistence test
Time _{Pers}	Time parameter for the Persistence test
Thsh _{Rng,min}	Minimum threshold for the Range test
Thsh _{Rng,max}	Maximum threshold for the Range test
Thsh _{Step}	Threshold for the Step test

Table 4-6: Parameters required for plausibility tests.

4.4 Uncertainty

NA

5 ANALYZER FOR ISOTOPIC WATER

5.1 Data Product Description

This section describes the processes to convert L0 DPs from the isotopic H_2O analyzer (Picarro L2130-i, *hereafter* referred to as CRD H_2O) under the DGD 0328050000 into 1 Hz L0p DPs. The CRD H_2O is referred to as crdH20 in reference to DPs.

5.1.1 Variables Reported

The crdH2o-related L0p reported variables provided by the algorithms documented in this ATBD are displayed in Table 5-1: List of crdH2o-related L0p reported variables that produced in this ATBD.Table 5-1.

LOp DP	L0p fieldName	L0p DP	Units	Input L0 fieldNames
		Frequency		
Instrument Status	sensStus	1 Hz	NA	instStat
Instrument status flag	qfSensStus	1 Hz	NA	sensStus
Cavity pressure	pres	1 Hz	Ра	presCavi
Cavity temperature	temp	1 Hz	К	tempCavi
Warm box temperature	tempWbox	1 Hz	К	tempWarmBox
ValveMask	valvCrdH2o	1 Hz	NA	valvMask
H2O wet mole fraction	rtioMoleWetH2o	1 Hz	mol mol-1	ppmvFwMoleH2O
H2O dry mole fraction	rtioMoleDryH2o	1 Hz	mol mol-1	rtioMoleWetH2o*
δ ¹⁸ 0	dlta18OH2o	1 Hz	‰	d18OWater
$\delta^2 H$	dlta2HH2o	1 Hz	‰	d2HWater
N2 flag	stusN2	1 Hz	NA	N2Flag
N2flag flag	qfStusN2	1 Hz	NA	stusN2
Low humidity flag	qfLowRtioMoleWet H2o	1 Hz	NA	rtioMoleWetH2o*

Table 5-1: List of crdH2o-related L0p reported variables that produced in this ATBD.

*: This is a LOp DP. It is used as an input to generate other LOp DP.

5.1.2 Input Dependencies

Table 5-2 lists all crdH2o-related L0 DPs and specifies which L0 DPs will be used to produce L0p reported variables in this ATBD.

Table 5-2: A full list of crdH2o L0 DPs.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968 Author: N. Durden and H. Lou		Revision: A

LO DP	LO DP fieldName	Sample Frequenc Y	Units	Data Product Number	DPs that are used to produce L0' (Y/N)*
Instrument status	instStat	~1 Hz	NA	NEON.DOM.SITE.DP0.00103. 001.02306.700.000.000	γ
Cavity Pressure	presCavi	~1 Hz	torr	NEON.DOM.SITE.DP0.00103. 001.02307.700.000.000	γ
Cavity Temperature	tempCavi	~1 Hz	°C	NEON.DOM.SITE.DP0.00103. 001.02308.700.000.000	Υ
Das Temperature	tempDas	~1 Hz	°C	NEON.DOM.SITE.DP0.00103. 001.02309.700.000.000	Ν
Etalon Temperature	tempEtal	~1 Hz	°C	NEON.DOM.SITE.DP0.00103. 001.02310.700.000.000	Ν
Warm Box Temperature	tempWarmBo x	~1 Hz	°C	NEON.DOM.SITE.DP0.00103. 001.02311.700.000.000	γ
MPV Position	posiMPV	~1 Hz	NA	NEON.DOM.SITE.DP0.00103. 001.02312.700.000.000	N
Outlet Valve	valvOutl	~1 Hz	NA	NEON.DOM.SITE.DP0.00103. 001.02313.700.000.000	N
Valve Mask	valvMask	~1 Hz	NA	NEON.DOM.SITE.DP0.00103. 001.02338.700.000.000	Y
H2O wet concentration	ppmvFwMole H2O	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00103. 001.02339.700.000.000	Y
δ ¹⁸ 0	d18OWater	~1 Hz	‰	NEON.DOM.SITE.DP0.00103. 001.02369.700.000.000	Y
$\delta^2 H$	d2HWater	~1 Hz	‰	NEON.DOM.SITE.DP0.00103. 001.02370.700.000.000	γ
CH4	fwMoleCH4	~1 Hz	µmol mol ⁻¹	NEON.DOM.SITE.DP0.00103. 001.02330.700.000.000	N
N2 flag	N2Flag	~1 Hz	NA	NEON.DOM.SITE.DP0.00103. 001.02340.700.000.000	γ
Baseline shift	baseShift	~1 Hz	ppb/cm	NEON.DOM.SITE.DP0.00103. 001.02341.700.000.000	N
Slope shift	slopShift	~1 Hz	ppb/cm	NEON.DOM.SITE.DP0.00103. 001.02342.700.000.000	N
Residuals	resiRMS	~1 Hz	ppb/cm	NEON.DOM.SITE.DP0.00103. 001.02343.700.000.000	N

*: Only the L0 DPs in "Y" are selected to transform into L0p DPs reported in this ATBD.

5.1.3 Product Instances

20 core sites plus Barrow relocatable site across the NEON observatory own the CRD H₂O analyzers. Individual instance of all analyzer-related LOp data outputs are in Table 5-1.

5.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 5-1 is 1 Hz.

5.1.5 Spatial Resolution and Extent

The CRD H_2O analyzer will be located within the tower hut infrastructure. However, the analyzer's measurements reflect the points in space where the sample inlets are located on the tower infrastructure, which will be site specific.

5.2 Scientific context

To obtain detailed knowledge of the hydrological cycle, information on all three phases of water is required. Isotopic analysis of atmospheric trace gases provides a valuable tool for resolving their budgets because the physical, chemical, or biological processes involved fractionate isotopically in unique ways and leave characteristic isotopic signatures in the trace gas. In particular, water vapor isotopes provide information concerning the mechanisms of processes that occur in the water cycle, such as evaporation at the surface of the Earth and subsequent transport and phase changes in the atmosphere. Water-vapor isotope measurements can be used to reveal a possible relationship between water-vapor isotopes and ambient moisture, and to understand the processes such as evaporation and condensation in climatic simulations (lannone et al., 2010). When the stable H₂O isotope measurements are used in conjunction with flux measurements (e.g., with eddy-covariance technique) further insight can be gained by partitioning the net ecosystem H₂O fluxes into evaporation and transpiration over an ecosystem (Yepez et al., 2003; Hu et al., 2014).

5.2.1 Theory of Measurement

The Picarro L2130-i is a laser-based analyzer that uses the cavity ring-down spectroscopy (CRDS) technique to measure the stable isotopes of $\delta^{18}O$ and $\delta^{2}H$ in H_2O . The underlying principle of CRDS can be found in section 4.2.1.

5.2.2 Theory of Algorithm

Details on theory of algorithm can be found in section 4.2.2. For Picarro L2130-i analyzer, the stable isotope of δ^{18} O is measured by measuring the absorption of two separate spectral lines (H₂¹⁸O and H₂¹⁶O) in the near-infrared region of the spectrum, and the ratio of the peak heights of the lines is measured by the ratio of the mole fractions of each of the two isotopologues. Similarly, the stable isotope of δ D is measured by measuring the absorption of two separate spectral lines (²H₂O and ¹H₂O) in the near-infrared region of the peak heights of the lines is measured region of the spectrum, and the ratio of the lines is measured by the ratio of the spectrum, and the ratio of the peak heights of the lines is measured by the ratio of the mole fractions of each of the two isotopologues (http://www.picarro.com/).

5.3 Algorithm Implementation

Data flow for signal processing of LOp reported variables will be treated in the following order:

- 1. Select the following LO data streams for further data processing: instStat, valvMask, ppmvFwMoleH2O, d18OWater, d2HWater, N2Flag. See Table 5-2.
- 2. Generate complete data with respect to 1 Hz frequency, using a time regularization approach in accordance with AD[04]. Details are provided in section 5.3.1.
- 3. Convert units according to Eq. () to () in section 5.3.2.
- 4. Determine and assign the Instrumentation status flag (qfSensStus) to corresponding 1 Hz data. Details are provided below. See section 5.3.3 a.
- 5. Determine and assign flag (qfStusN2) for carrier gas mode setting (N2Flag). See section 5.3.3 b.
- 6. Determine and assign the Low humidity flag (qfLowRtioMoleWetH2o) to corresponding 1 Hz data. Details are provided below. See section 5.3.3 c.
- 7. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02]. Details are provided below. See section 5.3.4 below.

5.3.1 Time regularization

CRD H_2O analyzer measures data at ~ 1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

5.3.2 Unit conversion

Measurements output from the CRD H_2O analysers are outputted in their standard units using their own internal propriety algorithm. However, some measurements such as ppmvFwMoleH2O are needed to convert to NEON standard units. The total wet mole fraction in ppmv of water vapor in the air shall be converted to wet mole fraction in mole mole⁻¹ by:

$$rtioMoleWetH2o = ppmvFwMoleH2O/1000000$$
(5.1)

and then dry mole fraction of water vapor will be calculated as:

$$rtioMoleDryH2o = \frac{rtioMoleWetH2o}{(1 - rtioMoleWetH2o/1000)}$$
(5.2)

The unit of cavity pressure (presCavi) shall be converted to Pascal (Pa) by:

$$pres in Pa = 101325/760 * presCavi in torr$$
(5.3)

The unit of cavity temperature (tempCavi) shall be converted to Kelvin (K) by:

temp in
$$K = \text{tempCavi in Celsius} + 273.15$$
 (5.4)

The unit of warm box temperature (tempWarmBox) shall be converted to Kelvin (K) by:

$$tempWbox in K = tempWarmBox in Celsius + 273.15$$
(5.5)

5.3.3 Sensor Flags

a. Instrumentation status flag (qfSensStus) will be generated as part of the LOp report variables to indicate the status of the instrumentation during operation. 0 indicates there is no error and 1 indicates an error has been detected during the operation. In addition, the definition below also includes steps to distinguish the NaNs between data missing NaNs (NaN > 3s) or NaNs due to time regularization (NaN ≤ 3s). qfSensStus is defined as:

$$qfSensStus = 0 \text{ if sensStus} = 963$$

$$1 \text{ if sensStus} \neq 963$$

$$-1 \text{ if sensStus} = NaN \text{ and continous sequence of NaNs}$$

$$> 3s \text{ duration}$$

$$NaN \text{ if sensStus} = NaN \text{ and continuous sequence of NaNs}$$

$$\leq 3s \text{ duration}$$

$$(5.6)$$

b. **Carrier gas setting status flag** (qfStusN2) will be generated as part of the LOp report variables to indicate if the carrier gas mode was set correctly in L2130-I and there is no error occurred during operation. For N2Flag, 0=air mode, 1=N2 mode. Because NEON will use zero air as carrier gas. Carrier gas setting N2Flag should be always 0 during normal operation. If N2Flag is 1, data should be flagged, indicating data will be not useful. Because we do time regularization first to generate StusN2, then StusN2 will be used to generate the quality flag qfStusN2 below. In other words, qfStusN2 = 0 (no error) when StusN2 = 0 (air mode), and qfStusN2 = 1 (has error) when StusN2 = 1 (N2 mode). Similarly, the definition below also includes steps to distinguish the NaNs between data missing NaNs (NaN > 3s) or NaNs due to time regularization (NaN \leq 3s). Therefore, qfStusN2 is defined as:

$$\begin{array}{l} 0 \text{ if } StusN2 = 0 \\ 1 \text{ if } StusN2 = 1 \\ -1 \text{ if } StusN2 = NaN \text{ and and continous sequence of NaNs} \\ > 3s \text{ duration} \\ NaN \text{ if } StusN2 = NaN \text{ and continuous sequence of NaNs} \\ \leq 3s \text{ duration} \end{array}$$
(5.7)

c. Low humidity flag (qfLowRtioMoleWetH2o) will be generated as part of the LOp report variables to indicate if the sensor is operated under low humidity. In the laboratory testing, we found the humidity dependence of the isotopic measurements became significantly pronounced for the humidity levels below 5000 ppmv (or 0.005 mol mol⁻¹). Here, 0 indicates the sensor operates under the humidity levels greater than 5000 ppmv and 1 indicates the sensor operates under the humidity levels below or equal to 5000 ppmv. In addition, the definition below also includes steps to distinguish the NaNs between data missing NaNs (NaN > 3s) or NaNs due to time regularization (NaN \leq 3s). qfLowRtioMoleWetH2o is defined as:

	0 if rtioMoleWetH2o > 0.005	
qfLowRtioMoleWetH2o =	1 if rtioMoleWetH2o ≤ 0.005	(5.8)
	 -1 if rtioMoleWetH2o = NaN and continous sequence of NaNs > 3s duration 	
	NaN if rtioMoleWetH2o = NaN and continuous sequence of NaNs ≤ 3s duration	

5.3.4 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs, except for flags, instrument status (sensStus), valve mask (valvCrdH2o), and N2 Status (stusN2). An associated pass/fail flag will be generated for each test according to AD[02]. (Note. We will not be carrying out the "Gap test" and "Null test". We also will not run signal de-spike). Quality reports will be generated for temporally averaged L1 DPs at a later stage.

Flag	Term modifier	Description	
QF _{Cal}	qfCal	Quality flag for the Invalid Calibration test	
QF _{Pers}	qfPers	Quality flag for the Persistence test	
QF_{Rng}	qfRng	Quality flag for the Range test	
QF _{Step}	qfStep	Quality flag for the Step test	

 Table 5-3: Plausibility quality flags to be applied to all LOp DPs except for flags.

When perform the Invalid Calibration test, CI should use the latest calibration coefficients for the test if no new calibration coefficients set is available, even after the valid date range is already expired.

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for δ^{18} O will be "qfStepDlta18OH2o".

The following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description	
Thsh _{Pers}	Threshold for the Persistence test	
Time _{Pers}	Time parameter for the Persistence test	
Thsh _{Rng,min}	Minimum threshold for the Range test	
Thsh _{Rng,max}	Maximum threshold for the Range test	
Thsh _{Step}	Threshold for the Step test	

Table 5-4: Parameters required for plausibility tests.

5.4 Uncertainty

NA

6 TEMPERATURE SENSOR IN THE HUT

6.1 Data Product Description

6.1.1 Variables Reported

The Comet T7610 sensor measuring the temperature, barometric pressure, relative humidity, and water mixing ratios in the hut is called envHut in reference to DPs. The envHut-related L0p variables provided by the algorithms documented in this ATBD are displayed in Table 6-1.

LOp DP	L0p fieldName	LOp DP Frequency (Hz)	Units	Input L0 DPs or L0p fieldNames
Temperature in the instrument hut	temp	1	К	tempHut
Humidity in the instrument hut	rh	1	-	RHHut
Barometric pressure in the instrument hut	pres	1	Ра	baroPresHut

Table 6-1: List of envHut-related LOp reported variables that are produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968 Author: N. Durden and H. Lou		Revision: A

L0p DP	L0p fieldName	L0p DP Frequency (Hz)	Units	Input LO DPs or LOp fieldNames
H2O wet mole	rtioMoleWetH2o	1	mol mol ⁻¹	baroPresHut
fraction in the				H2OMixRatioHut
instrument hut				
Hut	qfTemp	1	NA	temp*
temperature				
flag				
Hut humidity	qfRh	1	NA	rtioMoleWetH2o*
flag				

*LOp DP is used as an input to generate other LOp DPs.

6.1.2 Input Dependencies

Table 6-2 details the envHut-related L0 DPs used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce L0p (Y/N)
Temperature in the instrument	tempHut	1	С	NEON.DOM.SITE.DP0.00104.0 01.02344.700.000.000	Y
hut				01.02344.700.000.000	
Humidity in the	RHHut	1	%	NEON.DOM.SITE.DP0.00104.0	Y
instrument hut				01.02345.700.000.000	
Barometric	baroPresHut	1	kPa	NEON.DOM.SITE.DP0.00104.0	Y
pressure in the				01.02346.700.000.000	
instrument hut					
H2O mixing ratio	H2OMixRatioHut	1	g kg-1	NEON.DOM.SITE.DP0.00104.0	Y
in the instrument				01.02347.700.000.000	
hut					

Table 6-2: List of envHut-related L0 DPs that are transformed into L0p reported variables DPs in this ATBD.

*: Only the L0 DPs in "Y" are selected to transform into L0p DPs reported in this ATBD.

6.1.3 Product Instances

The Comet T7610 is located in the instrument hut within a radius of 50 cm from the LI840A. All terrestrial sites across the NEON observatory have the Comet T7610 sensors; individual instances of all LOp data outputs from this sensor are in Table 6-1.

6.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 6-1 is 1 Hz.

6.1.5 Spatial Resolution and Extent

The Comet T7610 is located within the tower hut infrastructure. However, the measurements reflect the points in space where the sensor is located in the tower hut infrastructure. In the current design, the Comet T7610 is installed in the same rack as IRGA analyzer to represent hut environmental condition.

6.2 Scientific context

The Comet T7610 is used to monitor hut environmental condition, which includes ambient temperature, pressure, relative humidity and water mixing ratio. Because of the dependency of the IRGA analyzer to its ambient temperature variation, the temperature L0 DP output from this sensor will be used to create flags to indicate when the data from IRGA are delivered outside of the acceptable temperature ranges. . Furthermore, water mixing ratio output from this sensor will also be used to create flags to indicate when the data from CRD H₂O delivered outside of the acceptable humidity ranges. According to communication with manufacture, the high ambient humidity could interfere with the performance of CRD H₂O.

6.2.1 Theory of Measurement

The Comet T7610 is designed to measure temperature, relative humidity and atmospheric pressure in air without aggressive substances. The sensor also outputs computed quantities, including dew point temperature, absolute humidity, mixing ratio and specific enthalpy. In the current design, the mixing ratio was selected as the computed output and it will be used to generate the humidity flags for CRD H₂O.

6.2.2 Theory of Algorithm

NA

6.3 Algorithm Implementation

LOp signal processing consists of the following sequence:

- 1. Select L0 data streams as indicated as "Y" in Table 6-2 for further data processing.
- 2. Generate complete data with respect to 1 Hz frequency using the time regularization approach in accordance with AD[04], details are provided in section 6.3.1.
- 3. Apply unit conversion to tempHut, RHHUT, baroPresHut, and H2OMixRatioHut according to Eq. (6.1) to (6.4), respectively.
- 4. Determine and assign the temperature flag to its corresponding timestamp according to Eq. (6.5), details are provided below in section 6.3.3.
- 5. Determine and assign the humidity flag to its corresponding timestamp according to Eq. (6.6), details are provided below in section 6.3.3.
- 6. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided below in section 6.3.4.

6.3.1 Time regularization

The Comet T7610 measures data at 1 Hz. To generate time regularized output, complete L0p data with respect to 1 Hz frequency by filling in missing timestamps and the corresponding data values with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

6.3.2 Unit conversion

The Comet T7610 sensor outputs data in digital form through Ethernet connections, therefore, no analog to digital (A/D) conversion is necessary. However, all measurements, including tempHut, RHHut, baroPresHut, and H2OMixRatioHut are needed to convert to the meaningful units as follow:

tempHut (NEON.DOM.SITE.DP0.00104.001.02344.700.000.000) in degree Celsius to Kelvin,

temp in
$$K = \text{tempHut in degree }^{\circ}C + 273.15$$
 (6.1)

RHHut (NEON.DOM.SITE.DP0.00104.001.02345.700.000.000) in percentage to fraction,

rh in fraction
$$=$$
 $\frac{\text{RHHut in percentage}}{100}$ (6.2)

baroPresHut (NEON.DOM.SITE.DP0.00104.001.02346.700.000.000) in kPa to Pa,

pres in
$$Pa = baroPresHut in kPa * 1000$$
 (6.3)

and H2OMixRatioHut (NEON.DOM.SITE.DP0.00104.001.02347.700.000.000) in g kg⁻¹ to mol mol-1

rtioMoleWetH2o = H2OMixRatioHut *
$$\frac{\text{MolmDry}}{\text{MolmH2o}}$$
 * $\frac{\text{baroPresHut}}{101.325}$ * 10⁻³ (6.4)

where MolmDry is molecular mass of dry air and equal to 28.97 (kg kmol⁻¹)

MolmH2o is molecular mass of water vapor and equal to 18.02 (kg kmol⁻¹)

baroPresHut is atmospheric pressure (kPa).

6.3.3 Sensor Flags

a. **Temperature flag** (qfTemp) – will be generated to indicate when data measured by IRGA sensor are delivered outside of the acceptable temperature ranges (at 10 degree Kelvin) The temperature flag at time *t* will be determined as follows:

1 if $N \ge 3420$ and $|maxTemp - minTemp|_t > 10$ K

$qfTemp_t =$	0 if $N \ge 3420$ and $ \max \text{Temp} - \min \text{Temp} _t \le 10 \text{ K}$	(6.5)
	-1 otherwise.	

where maxTemp is the maximum hut temperature in between t - n and t (K) minTemp is the minimum hut temperature in between t - n and t (K)

n is seconds in hour and equal to 3600 (s)

N is the number of samples of tempHut in between t - n and t that are used to determine maxTemp and minTemp

b. Humidity flag (qfRh) – will be generated to indicate when data measured by CRD H2O sensor are delivered outside of the acceptable humidity ranges (greater than 0.03 mol mol⁻¹). The humidity flag will be determined as follows:

qfRh =
$$\begin{array}{c} 1 \text{ if rtioMoleWetH2o} > 0.03 \\ 0 \text{ if rtioMoleWetH2o} \le 0.03 \\ -1 \text{ otherwise.} \end{array}$$
(6.6)

where rtioMoleWetH2o is the wet mole fraction of water vapor (mol mol⁻¹)

6.3.4 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs, except for qfTemp and qfRh. An associated pass/fail flag will be generated for each test according to AD[02]. Note that we will not be carrying out the "gap test" or "null test". Quality reports will be generated for temporally averaged L1 DPs at a later stage. Because this sensor will never be sent back to CVAL for calibration once it is deployed at field, no valid calibration date will be provided to CI to generate calibration flag.

Flag	Term modifier	Description		
QF _{Pers}	qfPers	Quality flag for the Persistence test		
QF_{Rng}	qfRng	Quality flag for the Range test		
QF_{Step}	qfStep	Quality flag for the Step test		

Plausibility quality flags to be applied to all L0p DPs, except for qfTemp and qfRh.

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for δ^{13} C will be "qfStepDlta13CCo2".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameters required for plausibility tests.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Parameter	Description			
Thsh _{Pers}	Threshold for the Persistence test			
Time _{Pers}	Time parameter for the Persistence test			
Thsh _{Rng,min}	Minimum threshold for the Range test			
Thsh _{Rng,max}	Maximum threshold for the Range test			
Thsh _{Step}	Threshold for the Step test			

6.4 Uncertainty

NA

7 GAS CYLINDER PRESSURE SENSOR

7.1 Data Product Description

This Chapter describes the processes to convert L0 DPs under delivery pressure sensor (DGD CA07140000) and cylinder pressure sensor (DGD CA07150000) into 1 Hz L0p DPs. The delivery pressure sensor is referred to as presValiRegOutStor in reference to DPs. The cylinder pressure sensor is referred to as presValiRegInStor in reference to DPs.

7.1.1 Variables Reported

The delivery pressure sensor (Omega PX319-100GI) and cylinder pressure sensor (Omega PX319-3KGI) related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 7-1. Please note, although some LOp fieldnames for Delivery pressure sensor (DGD CA07140000) are identical to Cylinder pressure sensor (DGD CA07150000), they live in different data tables, thus this is not a problem of conflict. Because the LOp pressure output from each sensor will live in different tables of HDF5 file, it is ok to use generic term of "presDiff" for all delivery pressure and all cylinder pressure LOp outputs.

LOp DP	LOp fieldName LOp DP		Units	Input LO data products	
		Frequency			
	presValiRegOutStor (DGD CA07140000)				
delivery pressure	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00110.001.02196.	
(ZERO)	preson	1 112	га	709.000.000	
delivery pressure	procDiff	1.1	Do	NEON.DOM.SITE.DP0.00110.001.02196.	
(ARCHIVE)	presDiff	1 Hz	Ра	710.000.000	

Table 7-1: List of presValiRegOutStor and presValiRegInStor related L0p reported variables that produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	LOp fieldName	LOp DP Frequency	Units	Input LO data products
delivery pressure		Frequency		
(ZERO for CRD H ₂ O)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00110.001.02196. 711.000.000
delivery pressure (LOW)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00110.001.02196. 712.000.000
delivery pressure (MEDIUM)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00110.001.02196. 713.000.000
delivery pressure (HIGH)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00110.001.02196. 714.000.000
delivery pressure flag (ZERO to CRD H ₂ O)	qfPresDiff	1 Hz	NA	presDiff from ZERO for CRD H ₂ O *
	pres	ValiRegInStor	(DGD CA0	7150000)
cylinder pressure (ZERO)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00111.001.02196. 709.000.000
cylinder pressure (ARCHIVE)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00111.001.02196. 710.000.000
cylinder pressure (ZERO to CRD H ₂ O)	presDiff	1 Hz	Pa	NEON.DOM.SITE.DP0.00111.001.02196. 711.000.000
cylinder pressure (LOW)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00111.001.02196. 712.000.000
cylinder pressure (MEDIUM)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00111.001.02196. 713.000.000
cylinder pressure (HIGH)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00111.001.02196. 714.000.000
cylinder pressure flag (ZERO)	qfPresDiff	1 Hz	NA	presDiff from ZERO*
cylinder pressure flag (ARCHIVE)	qfPresDiff	1 Hz	NA	presDiff from ARCHIVE*
cylinder pressure flag (ZERO to CRD H ₂ O)	qfPresDiff	1 Hz	NA	presDiff from ZERO to CRD H_2O)*
cylinder pressure flag (LOW)	qfPresDiff	1 Hz	NA	presDiff from LOW*
cylinder pressure flag (MEDIUM)	qfPresDiff	1 Hz	NA	presDiff from MEDIUM*
cylinder pressure flag (HIGH)	qfPresDiff	1 Hz	NA	presDiff from HIGH*

*: This is a LOp DP. It is used as an input to generate other LOp DP.

7.1.2 Input Dependencies

Table 7-2 below lists all presValiRegOutStor and presValiRegInStor related L0 DPs and specifies which L0 DPs will be used to produce L0p reported variables in this ATBD.

LO DP	LO DP	Sample	Units	Data Product Number	DPs that are
	fieldName	Frequency			used to
					produce LOp
					(Y/N)*
	presVa	liRegOutStor	(DGD CA071	40000)	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(ZERO)				01.02196.709.000.000	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(ARCHIVE)				01.02196.710.000.000	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(ZERO CRD H ₂ O)				01.02196.711.000.000	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(LOW)				01.02196.712.000.000	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(MEDIUM)				01.02196.713.000.000	
delivery pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00110.0	Y
(HIGH)				01.02196.714.000.000	
	presVa	liRegOutStor	(DGD CA071	50000)	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
(ZERO)				01.02196.709.000.000	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
(ARCHIVE)				01.02196.710.000.000	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
(ZERO CRD H ₂ O)				01.02196.711.000.000	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
(LOW)				01.02196.712.000.000	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
(MEDIUM)				01.02196.713.000.000	
cylinder pressure	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.00111.0	Y
, (HIGH)				01.02196.714.000.000	

Table 7-2: A full list of presValiRegOutStor and presValiRegInStor related L0 DPs	s.
---	----

*: Only the L0 DPs in "Y" are selected to transform into L0p DPs reported in this ATBD.

7.1.3 Product Instances

All TIS sites across the NEON observatory own 6 delivery pressure sensor (Omega PX319-100GI) and 6 cylinder pressure sensors (Omega PX319-3KGI) for Eddy Covariance Storage Exchange assembly. Each individual instance will generate one LOp data output listed in Table 7-1.

7.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 7-1 is 1 Hz.

7.1.5 Spatial Resolution and Extent

The 6 delivery pressure sensor (Omega PX319-100GI) and 6 cylinder pressure sensors (Omega PX319-3KGI) will be located within the tower hut infrastructure. Each pair of the pressure sensors (1 Omega PX319-100GI and 1 Omega PX319-3KGI) is connected to a gas cylinder in the hut to monitor the gas cylinder pressure and the gas delivery pressure.

7.2 Scientific context

Multiple gas cylinders contain known CO₂ concentration will be used as reference gases to periodically validate the IRGA performance and CRD CO₂ performance. If the pressure of the gas inside the cylinders is too low (<400 PSIG), it is a potential that the gas deviates from the known concentration. The pressure sensors (Omega PX319-3KGI, DGD CA07150000) are used to monitor this cylinder pressure. If the delivery pressure from the gas tank is too high, the sensors and/or infrastructure components downstream of the gas path could be damaged. The pressure sensors (Omega PX319-100GI, DGD CA07140000) are used to monitor this delivery pressure.

7.2.1 Theory of Measurement

OMEGA's PX309 Series (including PX309, PX319, PX329, and PX359) high performance general purpose pressure transducers use two state-of-the-art silicon technologies. Pressure ranges below 100 psi use a high-accuracy silicon sensor protected by a fluid filled stainless steel diaphragm. Ranges 100 psi and above use high-accuracy silicon strain gages molecularly bonded to the stainless steel diaphragm. Both systems provide a rugged sensor with high accuracy and excellent long term stability (Source: http://www.omega.com/pptst/PX309.html).

7.2.2 Theory of Algorithm

NA

7.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- 1. Select all 6 LO pressGage data streams from delivery pressure sensor and all data streams from cylinder pressure sensor for further data processing. SeeTable 7-2.
- 2. Generate a complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 7.3.1.

- 3. Apply unit conversion to cylinder pressure and delivery pressure from kPa to Pa. See Eq. (7.1) and (7.2) below.
- Determine and assign the gas delivery pressure flag and gas cylinder pressure flag to correspond 1 Hz data using Eq. (7.3) and (7.4) below.
- 5. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided below. See section 7.3.4.

7.3.1 Time regularization

The gas cylinder pressure and the gas delivery pressure sensors measure data at 1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

7.3.2 Unit conversion

Convert L0 DPs of cylinder pressure (NEON.DOM.SITE.DP0.00111.001.02196.HOR.VER.000) and delivery pressure (NEON.DOM.SITE.DP0.00110.001.02196.HOR.VER.000) from kPa to Pa. The fieldName for both cylinder pressure and delivery pressure L0 DPs is presGage.

Cylinder pressure:

$$presDiff in Pa = presGage in kPa * 1000$$
(7.1)

Delivery pressure:

$$presDiff in Pa = presGage in kPa * 1000$$
(7.2)

7.3.3 Sensor Flags

a. **Delivery pressure flag for zero air gas cylinder delivery pressure used for CRD H₂O** (qfPresDiff from ZERO for CRD H₂O) will be generated as part of the LOp report variables to indicate if the delivery pressure of zero air is out of range 2.5±0.5 psig (17237±3447 Pa) during CRD H₂O field validation/annual calibration. It is only applied to this LO data stream NEON.DOM.SITE.DP0.00110.001.02196.711.000.000. After time regularization, the LOp data will be presDiff (from ZERO for CRD H₂O), Therefore, qfPresDiff is defined as:

$$qfPresDiff = 0 \text{ if } 13790 \text{ Pa} < presDiff < 20684 \text{ Pa}$$
(7.3)

—1 otherwise.

b. Cylinder pressure flag (qfPresDiff) will be generated as part of the L0p report variables to indicate if the gas cylinder press is lower than 400 psig (2757903 Pa). This will apply to all data streams from DGD CA07150000. It is defined as:

1 if presDiff < 2757903 Pa

qfPresDiff =0 if presDiff \geq 2757903 Pa (7.4)

-1 otherwise

7.3.4 QA/QC Procedure:

Standard plausibility tests should be applied to all LOp DPs except for flags. An associated pass/fail flag will be generated for each test according to AD[02]. (Note. We will not be carrying out the "gap test" and "null test"). Quality reports will be generated for temporally averaged L1 DPs at a later stage. Because this sensor will never be sent back to CVAL for calibration once it is deployed at field, thus no valid calibration date will be provided to CI to generate calibration flag.

Flag	Term modifier	Description	
QF _{Pers}	qfPers	Quality flag for the Persistence test	
QF_{Rng}	qfRng	Quality flag for the Range test	
QF _{Step}	qfStep	Quality flag for the Step test	

Table 7-3: Plausibility quality flags to be applied to all LOp DPs except for flags

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for the cylinder pressure from a pressure gauge on a low CO2 concentration cylinder will be "qfStepPresDiff".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description			
Thsh _{Pers}	Thsh _{Pers} Threshold for the Persistence test			
Time _{Pers}	Time parameter for the Persistence test			
Thsh _{Rng,min} Minimum threshold for the Range test				
Thsh _{Rng,max}	Maximum threshold for the Range test			
Thsh StepThreshold for the Step test				

Table 7-4: Parameters required for plausibility tests.

7.4 Uncertainty

NA

8 ABSOLUTE PRESSURE TRANSDUCER

8.1 Data Product Description

This Chapter describes the processes to convert L0 DPs under absolute pressure transducer (DGD CA08830000) at ECSE inlets into 1 Hz L0p DPs. The absolute pressure transducer at inlet is referred to as presInlt in reference to DPs.

8.1.1 Variables Reported

The Omega PX319-030AI absolute pressure transducer is used to monitor the inlet pressure at each tower measurement level. The presInlt-related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 8-1. Because the LOp pressure output from each sensor will live in different tables of HDF5 file, it is ok to use generic term of "presDiff" for all inlet pressure LOp outputs.

LOp DP	L0p fieldName	L0p DP	Units	Input L0 data products
		Frequency		
Inlet pressure (ML1)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.010.000
Inlet pressure (ML2)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.020.000
Inlet pressure (ML3)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.030.000
Inlet pressure (ML4)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.040.000
Inlet pressure (ML5)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.050.000
Inlet pressure (ML6)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.060.000
Inlet pressure (ML7)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.070.000
Inlet pressure (ML8)	presDiff	1 Hz	Ра	NEON.DOM.SITE.DP0.00109.
				001.02196.000.080.000
Inlet pressure flag (ML1)	qfPresDiff	1 Hz	NA	presDiff from ML1*
Inlet pressure flag (ML2)	qfPresDiff	1 Hz	NA	presDiff from ML2*

Table 8-1: List of The presInlt-related L0p reported variables that produced in this ATBD.

L0p DP	L0p fieldName	L0p DP	Units	Input L0 data products
		Frequency		
Inlet pressure flag (ML3)	qfPresDiff	1 Hz	NA	presDiff from ML3*
Inlet pressure flag (ML4)	qfPresDiff	1 Hz	NA	presDiff from ML4*
Inlet pressure flag (ML5)	qfPresDiff	1 Hz	NA	presDiff from ML5*
Inlet pressure flag (ML6)	qfPresDiff	1 Hz	NA	presDiff from ML6*
Inlet pressure flag (ML7)	qfPresDiff	1 Hz	NA	presDiff from ML7*
Inlet pressure flag (ML8)	qfPresDiff	1 Hz	NA	presDiff from ML8*

*: These are LOp DPs. They are used as inputs to generate other LOp DPs.

8.1.2 Input Dependencies

Table 8-2 below list all the presInlt-related LO DPs and specifies which LO DPs will be used to produce LOp reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce L0p (Y/N)*
Inlet pressure (ML1)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Y
				9.001.02196.000.010.000	
Inlet pressure (ML2)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Y
				9.001.02196.000.020.000	
Inlet pressure (ML3)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Υ
				9.001.02196.000.030.000	
Inlet pressure (ML4)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Υ
				9.001.02196.000.040.000	
Inlet pressure (ML5)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Υ
				9.001.02196.000.050.000	
Inlet pressure (ML6)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Y
				9.001.02196.000.060.000	
Inlet pressure (ML7)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Υ
				9.001.02196.000.070.000	
Inlet pressure (ML8)	presGage	1 Hz	kPa	NEON.DOM.SITE.DP0.0010	Y
				9.001.02196.000.080.000	

Table 8-2: A full list of presinit-related L0 DPs.

*: Only the L0 DPs in "Y" are selected to transform into L0p DPs reported in this ATBD.

8.1.3 Product Instances

All TIS sites across the NEON observatory own up to 8 Omega PX319-030Al inlet pressure sensors (depending on the number of measurement levels at a specific site) for Eddy Covariance Storage Exchange (ECSE) assembly. Each individual instance will generate one L0 data product in Table 8-2, which represents the inlet pressure at each measurement level (ML). Measurement level varies from 1 to 8 at each site. Each individual instance will generate one L0p data output listed in Table 8-1.

8.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 8-1 is 1 Hz.

8.1.5 Spatial Resolution and Extent

The Omega PX319-030AI inlet pressure sensor will be located behind a critical orifice of the ECSE sample inlet at each measurement level on tower structure to monitor the pressure in the sample line.

8.2 Scientific context

The air samples from each measurement level are pulled through the sample line continuously by a pump dedicated to that line. The flow rate of the air should be high enough to maintain the pressure in the sample line at 40%-50% of the ambient pressure to prevent condensation in the sample line. Absolute pressure transducer (DGD CA08830000) on each sample line is used to monitor the air pressure inside that sample line.

8.2.1 Theory of Measurement

OMEGA's PX309 Series (including PX309, PX319, PX329, and PX359) high performance general purpose pressure transducers use two state-of-the-art silicon technologies. Pressure ranges below 100 psi use a high-accuracy silicon sensor protected by a fluid filled stainless steel diaphragm. Ranges 100 psi and above use high-accuracy silicon strain gages molecularly bonded to the stainless steel diaphragm. Both systems provide a rugged sensor with high accuracy and excellent long term stability (Source: http://www.omega.com/pptst/PX309.html).

8.2.2 Theory of Algorithm

NA

8.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- 1. Select all L0 pressGage data streams from inlet pressure sensors (Table 8-2) for further data processing.
- 2. Generate a complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 8.3.1.
- 3. Apply unit conversion to inlet pressure from kPa to Pa. See Eq. (8.1) below.
- 4. Determine and assign the inlet pressure flag to correspond 1 Hz data using Eq. (8.2).
- 5. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided below in 8.3.4.

8.3.1 Time regularization

The inlet pressure sensor measures data at ~ 1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

8.3.2 Unit conversion

Convert all inlet pressure (NEON.DOM.SITE.DP0.00109.001.02196.000.VER.000) data streams from kilopascal to pascal. The fieldName for inlet pressure is presGage

$$presDiff in Pa = presGage in kpa * 1000$$
(8.1)

(8.2)

8.3.3 Sensor Flags

i.

a. **Inlet pressure flag** (qfPresDiff) will be generated as part of the LOp report variables for inlet pressure data streams at all measurement levels to indicate if the inlet pressure is >45% +/- 5% of ambient pressure. Ambient pressure for each site will be provided by FIU and maintained in the CI data store.

$$\begin{array}{l} 1 \ \ \text{if presDiff} > 50\% \times \text{ambient pressure or presDiff} \\ < 40\% \times \text{ambient pressure} \\ qfPresDiff = & 0 \ \ \text{if } 40\% \times \text{ambient pressure} \le \text{presDiff} \le 50\% \times \text{ambient pressure} \end{array}$$

Domain	Site	Site code	Site Type	Latitude	Longitude	Elevation (m)	Barometric pressure (Pa)
1	Harvard Forest	HARV	core	42.54	-72.17	348	97210
1	Bartlett Experimental Forest	BART	relocatable	44.06	-71.29	273	98080
2	Blandy	BLAN	relocatable	39.06	-78.07	182	99160
2	Smithsonian CRC (SCBI)	SCBI	core	38.89	-78.14	355	97130
2	Smithsonian ERC	SERC	relocatable	38.89	-76.56	10	101210
3	Ordway	OSBS	core	29.69	-81.99	48	100750
3	Jones	JERC	relocatable	31.19	-84.47	47	100770
3	Disney	DSNY	relocatable	28.13	-81.44	20	101090
4	Guanica	GUAN	core	17.97	-66.87	126	99820

Table 8-3: Ambient pressure at each NEON sites used for ATBD data processing.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Basis Document (ATBD) – Eddy-Covariance Storage Ita Processing	Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

4	Lajas	LAJA	relocatable	18.02	-67.08	16	101130
5	Steigerwaldt	STEI	relocatable	45.51	-89.58	477	95720
5	Tree Haven	TREE	relocatable	45.49	-89.59	461	95910
5	UNDERC	UNDE	core	46.23	-89.54	520	95230
6	Konza - Core	KONZ	core	39.10	-96.56	415	96440
6	Konza - Relocatable	KONA	relocatable	39.11	-96.61	323	97500
6	U Kansas Bio Station	UKFS	relocatable	39.04	-95.19	321	97530
7	Oak Ridge	ORNL	core	35.96	-84.28	342	97290
7	Great Smokey Mtns	GRSM	relocatable	35.69	-83.50	661	93630
7	Mountain Lake	MLBS	relocatable	37.38	-80.52	1170	88030
8	Talladega	TALL	core	32.95	-87.39	164	99370
8	Dead Lake	DELA	relocatable	32.54	-87.80	32	100940
8	Lenoir Landing	LENO	relocatable	31.85	-88.16	12	101180
9	Dakota-Coteau	DCFS	relocatable	47.16	-99.11	575	94600
9	Northern Great Plains	NOGP	relocatable	46.77	-100.92	589	94440
9	Woodworth	WOOD	core	47.13	-99.24	590	94430
10	CPER	CPER	core	40.82	-104.75	1653	82970
10	Sterling	STER	relocatable	40.46	-103.03	1365	85960
10	RMNP Castnet	RMNP	relocatable	40.28	-105.55	2742	72430
11	LBJ/Caddo	CLBJ	core	33.40	-97.57	272	98100
11	Klemme	OAES	relocatable	35.41	-99.06	520	95230
12	Yellowstone	YELL	core	44.95	-110.54	2129	78220
13	Niwot	NIWO	core	40.05	-105.58	3478	65930
13	Moab	MOAB	relocatable	38.25	-109.39	1800	81480
14	Santa Rita	SRER	core	31.91	-110.84	999	89880
14	Jornada	JORN	relocatable	32.59	-106.84	1321	86420
15	Onaqui	ONAQ	core	40.18	-112.45	1654	82960
16	Wind River	WREF	core	45.82	-121.95	368	96980
16	Abby Road	ABBY	relocatable	45.76	-122.33	367	96990
17	Soaproot	SOAP	relocatable	37.03	-119.26	1210	87600
17	Teakettle	TEAK	relocatable	37.01	-119.01	2149	78030
17	San Joaquin	SJER	core	37.11	-119.73	397	96650
18	Toolik	TOOL	relocatable	68.66	-149.37	827	91770
18	Barrow	BARR	relocatable	71.28	-156.62	7	101240
19	Caribou-Poker	BONA	core	65.15	-147.50	239	98480
19	Delta Junction	DEJU	relocatable	63.88	-145.75	504	95410
19	Healy	HEAL	relocatable	63.88	-149.21	171	99290
20	Puumakaala	PUUM	core	19.55	-155.32	1684	91480

8.3.4 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for flags. An associated pass/fail flag will be generated for each test according to AD[02]. (Note. We will not be carrying out the "gap test" and "null test"). Quality reports will be generated for temporally averaged L1 DPs at a later stage. Because this sensor will never be sent back to CVAL for calibration once it is deployed at field, thus no valid calibration date will be provided to CI to generate calibration flag.

	Table 0-4. Flausibility quality hass to be applied to all top DFS except for hass						
Flag	Term modifier	Description					
QF _{Pers}	qfPers	Quality flag for the Persistence test					
QF_{Rng}	qfRng	Quality flag for the Range test					
QF _{Step}	qfStep	Quality flag for the Step test					

Table 8-4: Plausibility quality flags to be applied to all LOp DPs except for flags

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for inlet pressure at ML1 will be "qfStepPresDiff".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description			
Thsh _{Pers}	Threshold for the Persistence test			
Time _{Pers}	Time parameter for the Persistence test			
Thsh _{Rng,min}	Minimum threshold for the Range test			
Thsh _{Rng,max}	Maximum threshold for the Range test			
ThshThreshold for the Step test				

Table 8-5: Parameters required for plausibility tests.

8.4 Uncertainty

NA

9 MASS FLOW METER IN SAMPLE LINES

9.1 Data Product Description

This Chapter describes the processes to convert L0 DPs under mass flow meter (DGD 0341530000) into 1 Hz L0p DPs. The mass flow meter is referred to as mfm in reference to DPs.

9.1.1 Variables Reported

The mfm-related LOp reported variables provided by the algorithms documented in this ATBD are displayed in the accompanying file Table 9-1. Because the LOp outputs from each sensor will live in different tables of HDF5 file, it is ok to use generic term of "frt00", "frt", "presAtm", "temp" for mass flow meter LOp outputs.

LOp DP	LOp fieldName	Sample Frequency	Units	Input L0 DPs or L0p DP fieldNames
Mass flow rate (ML1)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .010.000
Volumetric flow rate (ML1)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .010.000
Pressure (ML1)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .010.000
Gas temperature (ML1)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .010.000
Mass flow rate (ML2)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .020.000
Volumetric flow rate (ML2)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .020.000
Pressure (ML2)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .020.000
Gas temperature (ML2)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .020.000
Mass flow rate (ML3)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .030.000
Volumetric flow rate (ML3)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .030.000
Pres (ML3)ure	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .030.000
Gas temperature (ML3)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .030.000

Table 9-1: List of mfm-related LOp reported variables that produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	asis Document (ATBD) – Eddy-Covariance Storage ta Processing	Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Mass flow rate (ML4)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .040.000
Volumetric flow rate (ML4)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .040.000
Pressure (ML4)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .040.000
Gas temperature (ML4)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .040.000
Mass flow rate (ML5)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .050.000
Volumetric flow rate (ML5)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .050.000
Pressure (ML5)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .050.000
Gas temperature (ML5)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .050.000
Mass flow rate (ML6)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .060.000
Volumetric flow ra (ML6)te	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .060.000
Pressure (ML6)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .060.000
Gas temperature (ML6)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .060.000
Mass flow rate (ML7)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .070.000
Volumetric flow rate (ML7)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .070.000
Pressure (ML7)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .070.000
Gas temperature (ML7)	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700 .070.000
Mass flow rate (ML8)	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01951.700 .080.000
Volumetric flow rate (ML8)	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00108.001.01950.700 .080.000
Pressure (ML8)	presAtm	1	Ра	NEON.DOM.SITE.DP0.00108.001.01948.700 .080.000

Gas	temp	1	К	NEON.DOM.SITE.DP0.00108.001.01949.700
temperature				.080.000
(ML8)				

9.1.2 Input Dependencies

Table 9-2 details the mfm-related L0 DPs used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	Units	L0 Data Product Number	DPs that are used to produce LOp (Y/N)	
	ML1					
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.010.00 0	Y	
Volumetric flow rate	frt	1	LPM NEON.DOM.SITE.DP0.0 08.001.01950.700.010 0		Y	
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.010.00 0	Y	
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.010.00 0	Y	
			ML2			
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.020.00 0	Y	
Volumetric flow rate	frt	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01950.700.020.00 0	Y	
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.020.00 0	Y	
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.020.00 0	Y	
			ML3	•		
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.030.00 0	Y	
Volumetric flow rate	frt	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01950.700.030.00 0	Y	
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.030.00 0	Y	

Table 9-2: A full list of mfm-related L0 DPs.

Title: NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

L0 DP	L0 DP fieldName	Sample Frequency	Units	L0 Data Product Number	DPs that are used to produce LOp (Y/N)
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.030.00	Y
temperature				0	
		•	ML4		
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.040.00 0	Y
Volumetric flow rate	frt	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01950.700.040.00 0	Y
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.040.00 0	Y
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.040.00 0	Y
		•	ML5		
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.050.00 0	Y
Volumetric flow rate	frt	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01950.700.050.00 0	Y
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.050.00 0	Y
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.050.00 0	Y
		1	ML6	I	
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.060.00 0	Y
Volumetric flow rate	frt	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01950.700.060.00 0	Y
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001 08.001.01948.700.060.00 0	Y
Gas temperature	temp	1	°C	NEON.DOM.SITE.DP0.001 08.001.01949.700.060.00 0	Y
		1	ML7	1	
Mass flow rate	frt0	1	LPM	NEON.DOM.SITE.DP0.001 08.001.01951.700.070.00 0	Y

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

L0 DP	.0 DP LO DP Sample fieldName Frequency Units L0 Data Product Number		DPs that are used to produce LOp (Y/N)		
Volumetric	frt	1	LPM	PM NEON.DOM.SITE.DP0.001	
flow rate				08.001.01950.700.070.00	
				0	
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001	Υ
				08.001.01948.700.070.00	
				0	
Gas	temp	1	°C	NEON.DOM.SITE.DP0.001	Y
temperature				08.001.01949.700.070.00	
				0	
			ML8		
Mass flow	frt0	1	LPM	NEON.DOM.SITE.DP0.001	Y
rate				08.001.01951.700.080.00	
				0	
Volumetric	frt	1	LPM	NEON.DOM.SITE.DP0.001	Y
flow rate				08.001.01950.700.080.00	
				0	
Pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.001	Y
				08.001.01948.700.080.00	
				0	
Gas	temp	1	°C	NEON.DOM.SITE.DP0.001	Y
temperature				08.001.01949.700.080.00	
				0	

9.1.3 Product Instances

All sites across the NEON observatory own 4 to 8 Alicat Scientific MW-20 SLPM-NEON mass flow meters (depending on the number of measurement levels at a specific site) for Eddy Covariance Storage Exchange assembly. Each individual instance will generate one LOp data output listed in Table 9-1.

9.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 9-1 is 1 Hz.

9.1.5 Spatial Resolution and Extent

The Alicat Scientific MW-20 SLPM-NEON mass flow meters will be located within the tower hut infrastructure. Each flow meter will be located upstream of a sample line pump to monitor the flow rate of the air that pass through the sample line of that measurement level.

9.2 Scientific context

The air samples from each measurement level are pulled through the sample line continuously by a pump dedicated to that line. The flow rate of the air should be high enough to maintain the pressure in the sample line at 40%-50% of the ambient pressure to prevent condensation in the sample line.

Decrease in flow rate could be a result from clogging or ice buildup at the inlet, or malfunction of a pump, etc. The mass flow meter (DGD 0341530000) on each sample line is used to monitor the air flow rate of that sample line.

9.2.1 Theory of Measurement

All M-Series Gas Flow Meters (and MC Series Gas Flow Controllers) are based on the accurate measurement of volumetric flow. The volumetric flow rate is determined by creating a pressure drop across a unique internal restriction, known as a Laminar Flow Element (LFE), and measuring differential pressure across it. The restriction is designed so that the gas molecules are forced to move in parallel paths along the entire length of the passage; hence laminar (streamline) flow is established for the entire range of operation of the device. Unlike other flow measuring devices, in laminar flow meters the relationship between pressure drop and flow is linear (source:

http://www.alicat.com/documents/manuals/Gas_Flow_Meter_Manual.pdf).

9.2.2 Theory of Algorithm

NA

9.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- 1. Select L0 DPs from Table 9-2 for further data processing.
- 2. Generate a complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 9.3.1.
- 3. Apply unit conversion to frt0, frt, temp and pressAtm according to Eq. (9.1) to (9.4), respectively.
- 4. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided below. See section 9.3.4

9.3.1 Time regularization

Mass flow meter measures data at ~ 1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

9.3.2 Unit conversion

The mass flow meter sensor outputs data in digital form through Ethernet connections, therefore, no analog to digital (A/D) conversion is necessary. However, some measurements included frt0, frt, temp and

presAtm, are needed to convert from LPM to $m^3 s^{-1}$, from LPM to $m^3 s^{-1}$, from to °C to K, and from kPa to Pa, respectively.

Convert frt0 (L0 DP) in LPM to frt00 (L0p DP) in m³ s⁻¹:

frt00 in
$$m^3 s^{-1} =$$
 frt in LPM * 0.000017 (9.1)

Convert frt (L0 DP) in LPM to frt (L0p DP) in m³ s⁻¹:

frt in
$$m^3 s^{-1} = \text{ frt in LPM} * 0.000017$$
 (9.2)

Convert temp in degree °C to temp in K,

$$temp in K = temp in °C + 273.15$$
(9.3)

presAtm in kPa to presAtm in Pa,

$$presAtm in Pa = presAtm in kPa * 1000$$
(9.4)

9.3.3 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for flags. An associated pass/fail flag will be generated for each test according to AD[02]. (Note. We will not be carrying out the "gap test" and "null test"). Quality reports will be generated for temporally averaged L1 DPs at a later stage. Because this sensor will never be sent back to CVAL for calibration once it is deployed at field, thus no valid calibration date will be provided to CI to generate calibration flag.

Flag	Term modifier	Description
QF _{Pers}	qfPers	Quality flag for the Persistence test
QF_{Rng}	qfRng	Quality flag for the Range test
QF _{Step}	qfStep	Quality flag for the Step test

Table 9-3: Plausibility quality flags to be applied to all LOp DPs except for flags

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for the temperature from mass flow meter for ML01 will be "qfStepTemp".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description
Thsh _{Pers}	Threshold for the Persistence test

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Time _{Pers}	Time parameter for the Persistence test
Thsh _{Rng,min} Minimum threshold for the Range test	
Thsh _{Rng,max} Maximum threshold for the Range test	
Thsh _{Step}	Threshold for the Step test

9.4 Uncertainty

NA

10 MASS FLOW CONTROLLER

10.1 Data Product Description

10.1.1 Variables Reported

The mass flow controller for field validation gas: Alicat Scientific MC-5 SLPM-NEON and mass flow controller for IRGA: Alicat Scientific MCRW-5 SLPM-DS-NEON related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 10-1. The mass flow controller for field validation gas is referred to as mfcValiStor in reference to DPs. The mass flow controller for IRGA is referred to as mfcSampStor in reference to DPs.

LOp DP	LOp fieldName	L0p DP	Units	Input L0 DP or L0p fieldNames
		Frequency		
		(Hz)		
		mfcValiStor (DGI	0341500000)
Flow rate set	frtSet00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00107.001.
point				01952.700.000.000
Flow rate at	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00107.001.
NIST standard				01951.700.000.000
condition				
Flow rate at	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00107.001.
site				01950.700.000.000
Atmospheric	presAtm	1	Ра	NEON.DOM.SITE.DP0.00107.001.
pressure				01948.700.000.000
Temperature	temp	1	К	NEON.DOM.SITE.DP0.00107.001.
				01949.700.000.000
Validation	qfFrt00	1	NA	frtSet00*
flow rate flag				frt00*
	•	mfcSampStor (DG	D 0341570000	

Table 10-1: List of mfcValiStor and mfcSampStor related L0p reported variables that are produced in this ATBD.
--

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	L0p fieldName	LOp DP Frequency (Hz)	Units	Input L0 DP or L0p fieldNames
Flow rate set point	frtSet00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00106.001. 01952.700.000.000
Flow rate at NIST standard condition	frt00	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00106.001. 01951.700.000.000
Flow rate at site	frt	1	m ³ s ⁻¹	NEON.DOM.SITE.DP0.00106.001. 01950.700.000.000
Atmospheric pressure	presAtm	1	Ра	NEON.DOM.SITE.DP0.00106.001. 01948.700.000.000
Temperature	temp	1	К	NEON.DOM.SITE.DP0.00106.001. 01949.700.000.000
IRGA sample flow rate flag	qfFrt00	1	NA	frt00*

*LOp DP is used as an input to generate other LOp DPs

10.1.2 Input Dependencies

Table 10-2 details the mfcValiStor and mfcSampStor related L0 DPs and specifies which L0 DPs will be used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce L0p (Y/N)		
	mfcValiStor (DGD 0341500000)						
Flow rate set point	frtSet0	1	LPM	NEON.DOM.SITE.DP0.0010 7.001.01952.700.000.000	Y		
Flow rate at NIST standard condition	frt0	1	LPM	NEON.DOM.SITE.DP0.0010 7.001.01951.700.000.000	Y		
Flow rate at site	frt	1	LPM	NEON.DOM.SITE.DP0.0010 7.001.01950.700.000.000	Y		
Atmospheric pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.0010 7.001.01948.700.000.000	Y		
Temperature	temp	1	С	NEON.DOM.SITE.DP0.0010 7.001.01949.700.000.000	Y		
	•	mfcSam	Stor (DGD 034	41570000)			
Flow rate set point	frtSet0	1	LPM	NEON.DOM.SITE.DP0.0010 6.001.01952.700.000.000	Y		

Table 10-2: List of mfcValiStor and mfcSampStor related L0 DPs.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
Flow rate at NIST standard condition	frt0	1	LPM	NEON.DOM.SITE.DP0.0010 6.001.01951.700.000.000	Y
Flow rate at site	frt	1	LPM	NEON.DOM.SITE.DP0.0010 6.001.01950.700.000.000	Y
Atmospheric pressure	presAtm	1	kPa	NEON.DOM.SITE.DP0.0010 6.001.01948.700.000.000	Y
Temperature	temp	1	С	NEON.DOM.SITE.DP0.0010 6.001.01949.700.000.000	Y

10.1.3 Product Instances

Mass flow controller for field validation gases (DGD 0341500000) and mass flow controller for IRGA (DGD 0341570000) are located in the instrument hut. All terrestrial sites across the NEON observatory have both MFCs. How the individual instances of all valves relate to LOp data outputs is summarized in Table 10-1.

10.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 10-1 is 1 Hz.

10.1.5 Spatial Resolution and Extent

Both mass flow controller for field validation gases and IRGA are located in the tower hut infrastructure. However, the measurements reflect the points in space where the mass flow controllers are located in the hut infrastructure. Mass flow controller for field validation gases is located between the validation gas manifold and the T splitter to the CRD CO₂ sample manifold and the IRGA sample manifold and mass flow controller for IRGA is located between IRGA and its external pump.

10.2 Scientific context

During the measurements, the IRGA sample cell must be continually flushed which requires an external air pump that supplies a flow rate of 1 LPM \pm 0.2 LPM at NIST standard consitions. The MFC (DGD 0341570000) is used to maintain and monitor to make sure that a constant flow of sample goes through and does not damage the LI840A sample cell. During the field validation of IRGA and CRD CO₂, the consumption of validation gases shall be minimized and no sign of leakage is apparent. For this purpose the flow rates of validation gases shall be monitored continuously using the mass flow controller (DGD 0341500000).

10.2.1 Theory of Measurement

The Alicat Scientific gas flow controllers are based on the accurate measurement of volumetric flow. The volumetric flow rate is determined by creating a pressure drop across a unique internal restriction, called a Laminar Flow Element (LFE), and measuring differential pressure across the LFE (RD [07]). The LFE forces the gas molecules to move in parallel paths along entire length of the passage; hence laminar flow is established for the entire range of operation of the device (RD [07]). Given a known temperature and pressure the mass flow rate can be determine from volumetric flow rate.

10.2.2 Theory of Algorithm

NA

10.3 Algorithm Implementation

LOp signal processing consists of the following sequence:

- 1. Select L0 data streams as indicated as "Y" in Table 10-2 for further data processing.
- 2. Generate complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04]. Details are provided in section 10.3.1.
- 3. Apply unit conversion to L0 DPs. Details are provided below in section 10.3.2.
- 4. Determine and assign the validation flow rate flag, and IRGA sample flow rate flag to corresponding timestamps. Details are provided below in section 10.3.3.
- 5. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02]. Details are provided below in section 10.3.4.

10.3.1 Time regularization

The Alicat Scientific mass flow controllers measure data at 1 Hz. To generate complete LOp data with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

10.3.2 Unit conversion

L0 data product measurements from both mass flow controllers should be converted to L0p as follows: flow rate set point (frtSet0), flow rate at NIST standard condition (frt0), and flow rate at site (frt) in LPM shall be converted to m3 s-1

flow rate in
$$m^3 s^{-1} =$$
 flow rate in LPM * 1.666667 * 10⁻⁵, (10.1)

presAtm in Pa = presAtm in kPa
$$*$$
 1000, (10.2)
and
temp in K = temp in degree °C + 273.15 (10.3)

10.3.3 Sensor Flags

Flags will be generated for the sensor tests including the validation flow rate flag and IRGA sample flow rate flag, which are defined below. These flags will be generated as part of the LOp processing to indicate when the flow rate is outside the requirement range.

a. Validation flow rate flag (qfFrt00) – will be generated to indicate the flow rate of the validation gas mass flow controller (DGD 0341500000) while performing IRGA and CRD CO₂ validation is outside the requirement range. The validation flow rate flag will be determined as follows:

 $qfFrt00 = \begin{cases} 1 & \text{if frtSet00} = (0.5 * 1.666667 * 10^{-5}) \text{ and frt00} \\ > (0.5 * 1.666667 * 10^{-5}) \text{ or} \\ \text{if frtSet00} = (1.3 * 1.666667 * 10^{-5}) \text{ and frt00} < (1.2 * 1.666667 * 10^{-5}) \\ \text{if } 0 < \text{frtSet00} > (1.35 * 1.666667 * 10^{-5}) \text{ or} \\ \text{if } 0 < \text{frtSet00} < (1.3 * 1.666667 * 10^{-5}) \\ \le (0.5 * 1.666667 * 10^{-5}) \text{ and frt00} \\ \le (0.5 * 1.666667 * 10^{-5}) \text{ or} \\ \text{if frtSet00} = (1.3 * 1.666667 * 10^{-5}) \text{ and } (1.2 * 1.666667 * 10^{-5}) \\ \le \text{frt00} \le (1.35 * 1.666667 * 10^{-5}) \\ = -1 & otherwise. \end{cases}$ (10.4)

where frtSet00 is the flow rate set point from mfcVali

 $frt00\ is\ the\ flow\ rate\ at\ NIST\ standard\ condition\ from\ mfcVali$

b. LI840A sample flow rate flag (qfFrt00) – will be generated to indicate the flow rate of mass flow controller (DGD 0341570000) during IRGA performed both sampling and validation is outside the requirement range. The IRGA sample flow rate flag will be determined as follows:

1 if frt00 <
$$(0.8 \times 1.666667 \times 10^{-5})$$
 or frt00 > $(1.2 \times 1.666667 \times 10^{-5})$

qfFrt00 =
$$0 \text{ if } (0.8 * 1.666667 * 10^{-5}) \le \text{frt00} \le (1.2 * 1.666667 * 10^{-5})$$
 (10.5)
-1 otherwise.

where $\ frt00$ is the flow rate at NIST standard condition from irgaMfcSamp

10.3.4 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for frtSet00 and qfFrt00. No persistence test for frt00 is required since it is very stable. But range test and step test for frt00 should be performed. An associated pass/fail flag will be generated for each test according to AD[02]. Note that we will not be carrying out the "gap test" or "null test". Quality reports will be generated for temporally averaged L1 DPs at a later stage. Because this sensor will never be sent back to CVAL for calibration, once it is deployed at field, no valid calibration date will be provided to CI to generate calibration flag.

Flag	Term modifier	Description			
QF _{Pers}	qfPers	Quality flag for the Persistence test			
QF_{Rng}	qfRng	Quality flag for the Range test			
QF_{Step}	qfStep	Quality flag for the Step test			

Table 10-3: Plausibility quality flags to be applied to all LOp DPs

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for δ^{13} C will be "qfStepDlta13CCo2".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description
Thsh _{Pers}	Threshold for the Persistence test
Time _{Pers}	Time parameter for the Persistence test
Thsh _{Rng,min}	Minimum threshold for the Range test
Thsh _{Rng,max}	Maximum threshold for the Range test
Thsh _{Step}	Threshold for the Step test

Table 10-4: Parameters required for plausibility tests.

10.4 Uncertainty

NA

11 SAMPLE LINE PUMPS

11.1 Data Product Description

This Chapter describes the processes to convert L0 DPs under pumps (DGD CD07150000) into 1 Hz L0p DPs. The pump is referred to as pumpStor in reference to DPs.

11.1.1 Variables Reported

The pumpStor LOp reported variable provided by the algorithms documented in this ATBD are displayed in the Table 11-1. Because the LOp outputs from each sensor will live in different tables of HDF5 file, it is ok to use generic term of "pumpVolt" for pump voltage LOp outputs.

LOp DP	L0p fieldName	LOp DP Frequency	Units	Input LO DPs or LOp DPs
Pump voltage (ML1)	pumpVolt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
	pullipvolt	1 112	voit	1.02351.700.010.000
Rump Valtage (N/L2)	numn\/olt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML2)	pumpVolt	1 112	voit	1.02351.700.020.000
Rump Valtage (ML2)	numn\/olt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML3)	pumpVolt	1 112	voit	1.02351.700.030.000
Dump Valtage (N/L/)	pumpVolt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML4)			voit	1.02351.700.040.000
Dump Valtage (MLE)	numn\/olt	1.11-	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML5)	pumpVolt	1 Hz	voit	1.02351.700.050.000
Dump Valtage (MLC)	numn)/olt	1 Hz	valt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML6)	pumpVolt	1 112	volt	1.02351.700.060.000
Dump Valtage (MIZ)	numn\/olt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML7)	pumpVolt		voit	1.02351.700.070.000
Dump Voltage (MI 9)	numn\/olt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (ML8)	pumpVolt	THZ	voit	1.02351.700.080.000
Rump Valtage (IRCA)	numn\/olt	1 Hz	volt	NEON.DOM.SITE.DP0.00112.00
Pump Voltage (IRGA)	pumpVolt	1 П2	voit	1.02351.700.000.000

Table 11-1: List of pumpStor-related LOp reported variables that produced in this ATBD.

11.1.2 Input Dependencies

Table 11-2 details the pump related L0 DPs used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency *	Units	Data Product Number	DPs that are used to produce L0p (Y/N)
Pump voltage (ML1)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.010.000	Y

Table 11-2: List of pumpStor-related L0 DPs that are transformed into L0p reported variables in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968 Author: N. Durden and H. Lou		Revision: A

LO DP	L0 DP fieldName	Sample Frequency *	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
Pump Voltage (ML2)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.020.000	Y
Pump Voltage (ML3)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.030.000	Y
Pump Voltage (ML4)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.040.000	Y
Pump Voltage (ML5)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.050.000	Y
Pump Voltage (ML6)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.060.000	Y
Pump Voltage (ML7)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.070.000	Y
Pump Voltage (ML8)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.080.000	Y
Pump Voltage (IRGA)	pumpVoltage	varies	volt	NEON.DOM.SITE.DP0.0011 2.001.02351.700.000.000	Y

Note: *pump voltage L0 data is available whenever pump speed is adjusted to meet the inlet pressure setting. The time interval when pump voltage is available varies from 1 second to >20 s.

11.1.3 Product Instances

All sites across the NEON observatory own 4 to 8 Gast 2032-101-G644 Pumps for sample lines (depending on the number of measurement levels at a specific site) and 1 Gast 2032-101-G644 Pump for LI840A IRGA in the Eddy Covariance Storage Exchange assembly. Each individual instance will generate one LOp data output listed in Table 11-1.

11.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 11-2 varies from 1 second to > 20 s.

11.1.5 Spatial Resolution and Extent

The Gast 2032-101-G644 Pumps will be located within the tower hut infrastructure. Each sample line pump will be located downstream of all sensors in a sample line to pull the air through the sample line of that measurement level. The IRGA pump locates down stream of LI840A sensor to pull the air samples through IRGA cell for measurements.

11.2 Scientific context

The air samples from each measurement level are pulled through the sample line continuously by a pump dedicated to that line. The flow rate of the air should be high enough to maintain the pressure in the sample line at 40%-50% of the ambient pressure to prevent condensation in the sample line. The Gast

pump (DGD CD07150000) dedicated to each sample line is use to pull sufficient air through the sample line to generate the required sample line pressure.

The Gast pump (DGD CD07150000) dedicated to IRGA is used to pull 1 SLPM air flow through the IRGA cell for sampling measurements.

11.2.1 Theory of Measurement

A rotary vane pump is a positive-displacement pump that consists of vanes mounted to a rotor that rotates inside of a cavity. The faster the vanes rotate, the higher volume of air flow will be pulled. How fast the vanes inside a pump will rotate during profile measurements is determined by how much power is supplied to the pump, which is eventually controlled by the pressure gradient between the ambient pressure and sample line pressure. The higher the power supplier is, the faster the vanes will spin. This power supply (in volts) to each pump is monitored to determine the status of the pump.

11.2.2 Theory of Algorithm

NA

11.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- 1. Select all LO pumpVoltage data streams from Table 11-2 for further data processing.
- 2. Generate a complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 11.3.1.
- 3. QA/QC Plausibility tests will be applied to the data stream in accordance with AD[02], details are provided below in 11.3.3.

11.3.1 Time regularization

The time interval when pump voltage is available varies from 1 second to > 20 s. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with previous value. When multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

11.3.2 QA/QC Procedure

Standard plausibility tests should be applied to all LOp DPs except for flags. An associated pass/fail flag will be generated for each test according to AD[02]. (Note. We will not be carrying out the "gap test" and "null test"). Quality reports will be generated for temporally averaged L1 DPs at a later stage.

Because this sensor will never be sent back to CVAL for calibration once it is deployed at field, thus no valid calibration date will be provided to CI to generate calibration flag.

Flag	Term modifier	Description
QF _{Pers}	qfPers	Quality flag for the Persistence test
QF_{Rng}	qfRng	Quality flag for the Range test
QF _{Step}	qfStep	Quality flag for the Step test

Table 11-3: Plausibility quality flags to be applied to all LOp DPs except for flags

As all flags will be applied to each individual LOp DPs they will follow a uniform naming convention, whereby the LOp DP term is augmented with the plausibility test flag term modifier. For example, the quality flag for the step test for pump voltage at MLO1 will be "qfStepPumpVolt".

Test following parameters will be provided by FIU for each LOp DP and maintained in the CI data store.

Parameter	Description
Thsh _{Pers}	Threshold for the Persistence test
Time _{Pers}	Time parameter for the Persistence test
Thsh _{Rng,min}	Minimum threshold for the Range test
Thsh _{Rng,max}	Maximum threshold for the Range test
Thsh _{Step}	Threshold for the Step test

Table 11-4: Parameters required for plausibility tests.

11.4 Uncertainty

NA

12 HEATER

12.1 Data Product Description

This Chapter describes the processes to generate 1 Hz heating flags (LOp DPs) using LO DPs from HMP155 Related Humidity Sensor at the tower top and in the soil array. The DGD number for the HMP155 relative humidity sensor is CA04430000.The temperature and dewpoint measurements from these two sensors are used to trigger heater on/off. The HMP155 data is referred to as rhSens in reference to LOp DPs. The heater flag (qfHeat) generated using HMP155 data will be placed under qfqm/irgaStor, qfqm/crdCo2, and qfqm/crdH2o folders of LOp HDF5 file. See section 19 for more details.

12.1.1 Variables Reported

The heater related LOp reported variable provided by the algorithms documented in this ATBD are displayed in Table 12-1. Since heater will be turn on at the same time for all measurement levels once the environmental conditions are reached, the heater flag will apply to all measurement levels.

LOp DP	L0p	LOp DP	Units	Input L0 fieldNames
	fieldName	Frequenc		
		у		
Heater flag	qfHeat	1 Hz	NA	sensorTemp, dewPoint from HMP155 AT tower top:
				NEON.DOM.SITE.DP0.00098.001.01309.000.VER.000
				NEON.DOM.SITE.DP0.00098.001.01358.000.VER.000
				SensorTemp, dewPoint from HMP155 at soil array:
				NEON.DOM.SITE.DP0.00098.001.01309.003.000.000
				NEON.DOM.SITE.DP0.00098.001.01358.003.000.000
Relative humidity	rh	1 Hz	-	NEON.D10.CPER.DP0.00098.001.01357.000.VER*.000
Temperature	temp	1 Hz	К	NEON.D10.CPER.DP0.00098.001.01309.000.VER*.000
Dew point/frost point temperature	tempDew	1 Hz	К	NEON.D10.CPER.DP0.00098.001.01358.000.VER*.000
Sensor error flag	qfSens	1 Hz	NA	NEON.D10.CPER.DP0.00098.001.01359.000.VER*.000
Relative humidity	rh	1 Hz	-	NEON.D10.CPER.DP0.00098.001.01357.003.000.000
Temperature	temp	1 Hz	К	NEON.D10.CPER.DP0.00098.001.01309.003.000.000
Dew point/frost point temperature	tempDew	1 Hz	К	NEON.D10.CPER.DP0.00098.001.01358.003.000.000
Sensor error flag	qfSens	1 Hz	NA	NEON.D10.CPER.DP0.00098.001.01359.003.000.000

 Table 12-1: List of heatInlt related LOp reported variables that produced in this ATBD.

*: Vertical measurement level (VER) where the HMP155 locates at tower top varies from site to site.

Please be aware that the unit for relative humidity LOp data (rh) is fraction, using "-" to represent it.

12.1.2 Input Dependencies

Table 12-2 details the relative humidity HMP 155 sensors related L0 DPs used to produce L0p reported variables in this ATBD.

Table 12-2: List of relative humidity HMP 155 related L0 DPs that are transformed into L0p reported variables in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968 Author: N. Durden and H. Lou		Revision: A

L0 DP	L0 DP fieldName	Sample Frequency*	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
	Relative humid	ity sensor at t	he tower	top (DGD CA04430000)	
Relative humidity	RH	1	%	NEON.D10.CPER.DP0.00098.001. 01357.000.VER*.000	Y
Temperature	sensorTemp	1	°C	NEON.D10.CPER.DP0.00098.001. 01309.000.VER*.000	Y
Dew point/frost point temperature	dewPoint	1	°C	NEON.D10.CPER.DP0.00098.001. 01358.000.VER*.000	Y
Sensor error flag	RHStatus	1	NA	NEON.D10.CPER.DP0.00098.001. 01359.000.VER*.000	Y
	Relative humic	lity sensor at t	he soil a	rray (DGD CA04430000)	
Relative humidity	RH	1	%	NEON.D10.CPER.DP0.00098.001. 01357.000.VER*.000	Y
Temperature	sensorTemp	1	°C	NEON.D10.CPER.DP0.00098.001. 01309.000.VER*.000	Y
Dew point/frost point temperature	DewPoint	1	°C	NEON.D10.CPER.DP0.00098.001. 01358.000.VER*.000	Y
Sensor error flag	RHStatus	1	NA	NEON.D10.CPER.DP0.00098.001. 01359.000.VER*.000	Y

*: Vertical measurement level (VER) where the HMP155 locates at tower top varies from site to site.

12.1.3 Product Instances

All sites across the NEON observatory own 4 to 8 heaters (depending on the number of measurement levels at a specific site) for Eddy Covariance Storage Exchange assembly. They will be turned on/off at the same time at a site. Therefore, only one LOp data output of heater flag listed in Table 12-1, which will apply to all measurement levels.

12.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 12-1 is 1 Hz.

12.1.5 Spatial Resolution and Extent

The heater will be wrapped outside each Eddy Covariance Storage Exchange inlet at heated sites only. The list of the heated site can be found below in Table 12-3:

Table 12-3: List of NEON heated sites.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Revision: A

Domain	Site	Site Code
1	Harvard Forest	HARV
1	Bartlett Experimental Forest	BART
2	SCBI	SCBI
2	Blandy Experimental Farm	BLAN
2	Smithsonian Environmental Research Center	SERC
5	UNDERC	UNDE
5	Steigerwald Land Services	STEI
5	Tree Haven	TREE
6	Konza Prairie Biological Station	KONZ
6	Konza Prairie Biological Station Konza Prairie Biological Station (Agricultural Lowland)	KONA
6	The University of Kansas Field Station	UKFS
7	Oak Ridge	ORNL
7	Great Smoky Mountains National Park, Twin Creeks	GRSM
7	Mountain Lake Biological Station (SW Virginia)	MLBS
9	Woodworth	WOOD
9	Dakota Coteau Field School	DCFS
9	Northern Great Plains Research Laboratory	NOGP
10	Central Plains Experimental Range	CPER
10	North Sterling, CO	STER
10	RMNP, CASTNET	RMNP
10	Caddo/LBJ	CLBJ
11	Klemme Range Research Station	OAES
11	Yellowstone Northern Range (Frog Rock)	YELL
12	Niwot Ridge/Mountain Research Station	NIWO
13	Moab, Canyonlands Ecological Research Site	MOAB
15	Onaqui-Ault	ONAQ
16	Wind River Experimental Forest	WREF
16	Abby road	ABBY
10	San Joaquin	SJER
17	Soaproot Saddle	SOAP
17	Lower Teakettle	TEAK
17	Toolik Lake	TOOL
18	Barrow	BARR
18	Caribou Creek (CPCRW)	BONA
19	Eight Mile Lake, Healy Alaska, Alpine Tundra, Thermokarsting	HEAL
19	Delta Junction, Non-permafrost	DEJU
19	שפונם זעווכנוטוו, ווטוו-שפוווומווטגנ	DEJO

12.2 Scientific context

To avoid ice or rime ice clogging the inlet and critical flow orifice, heating should be applied to the screened inlet and critical flow orifice at each tower measurement levels. Heating should be low (maximum 50 W and not exceed heating of 70 Celsius at any time) to avoid the stable isotopic fractionation.

12.2.1 Theory of Measurement

Heater control is based on the ambient air and the conditions when rime ice could happen (when the air temperature equals or is lower than the dew point temperature, and the air temperature reads close to or below water freezing point (0 °C). So, if air temperature is within 2 °C above the dew point temperature, and air temperature is ≤ 0 °C, then turn on the heater. After the heater is switched on, heating should be maintained at 10 Celsius +/- 5 Celsius above dewpoint temperature. When air temperature is 5 °C higher than dew point temperature, then turn the heater off.

The dewpoint temperature and air temperature outputted by HMP155 sensors assembly at the tower top and at ground level at the soil array, which typically bound the worst freezing conditions, will be used for above heater command and control. The logic is to monitor the conditions at the tower top and at ground level, and if one of them approaches the frost conditions, then turn on the screened inlet heaters on all profile levels at the same time. When air temperature is 5 °C higher than dew point temperature at both tower top and at ground level, turn off the screened inlet heaters on all profile levels at the uncertainty among sampling levels, heating applied to intake tube inlet at all measurement levels at that site shall be triggered on and/or off at the same time (+/- 5 s).

Because the heater used in the profile system does not have a chip, it is not a data generating device (DGD), and therefore the heater on/off status cannot be streamed back to CI as a L0 data product. The heating flag generated in the post data process in this document. See details below.

12.2.2 Theory of Algorithm

NA

12.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

1. Select four LO data streams from HMP155 sensor at the tower top and in the soil array. See Table 12-2.

- 2. Generate a complete data with respect to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 12.3.1.
- 3. Determine and assign the heater on/off flag to correspond 1 Hz data using Eq. (12.1). This should be done based on the raw L0 data products before unit conversion.
- 4. Perform the unit conversion to generate LOp data according to Eq. (12.2) and (12.3)
- 5. No need to perform QA/QC Plausibility tests on HMP155 data streams. This is to mimic the filed command and control on heater using raw HMP155 data.
- 6. No need to perform plausibility test on heater flags.

12.3.1 Time regularization

The HMP155 sensor measures data at ~ 1 Hz. To generate a complete LOp dataset with respect to 1 Hz frequency, missing timestamps and the corresponding data values will be filled with NaN (not NA) following the procedures detailed in AD[04]. In this case we will use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04], and when multiple data values fall within a single window we will use the closest value determined by minimum absolute deviation, option 1 in AD[04].

12.3.2 Sensor Flags

a. **Heater Flag** (qfHeat) will be generated to indicate if the heater is turned on/off at a site. There will be only one control for heater on inlets at all measurement levels. In other word, heaters at all measurement levels will be turn on or turn off at the same time. Therefore, there will be only one heater flag in this document, which will be apply to all measurement level in a later QAQC process (not part of the discussion in this document). The heater flag at time *t* will be determined as follows:

$$\begin{array}{ll} 1 & \text{If } (T_{air_top} < T_{dew_top} + 2 \,^{\circ} \text{C} \text{ and } T_{air_top} \leq 0 \,^{\circ} \text{C}); \\ & \text{or if } (T_{air_sp3} < T_{dew_sp3} + 2 \,^{\circ} \text{C} \text{ and } T_{air_sp3} \leq 0 \,^{\circ} \text{C}); \\ & \text{or if } (T_{air_top} < T_{dew_top} + 5 \,^{\circ} \text{C} \text{ and } qf\text{Heat } (t-1) = 1); \\ & \text{or } T_{air_sp3} < T_{dew_sp3} + 5 \,^{\circ} \text{C} \text{ and } qf\text{Heat } (t-1) = 1); \\ \end{array}$$

$$\begin{array}{ll} 0 & \text{If } T_{air_top} \geq T_{d_top} + 5 \,^{\circ} \text{C} \text{ and } T_{air_sp3} \geq T_{dew_sp3} + 5 \,^{\circ} \text{C}; \\ & \text{or if } (T_{dew_top} + 5 \,^{\circ} \text{C} \leq T_{air_top} \leq T_{dew_top} + 2 \,^{\circ} \text{C} \text{ and } qf\text{Heat } (t-1) = 0); \\ & \text{or if } (T_{dew_sp3} + 5 \,^{\circ} \text{C} \leq T_{air_sp3} \leq T_{dew_sp3} + 2 \,^{\circ} \text{C} \text{ and } qf\text{Heat } (t-1) = 0); \\ & \text{or if } (T_{dew_sp3} + 5 \,^{\circ} \text{C} \leq T_{air_sp3} \leq T_{dew_sp3} + 2 \,^{\circ} \text{C} \text{ and } qf\text{Heat } (t-1) = 0); \\ & -1 \, \text{ otherwise} \end{array}$$

where T_{dew_top} is HMP155 dew point temperature at tower-top at time t, unit is °C; T_{dew_sp3} is HMP155 dew point temperature at soil plot 3 at time t, unit is °C; T_{air_top} is HMP155 air temperatures at tower top at time t, unit is °C; T_{air_b} is HMP155 air temperature at soil array at time t, unit is °C; t is current time, unit is s.

12.3.3 Unit conversion

sensorTemp (°C) LO DP should be converted to temp (K) LOp DP:

$$temp (K) = sensorTemp (°C)+273.15$$
(12.2)

dewPoint (°C) L0 DP should be converted to temp (K) L0p DP:

$$tempDew (K) = dewPoint (°C)+273.15$$
(12.3)

12.3.4 QA/QC Procedure

No standard plausibility test is required for this sensor.

12.4 Uncertainty

NA

13 MEASUREMENT TYPE SEPARATION

13.1 Data Product Description

Here we define measurement type as a sampling mode (samp) or a validation mode (vali). This chapter describes the processes to distinguish the measurement type of the data measured by LI-COR LI-840A (*hereafter* referred to as IRGA), isotopic CO₂ analyzer (Picarro G2131-i, *hereafter* referred to as CRD CO₂), and isotopic H₂O analyzer (Picarro L2130-i, hereafter referred to CRD H₂O) based on the status of auxiliary gas valves under the DGD CD06640002. The auxiliary gas valves referred to as valvAux in reference to DPs.

13.1.1 Variables Reported

The valvAux -related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 13-1.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	L0p fieldName	LOp DP Frequency (Hz)	Units	Input L0 DPs or L0p DP fieldNames
Status of CRD H ₂ O wavelength monitor (WLM) purge	valv01	1	NA	valvCmd1
valve				
Status of CRD CO ₂ validation gas valve	valv02	1	NA	valvCmd2
Status of IRGA vent valve	valv03	1	NA	valvCmd3
Status of IRGA validation gas valve	valv04	1	NA	valvCmd4
CRD H ₂ O measurement type	measTypeCrdH2o	1	NA	valv01*
CRD CO ₂ measurement type	measTypeCrdCo2	1	NA	valv02*
IRGA vent valve flag	qfValvIrga	1	NA	valv03*
IRGA measurement type	measTypeIrga	1	NA	valv04*

Table 13-1: List of valvAux-related LOp reported variables that produced in this ATBD.

*LOp DP is used as an input to generate other LOp DPs.

13.1.2 Input Dependencies

Table 13-2 details the valvAux-related L0 DPs and specifies which L0 DPs will be used to indicate the measurement type of the data measured by IRGA LI-840A, Picarro G2131-i, and L2130-i.

Table 13-2: List of valvAux-related L0 DPs.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	LO DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
*Status of CRD H ₂ O WLM purge valve	valvCmd1	0.2	NA	NEON.DOM.SITE.DP0.0011 4.001.02360.HOR.VER.000	Y
Status of CRD CO ₂ validation gas valve	valvCmd2	0.2	NA	NEON.DOM.SITE.DP0.0011 4.001.02361.HOR.VER.000	Y
Status of IRGA vent valve	valvCmd3	0.2	NA	NEON.DOM.SITE.DP0.0011 4.001.02362.HOR.VER.000	Y
Status of IRGA validation gas valve	valvCmd4	0.2	NA	NEON.DOM.SITE.DP0.0011 4.001.02364.HOR.VER.000	Y

*Note that there are no L0 DPs for those sites that do not own Picarro H2O analyzer.

13.1.3 Product Instances

The IRGA validation gas valve, the CRD CO₂ validation gas valve, and the CRD H₂O WLM purge valve are located in the instrument hut. All terrestrial sites across the NEON observatory have IRGA validation gas valve and the CRD CO₂ validation gas valve, and 21 sites (20 NEON core sites and 1 relocatable site at D18 Barrow) have the CRD H₂O WLM purge valve. How the individual instances of all valves relate to LOp data outputs is summarized in Table 13-1.

13.1.4 Temporal Resolution and Extent

The temporal resolution of the reported variables in Table 13-1 is 1 Hz.

13.1.5 Spatial Resolution and Extent

All four valves defined in Table 13-2 are located in the tower hut infrastructure. However, the measurements reflect the points in the flow path where the valves are located within the tower hut infrastructure. IRGA validation gas valve will be located between the T splitter to the CRD CO₂ sample manifold and the IRGA sample manifold and the T splitter to IRGA vent valve and the IRGA sample manifold. CRD CO₂ validation gas valve will be located between the T splitter to the CRD CO₂ sample manifold and the IRGA sample manifold and the CRD CO₂ sample manifold. CRD CO₂ validation gas valve will be located between the T splitter to the CRD CO₂ sample manifold and the IRGA sample manifold and the CRD CO₂ sample manifold. CRD H₂O WLM purge valve will be located between the CRD H₂O analyzer and zero gas cylinder.

13.2 Scientific context

13.2.1 Theory of Measurement

Irrespective of whether LO DPs were collected from the IRGA, CRD CO₂, or CRD H₂O the data must be preprocessed to relate the measurement for specific time to its respective measurement type. In this section, we will describe how to distinguish the measurement type for all 3 analyzers. However, the measurement type of IRGA needs a further step to differentiate between validation and calibration mode, details can be found in section 16.

During the sampling mode, the sample valves will be opened at scheduled times to draw atmospheric samples. During the validation/calibration mode the sample valves will be closed and the validation gas select valve, IRGA validation gas valve, the CRD CO₂ validation gas valve, and the CRD H₂O WLM purge valve will be opened. However, the topmost measurement level sample valve of IRGA will remain opened during validation/calibration to maintain stable pressure in the IRGA cell.

13.2.2 Theory of Algorithm

NA

13.3 Algorithm Implementation

LOp signal processing consists of the following sequence:

- 1. Select LO data streams as indicated as "Y" in Table 13-2 for further data processing.
- 2. Generate LOp DPs from LO DPs by converting to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 13.3.1.
- 3. Replace the NaN in LOp DPs according to Eq. (13.1).
- 4. Determine the measurement type for IRGA according to Eq. (13.2).
- 5. Determine the measurement type for CRD CO₂ according to Eq. (13.3).
- 6. For those sites that have the CRD H_2O analyzer, determine the measurement type for CRD H_2O according to Eq. (13.4).
- 7. Determine the IRGA vent flag according to Eq. (13.5).
- 8. When perform above data processing, it is suggested to include data one hour before and after the target processing time period to help identify validation across boundaries (days).

13.3.1 Time regularization

The IRGA validation gas valve, the CRD CO₂ validation gas valve, and the CRD H₂O WLM purge valve output LO data at 0.2 Hz or every 5 seconds. To generate LOp DPs from LO DPs by converting to 1 Hz frequency, missing timestamps and the corresponding data values are inserted following the procedures detailed in AD[04]. Here we use the default options in AD[04] with a windowing approach described by

Eq. 3 in AD[04]. In case multiple data values fall within a single window the last value used (option 3 in AD[04]).

13.3.2 Replacing NaN values

After time regularization, the missing LOp values will be filled with NaN. To be able to continue data processing, the LOp which equal to NaN are replaced by the following:

$$L0p = previous L0p value if continuous sequence of NaNs \leq 6s duration -1 if continuous sequence of NaNs > 6s duration (13.1)$$

where L0p is valvIdx and Idx is 01, 02,03, and 04.

1

13.3.3 IRGA measurement type

The measurement type specific for IRGA measurements can be determined as:

measTypeIrga =
$$vali ext{ if } valv04 = 0$$

-1 if valv04 = 1
-1 if valv04 = -1 (13.2)

13.3.4 CRD CO₂ measurement type

The measurement type specific for CRD CO₂ measurements can be determined as:

I

measTypeCrdCo2 =
$$\begin{cases} samp \text{ if } valv02 = 0 \\ vali \text{ if } valv02 = 1 \\ -1 \text{ if } valv02 = -1 \end{cases}$$
(13.3)

13.3.5 CRD H_2O measurement type

The measurement type specific for CRD H_2O measurements can be determined as:

measTypeCrdH2o =
$$\begin{vmatrix} samp & if & valv01 = 0 \\ vali & if & valv01 = 1 \\ -1 & if & valv01 = -1 \end{vmatrix}$$
(13.4)

1

13.3.6 Sensor Flags

During the normal operation the IRGA vent valve is closed (equal to '0'). The IRGA vent flag (qfValvIrga) will be generated as part of the LOp variables to indicate that the system is working properly:

qfValvIrga =
$$0$$
 if valv03 = 0
1 if valv03 = 1
 -1 if valv03 = -1
(13.5)

13.3.7 QA/QC Procedure

NA

13.4 Uncertainty

NA

14 MEASUREMENT LOCATION SEPARATION

14.1 Data Product Description

This section describes the processes to distinguish the measurement location of the data measured by LI-COR LI-840A (*hereafter* referred to as IRGA), isotopic CO₂ analyzer (Picarro G2131-i, *hereafter* referred to as CRD CO₂), and isotopic H₂O analyzer (Picarro L2130-I, hereafter referred to CRD H₂O) based on the state of solenoids in the sample manifolds under the DGD: CD06640001. The sample manifolds of IRGA, CRD CO₂, and CRD H₂O referred to as irgaValvLvl, crdCo2ValvLvl, and crdH2oValvLvl in reference to DPs, respectively.

14.1.1 Variables Reported

The sample manifold-related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 14-1.

	Frequency (Hz)		Input L0 DPs or L0p DP fieldNames				
irgaValvLvl (DGD CD06640001)							
valv01	1	NA	NEON.DOM.SITE.DP0.001 13.001.02360.701.000.00 0				
valv02	1	NA	NEON.DOM.SITE.DP0.001 13.001.02361.701.000.00 0				
valv03	1	NA	NEON.DOM.SITE.DP0.001 13.001.02362.701.000.00 0				
valv04	1	NA	NEON.DOM.SITE.DP0.001 13.001.02364.701.000.00 0				
valv05	1	NA	NEON.DOM.SITE.DP0.001 13.001.02365.701.000.00 0				
valv06	1	NA	NEON.DOM.SITE.DP0.001 13.001.02366.701.000.00 0				
valv07	1	NA	NEON.DOM.SITE.DP0.001 13.001.02367.701.000.00 0				
valv08	1	NA	NEON.DOM.SITE.DP0.001 13.001.02368.701.000.00 0				
lvlIrga	1	NA	valv01* valv02* valv03* valv04* valv05* valv05* valv06* valv07* valv08*				
	valv02 valv03 valv04 valv05 valv05 valv06 valv07 valv07	(Hz) irgaValvLvl (DGD valv01 1 valv02 1 valv03 1 valv04 1 valv05 1 valv06 1 valv07 1 valv08 1	(Hz) irgaValvLvl (DGD CD06640001) valv01 1 valv02 1 valv03 1 valv04 1 valv05 1 valv06 1 valv07 1 valv08 1				

Table 14-1: List of sample manifold-related LOp reported variables that produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	LOp fieldName	L0p DP Frequency (Hz)	Units	Input L0 DPs or L0p DP fieldNames
Status of sample valve of ML01	valv01	1	NA	NEON.DOM.SITE.DP0.001 13.001.02360.702.000.00 0
Status of sample valve of ML02	valv02	1	NA	NEON.DOM.SITE.DP0.001 13.001.02361.702.000.00 0
Status of sample valve of ML03	valv03	1	NA	NEON.DOM.SITE.DP0.001 13.001.02362.702.000.00 0
Status of sample valve of ML04	valv04	1	NA	NEON.DOM.SITE.DP0.001 13.001.02364.702.000.00 0
Status of sample valve of ML05	valv05	1	NA	NEON.DOM.SITE.DP0.001 13.001.02365.702.000.00 0
Status of sample valve of ML06	valv06	1	NA	NEON.DOM.SITE.DP0.001 13.001.02366.702.000.00 0
Status of sample valve of ML07	valv07	1	NA	NEON.DOM.SITE.DP0.001 13.001.02367.702.000.00 0
Status of sample valve of ML08	valv08	1	NA	NEON.DOM.SITE.DP0.001 13.001.02368.702.000.00 0
CRD CO ₂ measurement location	lvlCrdCo2	1	NA	valv01* valv02* valv03* valv04* valv05* valv06* valv07* valv08*
		2oValvLvl (DC	GD CD06640001)	
Status of sample valve of ML01	valv01	1	NA	NEON.DOM.SITE.DP0.001 13.001.02360.704.000.00 0
Status of sample valve of ML02	valv02	1	NA	NEON.DOM.SITE.DP0.001 13.001.02361.704.000.00 0

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	LOp fieldName	L0p DP	Units	Input L0 DPs or L0p DP
		Frequency		fieldNames
		(Hz)		
Status of	valv03	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02362.704.000.00
of ML03				0
Status of	valv04	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02364.704.000.00
of ML04				0
Status of	valv05	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02365.704.000.00
of ML05				0
Status of	valv06	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02366.704.000.00
of ML06				0
Status of	valv07	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02367.704.000.00
of ML07				0
Status of	valv08	1	NA	NEON.DOM.SITE.DP0.001
sample valve				13.001.02368.704.000.00
of ML08				0
CRD H ₂ O	lvlCrdH2o	1	NA	valv01*
measurement				valv02*
location				valv03*
				valv04*
				valv05*
				valv06*
				valv07*
				valv08*

*LOp DP is used as an input to generate other LOp DPs.

14.1.2 Input Dependencies

Table 14-2 details sample manifold-related L0 DPs used to produce L0p reported variables in this ATBD.

LO DP	LO DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
irgaValvLvl (DGD CD06640001)					

Table 14-2: List of sample manifold-related L0 DPs that are transformed into L0p in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	LO DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
Status of sample valve of ML01	valvCmd1	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02360.701.000.000	Y
Status of sample valve of ML02	valvCmd2	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02361.701.000.000	Y
Status of sample valve of ML03	valvCmd3	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02362.701.000.000	Y
Status of sample valve of ML04	valvCmd4	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02364.701.000.000	Y
Status of sample valve of ML05	valvCmd5	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02365.701.000.000	Y
Status of sample valve of ML06	valvCmd6	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02366.701.000.000	Y
Status of sample valve of ML07	valvCmd7	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02367.701.000.000	Y
Status of sample valve of ML08	valvCmd8	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02368.701.000.000	Y
	1	crdCo2Va	lvLvl (DGD CD	06640001)	•
Status of sample valve of ML01	valvCmd1	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02360.702.000.000	Y
Status of sample valve of ML02	valvCmd2	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02361.702.000.000	Y
Status of sample valve of ML03	valvCmd3	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02362.702.000.000	Y
Status of sample valve of ML04	valvCmd4	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02364.702.000.000	Y

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	L0 DP fieldName	Sample Frequency	Units	Data Product Number	DPs that are used to produce LOp (Y/N)
Status of sample valve of ML05	valvCmd5	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02365.702.000.000	Y
Status of sample valve of ML06	valvCmd6	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02366.702.000.000	Y
Status of sample valve of ML07	valvCmd7	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02367.702.000.000	Y
Status of sample valve of ML08	valvCmd8	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02368.702.000.000	Y
		crdH2oVa	alvLvl (DGD CD	06640001)	
*Status of sample valve of ML01	valvCmd1	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02360.704.000.000	Y
*Status of sample valve of ML02	valvCmd2	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02361.704.000.000	Y
*Status of sample valve of ML03	valvCmd3	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02362.704.000.000	Y
*Status of sample valve of ML04	valvCmd4	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02364.704.000.000	Y
*Status of sample valve of ML05	valvCmd5	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02365.704.000.000	Y
*Status of sample valve of ML06	valvCmd6	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02366.704.000.000	Y
*Status of sample valve of ML07	valvCmd7	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02367.704.000.000	Y
*Status of sample valve of ML08	valvCmd8	0.2	NA	NEON.DOM.SITE.DP0.0011 3.001.02368.704.000.000	Y

*Note: These status L0 DPs exist only for those sites that have the Picarro H₂O analyzer installed.

14.1.3 Product Instances

The sample manifolds are located in the instrument hut. All terrestrial sites across the NEON observatory have both IRGA and CRD CO₂ sample manifolds and only 21 sites (20 NEON core sites and 1 relocatable site at D18 Barrow) own the CRD H₂O sample manifolds. Individual instance of all sample manifold-related LOp data outputs are in Table 14-1.

14.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 14-1 is 1 Hz.

14.1.5 Spatial Resolution and Extent

The sample manifolds will be located within the tower hut infrastructure. However, the measurements reflect the points in space where the sample inlets are located on the tower infrastructure, which is site specific.

14.2 Scientific context

14.2.1 Theory of Measurement

The EC Profile Assembly will be accompanied by a number of sample manifolds. These manifolds and their associated solenoid valves control the air sample delivered to each sensor. Each sample manifold consists of 9 inlet ports and one outlet port. The first 8 inlet ports will be connected to the sample solenoid valves, and one additional inlet port will be used for validation gases. The outlet port will be used to deliver air from the selected measurement level or validation gas to the analyzer. The status of the solenoid valves indicate the type of air sample measured for a specific time.

During sampling mode, the sample solenoid valves are opened at the scheduled time to receive atmospheric samples. During the validation/calibration mode all sample valves of CRD CO_2 and CRD H_2O sample manifolds are closed. However, the topmost measurement level sample valve of IRGA sample manifolds will remain opened during validation/calibration to maintain stable pressure in IRGA's cell.

The location controller dictates which valve in the sampling manifold is opened, which allows gas from only one measurement level (ML) to enter into the manifold at a time. The sequence of the sample solenoid valves always start from the highest to lowest measurement level (ML01), where the highest measurement level is site specific and can vary from 4 to 8.

14.2.2 Theory of Algorithm

NA

14.3 Algorithm Implementation

LOp signal processing consists of the following sequence:

- 1. Select LO data streams indicated with "Y" in Table 14-2 for further data processing.
- 2. Generate LOp DPs from LO DPs by converting to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 14.3.1.
- 3. Replace the NaN in LOp DPs according to Eq. (14.1).
- 4. Determine the measurement location for IRGA according to Eq. (14.2).
- 5. Determine the measurement location for CRD CO₂ according to Eq. (14.3).
- 6. For those sites that have a CRD H₂O analyzer, determine the measurement location for CRD H₂O according to Eq. (14.4).

14.3.1 Time regularization

The LO DPs of IRGA, CRD CO₂, and CRD H₂O sample manifolds were recorded at 0.2 Hz or every 5 seconds. To generate LOp DPs from LO DPs by converting to 1 Hz frequency, missing timestamps and the corresponding data values are inserted following the procedures detailed in AD[04]. Here we use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04] In case, multiple data values fall within a single window the last value used (option 3 in AD[04]).

14.3.2 Replacing NaN values

After time regularization, the missing LOp values will be filled with NaN. To be able to continue data processing, the LOp which equal to NaN are replaced by the following:

$$L0p = previous L0p value if continuous sequence of NaN \le 6s duration$$

$$-1 if continuous sequence of NaN > 6s duration$$
(14.1)

where L0p is valvIdx in IRGA, CRD CO₂, and CRD H₂O sample manifolds

Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

14.3.3 IRGA measurement location

The measurement location specific for IRGA measurements can be determined as:

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	asis Document (ATBD) – Eddy-Covariance Storage ta Processing	Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

$$lvlldx$$
 if only one of valv $ldx = 1$

lvlIrga =

vali if all valvIdx = 0
$$(14.2)$$

negl if more than one valvIdx = 1

-1 if any valvIdx = -1

where: valvIdx is the solenoid valve in the IRGA sample manifold

Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

14.3.4 CRD CO₂ measurement location

The measurement location specific for CRD CO₂ measurements can be determined as:

$$lvlIdx$$
 if only one of valvIdx = 1(14.3) $lvlCrdCo2 =$ vali if all valvIdx = 0negl if more than one valvIdx = 1 -1 any valvIdx = -1

where: valvIdx is the solenoid valve in the CRD CO₂ sample manifold

Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

14.3.5 CRD H₂O measurement location

The measurement location specific for CRD H₂O measurements can be determined as:

lvIIdx if only one of valvIdx = 1

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

lvlCrdH2o =	vali if all valvIdx $= 0$	(14.4)

negl if more than one valvIdx = 1

-1 any valvIdx = -1

i.

where: valvIdx is the solenoid valve in the CRD H₂O sample manifold

Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

14.3.6 QA/QC Procedure

NA

14.4 Uncertainty

NA

15 VALIDATION TYPE SEPARATION

15.1 Data Product Description

This section describes the processes to distinguish the validation/calibration type of the data measured by LI-COR LI-840A (*hereafter* referred to as IRGA), isotopic CO_2 analyzer (Picarro G2131-i, *hereafter* referred to as CRD CO_2), and isotopic H_2O analyzer (Picarro L2130-i, hereafter referred to CRD H_2O) based on the status of solenoids in validation manifold under the DGD: CD06640001 and the status of vaporizer 3-way valve under the DGD: CA10210000. The validation manifold and the vaporizer 3-way valve referred to as valvValiStor and crdH2oValvVali, respectively.

15.1.1 Variables Reported

The valvValiStor and crdH2oValvVali LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 15-1.

L0p DP	L0p fieldName	L0p DP	Units	Input L0 DPs or L0p DP		
		Frequency		fieldNames		
		(Hz)				
valvValiStor (DGD CD06640001)						

Table 15-1: List of valvValiStor and crdH2oValvVali L0p reported variables that produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical B Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	L0p fieldName	L0p DP Frequency (Hz)	Units	Input L0 DPs or L0p DP fieldNames
Status of validation valve for low CO ₂	valv02	1	NA	NEON.DOM.SITE.DP0.00113. 001.02361.703.000.000
Status of validation valve for intermediate CO ₂	valv03	1	NA	NEON.DOM.SITE.DP0.00113. 001.02362.703.000.000
Status of validation valve for high CO ₂	valv04	1	NA	NEON.DOM.SITE.DP0.00113. 001.02364.703.000.000
Status of validation valve for archive CO ₂	valv05	1	NA	NEON.DOM.SITE.DP0.00113. 001.02365.703.000.000
Status validation valve for zero air	valv06	1	NA	NEON.DOM.SITE.DP0.00113. 001.02366.703.000.000
Status validation valve for CRD H ₂ O shutdown	valv07	1	NA	NEON.DOM.SITE.DP0.00113. 001.02367.703.000.000
Status of validation valve for CRD H ₂ O validation	valv08	1	NA	NEON.DOM.SITE.DP0.00113. 001.02368.703.000.000
Validation gas type	typeGas	1	NA	valv02* valv03* valv04* valv05* valv06*
Validation gas type for crdH2o	typeGasCrdH2o			valv07* valv08*
<u></u>	-	rdH2oValvVali (D	1	
Status of vaporizer 3-way Valve	valv	1	NA	NEON.DOM.SITE.DP0.00115. 001.02352.700.000.000
Validation injection number	injNum	1	NA	valv*
Validation H2O type	typeH2o	1	NA	vallnj*

*LOp DP is used as an input to generate other LOp DPs.

15.1.2 Input Dependencies

Table 15-2 details valvValiStor and crdH2oValvVali LO DPs and specifies which LO DPs will be used to produce LOp reported variables in this ATBD.

LO DP	LO DP	Sample	Units	Data Product Number	DPs that
	fieldName	Frequency			are used to
					produce
					L0p (Y/N)
		valvVali	Stor (DGD CD	06640001)	1 () /
Status of	valvCmd2	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02361.703.000.000	
for low CO ₂					
Status of	valvCmd3	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02362.703.000.000	
for intermediate					
CO ₂					
Status of	valvCmd4	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02364.703.000.000	
for high CO ₂					
Status of	valvCmd5	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02365.703.000.000	
for archive CO_2					
Status validation	valvCmd6	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
valve for zero air				01.02366.703.000.000	
*Status	valvCmd7	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02367.703.000.000	
for CRD H_2O					
shutdown					
*Status of	valvCmd8	0.2	NA	NEON.DOM.SITE.DP0.00113.0	Y
validation valve				01.02368.703.000.000	
for CRD H ₂ O					
validation					
		crdH2oVa	lvVali (DGD C	A10210000)	
*Status of	valvStat1	varies, only	NA	NEON.DOM.SITE.DP0.00115.0	Y
vaporizer 3-way		occur when		01.02352.700.000.000	
valve		status changes			

Table 15-2: List of valvValiStor and crdH2oValvVali L0 DPs.

*Note that these status L0 DPs are only defined for those sites that have a CRD H₂O installed.

15.1.3 Product Instances

The validation manifold and vaporizer 3-way valve are located in the instrument hut. All sites across the NEON observatory have the validation manifolds and 21 sites (20 NEON core sites and 1 relocatable site

at D18 Barrow) have the vaporizer 3-way valve. The relationships between the individual instances of validation manifold and 3-way valve to LOp data outputs are summarized in Table 15-1.

15.1.4 Temporal Resolution and Extent

The temporal resolution of the reported variables in Table 15-1 is 1 Hz.

15.1.5 Spatial Resolution and Extent

Both the validation manifold and the vaporizer 3-way valve are located within the tower hut infrastructure. However, the measurements reflect the points in flow path where they are located in the tower hut infrastructure. The validation manifold and its associated valves are located between the validation gas cylinders and the mass flow controller for field validation gases, while the vaporizer 3-way valve are located between CRD H₂O sample manifold and T split between gas valve for CRD H₂O shutdown and gas valve for CRD H₂O validation.

15.2 Scientific context

The validation gas manifold and its associated valves control the validation gas standards delivered to the IRGA and CRD CO_2 for field validation. The routine validation will be performed every 23 hours. However, to minimize the interference between both analyzers, the routine validation of these two analyzers is scheduled to not occur at the same time. The validation gas sequence for the IRGA routine validation shall be as follows; zero air and then the three validation gases from lowest to highest concentration. The sequence of validation gas for the CRD CO_2 routine validation is similar to IRGA but without zero air. In addition to the routine validation, both analyzers are scheduled to validate against the archive CO_2 on a monthly basis.

To minimize the IRGA drift, the field calibration is scheduled to repeat every 6 days. However, the IRGA analyzer drifts after the IRGA's sample cell experiences large pressure fluctuation (\geq 1.2 kPa). Therefore IRGA field calibration also occurs after the analyzer resumes measurements after interruptions (e.g., power failure, periodical instrument shut down for maintenance, etc.) and large pressure perturbations. The gas sequence for the IRGA field calibration includes only zero air and high CO₂ concentration gas.

15.2.1 Theory of Measurement

The validation gas manifold consists of 6 inlet ports and one outlet port. The first inlet port is idle. The second to sixth ports are equipped with validation gas select valves to intake validation gases. Moreover, there are two additional L0 DPs for the gas valve for CRD H₂O shutdown and gas valve for CRD H₂O validation also bundled into this validation gas manifold (DGD CD06640001). The gas valve for CRD H₂O validation will be opened to allow the zero air to flow to the vaporizer and CRD H₂O analyzer during field

validation. While the gas valve for CRD H_2O shutdown will be only opened before the CRD H_2O is shut down to allow the zero air to flush out water.

During the routine field validation of the CRD H₂O, the analyzer will cease to measure the atmospheric vapor from the tower profiles and measure water standards by using the zero air as a carrier gas. The vaporizer 3-way valve is controlled to switch between the air sample and validation sample. Water standards are injected through the vaporizer (A0211 Liquid Sample High Precision Vaporizer: NEON P/N: 0300280001) using the autosampler (A0325 Auto Sampler: NEON P/N 0328050001) and a syringe. Field validation is performed for 3 standards (NEON Tertiary Low, Mid, and High standard) and each standard is injected 6 times. The procedure typically takes around 9 minutes per injection.

When the instrument is set up at field initially or after the water tray is changed periodically, field tech need inject some liquid water to vaporizer to train the instrument before proper operation. The raw data in the training period appear like the ones in validation period. The water used for training is typically local distilled water. All injections during training period should have similar δ^{18} O and δ^2 H values. However, three different water reference standards are used for validation. The δ^{18} O and δ^2 H values during validation period will vary greatly. The absolute difference between the max and min δ^2 H values at the training period should be < 160 permil, while the absolute difference between the max and min δ^2 H values at the validation period should be >200 permil. There will be a ~2 min or more break between training period and validation period. CI codes should be capable of distinguish these two types activities.

15.2.2 Theory of Algorithm

NA

15.3 Algorithm Implementation

LOp signal processing consists of the following sequence:

- 7. Select LO data streams as indicated as "Y" in Table 15-2 for further data processing.
- 8. Generate LOp DPs from LO DPs by converting to 1 Hz frequency using a time regularization approach in accordance with AD[04], details are provided in section 15.3.1.
- 9. Replace the NaN in LOp DPs, details are provided in section 15.3.2.
- 10. Determine validation/calibration gas type (typeGas) according to Eq. (15.2).
- 11. Determine validation gas type for crdH2o (typeGasCrdH2o) according to Eq. (15.3).
- 12. Replace gas type by "training" during the training period when the absolute difference between the max and min δ^2 H values (NEON.DOM.SITE.DP0.00103.001.02370.700.000.000) at the training period/validation period is < 160 permil.
- 13. For sites that have a CRD H_2O , determine validation injection number according to Eq. (15.4) and then the validation H_2O type can be determined according to Eq. (15.5).
- 14. The training and validation activities could span two days, either the day before the target processing day and the target day, or the target day and the day after target day. It is suggested

select 12 hours before target day, plus target day, plus 12 hours after target day for above data processing steps.

15.3.1 Time regularization

The LO DPs of the validation gas manifold were recorded at 0.2 Hz or every 5 seconds, while the vaporizer 3-way valve LO DPs LO is only available when the valve state changes (open or close). To generate LOp DPs from LO DPs by converting to 1 Hz frequency, missing timestamps and the corresponding data values are inserted following the procedures detailed in AD[04]. Here we use the default options in AD[04] with a windowing approach described by Eq. 3 in AD[04] In case multiple data values fall within a single window, the vaporizer 3-way valve should use the first one and last one in the window, while other valves will use the last value in the window (option 3 in AD[04]).

15.3.2 Replacing NaN values

After time regularization, the missing LOp values of the validation gas manifold will be filled with NaN. To be able to continue data processing, the LOp which equal to NaN are replaced by the following:

$$L0p = previous L0p value if continuous sequence of NaN \leq 6s duration$$

$$-1 if continuous sequence of NaN > 6s duration$$
(15.1)

where L0p is valvIdx in the validation manifold

I

Idx is index for the valve location and equal to 02, 03, 04,.... 08

As mentioned above that the vaporizer 3-way valve LO DPs is only available when the valve state changes (open or close), therefore, it is impossible to distinguish between NaN's that resulted from time regularization and NaN's that resulted from true missing values. In this case, all of NaN in vaporizer 3-way valve LOp will be filled with previous value.

15.3.3 Validation/calibration gas type

The validation/calibration type can be determined as:

co2Low if only valv02 = 1 co2Med if only valv03 = 1

Í

	co2High if only valv04 = 1	
	co2Arch if only valv05 = 1	
typeGas =	co2Zero if only valv06 = 1	(15.2)
	samp if all valvIdx = 0	
	negl if more than one valvIdx $= 1$	
	-1 any valvIdx = -1	

where: valvIdx is the solenoid valve in the validation manifold

Idx is index for the valve and equal to 02, 03, 04, 05, and 06

15.3.4 Validation gas type for crdH2o

i.

The validation gas type for crdH2o can be determined as:

typeGasCrdH2o =
$$h2oZeroOff if only valv07 = 1$$

 $h2oZeroVali if only valv08 = 1$
samp if valv07 = 0 and valv08 = 0
negl if valv07 = 1 and valv08 = 1
 $-1 valv07 = -1 and/or valv08 = -1$

where: valv07 and valv08 are the solenoid valve number 7 and 8 in the validation manifold

15.3.5 Validation injection number

During the sampling mode of CRD H_2O , the vaporizer 3-way valve will be closed (valvStat1 = '0') and it will be opened (valvStat1 = '1') during the field validation mode. As mentioned in section 15.2.1 that each field validation cycle will be performed using 3 standards and each standard will be injected for 6 times, therefore, the validation injection number will be run from 01 to 18. Note that each injection will last for

~9 minutes. Once it done, the vaporizer 3-way valve always switches back to '0' for less than 5 seconds before starting a new injection. The validation injection number can be determined as:

injNum = $i \text{ for injStart}_{i} \leq \text{time} \leq \text{injEnd}_{i} \text{ if valv} = 1$ 00 if valv = 0 -1 if valv = -1(15.4)

where: *i* is 01, 02, 03, ..., 18

time is corresponding timestamps

injStart_i is the time when injection i begins and can be determined as the initial timestamp that valv = 1

 $injEnd_i$ is the time when injection *i* ends and can be determined as the initial timestamp that valv = 0.

15.3.6 Validation H₂O type

The validation H₂O type can be determined as:

h2oHigh if injNum = 01 to 06 h2oMed if injNum = 07 to 12 h2oLow if injNum = 13 to 18 samp if injNum = 00 > 6s $vali if injNum = 00 \le 6s$ negl if injNum = -1 (15.5)

15.3.7 QA/QC Procedure

NA

15.4 Uncertainty

NA

16 IRGA MEASUREMENT TYPE SEPARATION

16.1 Data Product Description

This chapter describes the processes to distinguish between validation and calibration mode of the data measured by IRGA.

16.1.1 Variables Reported

The IRGA measurement type-related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 16-1.

LOp DP	LOp fieldName	L0p DP Frequency (Hz)	Units	Input LO DPs or LOp DP fieldNames
IRGA	measTypeIrga	1	NA	measTypeIrga
measurement				typeGas
type				

Table 16-1: List of measurement type-related L0p reported variables that produced in this ATBD.

16.1.2 Input Dependencies

Table 16-2 details input LOp DPs used to produce LOp reported variables in this ATBD.

Table 16-2: List of input LOp DPs that are transformed into reported LOp in this ATBD.

LOp DP	LOp DP fieldName	Sample Frequency	Units	DPs that are used to produce LOp (Y/N)		
IRGA Measurement Type (Chapter 13)						
IRGA measurement type	measTypeIrga	1	NA	Y		
Validation/Calibration Gas Type (Chapter 15)						
Validation gas type	typeGas	1	NA	Υ		

16.1.3 Product Instances

All sites across the NEON observatory own a sensor production the LOp reported variables defined in Table 16-1.

16.1.4 Temporal Resolution and Extent

The temporal extent of the reported variables in Table 16-1 is 1 Hz.

16.1.5 Spatial Resolution and Extent

Spatial resolution and extent of LOp reported variables defined in Table 16-1 can be found in section 13.1.5 and 15.1.5.

16.2 Scientific context

16.2.1 Theory of Measurement

Section 13 details how to distinguish the measurement type for all 3 analyzers into a sampling mode and validation mode. However, the measurement type of IRGA needs a further step to differentiate between validation and calibration mode. As mentioned in section 15, the field calibration of IRGA occurs every 6 days and every time after the analyzer resumes from the interruptions to minimize the IRGA drift. The gas sequence for the IRGA field calibration is different from the routine field validation since it uses only zero air and high CO₂ concentration. In this section we describe how to differentiate that calibration period.

16.2.2 Theory of Algorithm

NA

16.3 Algorithm Implementation

Determine the measurement type for IRGA according to Eq. (16.1).

16.3.1 IRGA measurement type

We need to determine whether the IRGA is in a calibration or validation time period by analyzing the typeGas values. The switch in sequential values from co2Zero to co2High only occurs during the calibration period and can be used to identify this process. The measTypeIrga is set to a value of cal for the time period from the first typeGas co2zero value in the continuous time series of typeGas co2Zero values prior to the co2Zero – co2High switch, to the last typeGas co2High values in the continuous time

series of typeGas co2High values after the co2Zero-co2High switch. See Eq. (**16.1**) and example table below.

The measurement type specific for IRGA measurements can be determined as:

	samp if measTypeIrga = samp	
measTypeIrga =	cal if measTypeIrga = vali & order of valGas is co2Zero, followed by co2High vali, otherwise	(16.1)

Input measTypeIrga	Input typeGas	Output measTypeIrga	
samp	samp	samp	
		1	
samp	samp	samp	
vali	co2Zero	cal	
vali	co2High	cal	
samp	samp	samp	
samp	samp	samp	
vali	co2Zero	vali	
vali	co2Low	vali	

Table 16-3:Example of input and output for IRGA measurement type.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

vali	co2Med	vali
vali	co2Med	vali
vali	co2High	vali
samp	samp	samp
samp	samp	samp
vali	co2Zero	cal
vali	co2High	cal
vali	co2Zero	vali
vali	co2Low	vali
vali	co2Med	vali
vali	co2High	vali

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

samp	samp	samp
:		:
samp	samp	samp

16.3.2 QA/QC Procedure

NA

16.4 Uncertainty

NA

17 GAS CYLINDER CONCENTRATIONS

17.1 Data Product Description

This section describes the processes to convert LO DPs under DGD 0353710000 into 1 Hz LOp DPs. The gas cylinder concentrations referred to as gasRefe in reference to DPs.

Four CO₂ gas standards (low, med, high, archive) will be used to perform field validation/calibration on IRGA and CRD CO₂. There are two cylinders of zero air. One will be used as a carrier gas during CRD H₂O validation and used to dry CRD H₂O cavity prior to shut down. Another one is used for IRGA field calibration and validation, and used to dry CRD CO₂ cavity prior to shut down. The concentration of each CO₂ cylinder will be certified by NEON CVAL. The concentrations of the four CO₂ gas standards will be provided by CVAL and will be ingested by CI as LOp data. But the zero air cylinders will be purchased locally with no certification info for LOp data products.

17.1.1 Variables Reported

The gasRefe-related LOp reported variables provided by the algorithms documented in this ATBD are displayed in Table 17-1. Because the LOp outputs for each cylinder will live in different tables of HDF5 file, it is ok to use generic term of "rtioMoleDryCo2Refe", "dlta13CCo2Refe", "rtioMoleDry12CCo2Refe", "rtioMoleDry13CCo2Refe" for CO₂ gas cylinder LOp outputs.

L0p DP	L0p fieldName	LOp DP Frequenc Y	Units	Input L0 DPs	
	CO2 Gas Standard Archive				
Dry mole fraction of CO2 (Archive)	rtioMoleDryCo2Refe	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02191.710.000.000	

Table 17-1: List of gasRefe-related LOp reported variables that produced in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LOp DP	L0p fieldName	LOp DP Frequenc y	Units	Input LO DPs
ratio of 13C:12C in CO2 (Archive)	dlta13CCo2Refe	1 Hz	‰	NEON.DOM.SITE.DP0.00118.001 .02324.710.000.000
Dry molar fraction of 12CO2 (Archive)	rtioMoleDry12CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02318.710.000.000
Dry molar fraction of 13CO2 (Archive)	rtioMoleDry13CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02320.710.000.000
	CC	2 Gas Standa	ard Low	
Dry mole fraction of CO2 (Low)	rtioMoleDryCo2Refe	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02191.712.000.000
ratio of 13C:12C in CO2 (Low)	dlta13CCo2Refe	1 Hz	‰	NEON.DOM.SITE.DP0.00118.001 .02324.712.000.000
Dry molar fraction of 12CO2 (Low)	rtioMoleDry12CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02318.712.000.000
Dry molar fraction of 13CO2 (Low)	rtioMoleDry13CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02320.712.000.000
	CO2	Gas Standard	d Medium	
Dry mole fraction of CO2 (Medium)	rtioMoleDryCo2Refe	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02191.713.000.000
ratio of 13C:12C in CO2 (Medium)	delta13CCo2Refe	1 Hz	‰	NEON.DOM.SITE.DP0.00118.001 .02324.713.000.000
Dry molar fraction of 12CO2 (Medium)	rtioMoleDry12CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02318.713.000.000
Dry molar fraction of 13CO2 (Medium)	rtioMoleDry13CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02320.713.000.000
	CO	2 Gas Standa	ard High	
Dry mole fraction of CO2 (High)	rtioMoleDryCo2Refe	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02191.714.000.000
ratio of 13C:12C in CO2 (High)	delta13CCo2Refe	1 Hz	‰	NEON.DOM.SITE.DP0.00118.001 .02324.714.000.000
Dry molar fraction of 12CO2 (High)	rtioMoleDry12CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02318.714.000.000
Dry molar fraction of 13CO2 (High)	rtioMoleDry13CCo2Ref e	1 Hz	mol mol-1	NEON.DOM.SITE.DP0.00118.001 .02320.714.000.000

*: These are LOp DPs. They are used as inputs to generate other LOp DPs.

17.1.2 Input Dependencies

Table 17-2 details gasRefe-related L0 DPs used to produce L0p reported variables in this ATBD.

Table 17-2: List of gasRefe-related L0 DPs that are transformed into L0p reported variables in this ATBD.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

LO DP	LO DP fieldName	Sample Frequency *	Units	Data Product Number	CVAL coefficients	DPs that are used to produce LOp (Y/N)
			CO2 Ga	s Standard Archive		
Dry mole fraction of CO2 (Archive)	fdMoleCO2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02191.710.000.000	CVALC0	Y
ratio of 13C:12C in CO2 (Archive)	d13CO2	NA	‰	NEON.DOM.SITE.DP0.00118.0 01.02324.710.000.000	CVALD0	Y
Dry molar fraction of 12CO2 (Archive)	fdMole12CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02318.710.000.000	CVALA0	Y
Dry molar fraction of 13CO2 (Archive)	fdMole13CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02320.710.000.000	CVALB0	Y
, ,			CO2 G	as Standard Low		
Dry mole fraction of CO2 (Low)	fdMoleCO2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02191.712.000.000	CVALC0	γ
ratio of 13C:12C in CO2 (Low)	d13CO2	NA	‰	NEON.DOM.SITE.DP0.00118.0 01.02324.712.000.000	CVALD0	Y
Dry molar fraction of 12CO2 (Low)	fdMole12CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02318.712.000.000	CVALA0	Y
Dry molar fraction of 13CO2 (Low)	fdMole13CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02320.712.000.000	CVALB0	Y
			CO2 Gas	Standard Medium	•	•
Dry mole fraction of CO2 (Medium)	fdMoleCO2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02191.713.000.000	CVALC0	Y
ratio of 13C:12C in CO2 (Medium)	d13CO2	NA	‰	NEON.DOM.SITE.DP0.00118.0 01.02324.713.000.000	CVALD0	Y
Dry molar fraction of 12CO2 (Medium)	fdMole12CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02318.713.000.000	CVALA0	Y
Dry molar fraction of 13CO2 (Medium)	fdMole13CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02320.713.000.000	CVALBO	Y
			CO2 G	as Standard High		
Dry mole fraction of CO2 (High)	fdMoleCO2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02191.714.000.000	CVALC0	Y
ratio of 13C:12C in CO2 (High)	d13CO2	NA	‰	NEON.DOM.SITE.DP0.00118.0 01.02324.714.000.000	CVALD0	Y
Dry molar fraction of 12CO2 (High)	fdMole12CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02318.714.000.000	CVALA0	Y
Dry molar fraction of 13CO2 (High)	fdMole13CO 2	NA	umol mol-1	NEON.DOM.SITE.DP0.00118.0 01.02320.714.000.000	CVALB0	Y

*: LO DP sample frequency is not applicable here. These LO DPs are just dummy data. See section 17.3.1 for more info.

17.1.3 Product Instances

Each of the 47 sites across the NEON observatory will have 4 CO₂ gas standard cylinders for ECSE sensor field validation/calibration. Individual instance of all gas cylinder related LOp data outputs are in Table 17-1. Each instance will generate 4 LOp data products.

17.1.4 Temporal Resolution and Extent

The temporal extent of the reported LOp variables in Table 17-1 is 1 Hz.

17.1.5 Spatial Resolution and Extent

The gas cylinders will be located within the gas room of the instrument hut side by side.

17.2 Scientific context

NA

17.2.1 Theory of Measurement

NA

17.2.2 Theory of Algorithm

NA

17.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- Select LO DPs and CVAL coefficients in Table 17-2 from database, and parse the coefficients to the associated LO DPs for further data processing. When extract the calibration coefficients, CI should use the latest calibration coefficients if no new calibration coefficients set is available, even after the valid date range is already expired.
- 2. Convert L0 DPs to generate 1 Hz L0p DPs using a time regularization approach in accordance with AD[04], details are provided in section 17.3.1.
- 3. Perform unit conversion. Details are provided in section 17.3.2
- 4. Perform calibration test, but no other QA/QC Plausibility tests are needed. When perform the Invalid Calibration test, CI should use the latest calibration coefficients for the test if no new calibration coefficients set is available, even after the valid date range is already expired.

17.3.1 Time regularization

L0 in Table 17-2 are just dummy data. CO₂ concentrations and associated uncertainties for each gas cylinder will be provided by CVAL as coefficients in database. CI will be responsible to process these concentration coefficient values (see Table 17-2) into 1 Hz L0p DPs. The uncertainty values should be processed as attributes of hdf5 file as shown in golden hdf5 file example provided by science team. The specific ingest and conversion method wills be detailed by CI.

17.3.2 Unit conversion

The calibration coefficients from CVAL have different units than the required LOp units. We need to convert some of them to eddy covariance standard units. See below:

rtioMoleDryCo2Refe(mol mol - 1) =
$$\frac{\text{fdMoleCo2} (\mu \text{mol mol} - 1)}{1000000}$$
(17.1)

rtioMoleDry12CCo2Refe(mol mol - 1) =
$$\frac{\text{fdMole12Co2} (\mu \text{mol mol} - 1)}{1000000}$$
 (17.2)

rtioMoleDry13CCo2Refe(mol mol - 1) =
$$\frac{\text{fdMole13Co2} (\mu \text{mol mol} - 1)}{1000000}$$
(17.3)

17.3.3 QA/QC Procedure

It is no need to perform standard plausibility tests on all data streams, except for calibration test, which indicates the CVAL certification date for the gas cylinders has been expired.

Flag	Term modifier	Description
QF _{Cal}	qfCal	Quality flag for the Invalid Calibration test

Table 17-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flags)

17.4 Uncertainty

The uncertainties provided by CVAL along with the CVAL coefficients in Table 17-2 can be mapped to the following metadata terms in the HDF5 file attributes:

Table 17-4: Mapping between CVAL uncertainty terms and HDF5 metadata terms.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

HDF5 metadata terms	CVAL uncertainties	
sd	U_CVALA2	
dfUcrtRaw	U_CVALD1	
ucrtRaw	U_CVALA1	
ucrtAve	U_CVALA3	
dfUcrtAve	U_CVALD3	
dfSd	U_CVALD2	

18 REFERENCE WATER STANDARDS

18.1 Data Product Description

This section describes the processes to convert L0 DPs under DGD 0361660000 into 1 Hz L0p DPs. The reference water standards referred to as h2oRefe in reference to DPs.

Asset 0361660000 is a tray that holds 12-vial of liquid reference water standards (include equal number of low, medium and high standard) for routine field validation of CRD H₂O, which can provide supplies for 4 weeks.

18.1.1 Variables Reported

The isotopic values of δ^{18} O and δ^{2} H for each type of reference water standard (low, medium, or high) will be certified by CVAL and provided to CI on xml files. CI will ingest these values as LO DPs (Table 18-2) and then further convert them to LOp DPs (Table 18-1).

The h2oRefe-related L0p reported variables provided by the algorithms documented in this ATBD are displayed in Table 18-1. Because the L0p outputs for all water standards will live in a same data table of HDF5 file, it is not ok to use generic term of "dlta2HH2oLow", "dlta18OH2oLow" for water standard L0p outputs. The indication of "Low", "Med", and "High" should stay in the L0p fieldnames for water standards.

LOp DP	L0p fieldName	L0p DP Frequency	Units	Input L0 DPs
δ^2 H in water standard	dlta2HH2oRefeLow	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001
Low				.02850.700.000.000
δ^{18} O in water standard	dlta18OH2oRefeLow	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001
Low				.02851.700.000.000
δ^2 H in water standard	dlta2HH2oRefeMed	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001
Med				.02852.700.000.000
δ^{18} O in water standard	dlta18OH2oRefeMed	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001
Med				.02853.700.000.000

Table 18-1: List of h2oRefe-related L0p reported variables that produced in this ATBD.

LOp DP	L0p fieldName	L0p DP Frequency	Units	Input L0 DPs
$\delta^2 H$ in water standard High	dlta2HH2oRefeHigh	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001 .02854.700.000.000
$\delta^{\rm 18} O$ in water standard High	dlta18OH2oRefeHigh	1 Hz	‰	NEON.DOM.SITE.DP0.00120.001 .02855.700.000.000

*: These are LOp DPs. They are used as inputs to generate other LOp DPs.

18.1.2 Input Dependencies

Table 18-2 details h2oRefe-related L0 DPs used to produce L0p reported variables in this ATBD.

LO DP	L0 DP fieldName	Sample Frequency*	Units	Data Product Number	CVAL coefficient s	DPs that are used to produce L0p (Y/N)
$\delta^2 H$ in water standard Low	d2HWaterLow	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02850.700.000.00 0	CVALA1	Y
$\delta^{\rm 18}{\rm O}$ in water standard Low	d18OWaterLow	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02851.700.000.00 0	CVALB1	Y
$\delta^2 H$ in water standard Med	d2HWaterMed	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02852.700.000.00 0	CVALA2	Y
$\delta^{\rm 18}{\rm O}$ in water standard Med	d18OWaterMed	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02853.700.000.00 0	CVALB2	Y
$\delta^2 \text{H}$ in water standard High	d2HWaterHigh	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02854.700.000.00 0	CVALA3	Y
$\delta^{\rm 18}{\rm O}$ in water standard High	d18OWaterHigh	NA	‰	NEON.DOM.SITE.DP0.001 20.001.02855.700.000.00 0	CVALB3	Y

Table 18-2: List of h2oRefe-related L0 DPs that are transformed into L0p reported variables in this ATBD.

*: LO DP sample frequency is not applicable here. These LO DPs are just dummy data. See section 18.3.1 for more info.

18.1.3 Product Instances

Each of the 20 TIS core sites across the NEON observatory plus one relocatable site (D18 Barrow) will have a 12-vial tray for CRD H₂O field validation. Individual instance of all 12-vial tray related LOp data outputs are in Table 18-1. Each instance will generate 6 LOp data products.

18.1.4 Temporal Resolution and Extent

The temporal extent of the reported LOp variables in Table 18-1 is 1 Hz.

18.1.5 Spatial Resolution and Extent

The 12-vial tray for reference water standards will be located within the instrument room of the instrument hut on CRD instrument rack.

18.2 Scientific context

NA

18.2.1 Theory of Measurement

NA

18.2.2 Theory of Algorithm

NA

18.3 Algorithm Implementation

Data flow for signal processing of LOp DPs will be treated in the following order.

- Select L0 DPs and CVAL coefficients in Table 18-2 from database, and parse the coefficients to the associated L0 DPs for further data processing. When extract the calibration coefficients, CI should use the latest calibration coefficients if no new calibration coefficients set is available, even after the valid date range is already expired.
- 2. Convert LO DPs to generate 1 Hz LOp DPs using a time regularization approach in accordance with AD[04], details are provided in section 18.3.1.
- 3. Perform calibration test, but no other QA/QC Plausibility tests are needed. When perform the Invalid Calibration test, CI should use the latest calibration coefficients for the test if no new calibration coefficients set is available, even after the valid date range is already expired.

18.3.1 Time regularization

L0 in Table 18-2 are just dummy data. The isotopic values of δ^{18} O and δ^{2} H and associated uncertainties for each type of reference water standard (low, medium or high) will be provided by CVAL as coefficients in database. CI will be responsible to process these concentration coefficient values (see Table 18-2) into 1 Hz L0p DPs. The uncertainty values should be processed as attributes of hdf5 file as shown in golden hdf5 file example provided by science team. The specific conversion method will be detailed by CI.

18.3.2 QA/QC Procedure

It is no need to perform standard plausibility tests on all data streams, except for calibration test, which indicates the CVAL certification date for the water standards has been expired.

Table 18-3: Plausibility quality flags to be applied to all LOp DPs (except for LOp DPs that are quality flags)	

Flag	Term modifier	Description
QF _{Cal}	qfCal	Quality flag for the Invalid Calibration test

18.4 Uncertainty

The uncertainties provided by CVAL along with the CVAL coefficients in Table 18-2 can be mapped to the following metadata terms in the HDF5 file attributes:

HDF5 metadata terms	CVAL uncertainties
sd	U_CVALA2
dfUcrtRaw	U_CVALD1
ucrtRaw	U_CVALA1
ucrtAve	U_CVALA3
dfUcrtAve	U_CVALD3
dfSd	U_CVALD2

Table 18-4: Mapping between CVAL uncertainty terms and HDF5 metadata terms.

19 HDF5 FILES GENERATION

This section describes the processes to organize LOp data which are going to use to generate the HDF5 files.

19.1 Data Product Description

19.1.1 Variables Reported

LOp preprocessed data are provided in the HDF5 files format.

19.1.2 Input Dependencies

LOp DPs used to produce LOp reported variables in this ATBD can be found in Table 3-1 to Table 18-1.

19.1.3 Product Instances

All sites across the NEON observatory own the HDF5 files. The files will be generated with a file name describing the subsystem, 4-letter site code, and the date (ex. ECSE_SERC_20160621.h5).

19.1.4 Temporal Resolution and Extent

The HDF5 files are generated for each 24 hour period. The temporal extent of the LOp preprocessed data in the HDF5 files is 1 Hz.

19.1.5 Spatial Resolution and Extent

NA

19.2 Scientific context

19.2.1 Theory of Measurement

NA

19.2.2 Theory of Algorithm

<u>Hierarchical Data Format (HDF)</u>, currently distributed as HDF5, provides a file format with high compressibility, fast efficient reading and writing capabilities, directory-style files, and metadata attachment. The HDF5 file formats allow us to package various data sets into a single file with built-in structure for managing both data and metadata. The current NEON processing design utilizing the Eddy4r package within a Docker framework utilizes HDF5 files for input/output operations. The NEON HDF5 file structure was developed following the data product naming convention provided in AD[08], where portions of the naming convention as described below were selected to develop the hierarchical structure of the HDF5 file (Figure 4):

NEON.DOM.SITE.DPL.PRNUM.REV.TERMS.HOR.VER.TMI

WHERE: NEON=NEON DOM=DOMAIN, e.g. D10 SITE=SITE, e.g. STER

DPL=DATA PRODUCT LEVEL, e.g. DP1

PRNUM = PRODUCT NUMBER =>5 digit number. Set in data products catalog.

TIS = 00000-09999

REV = REVISION, e.g. 001.

TERMS=From NEON's controlled list of terms. Index is unique across products.

HOR = HORIZONTAL INDEX. Semi-controlled; AIS and TIS use different rules.

Examples: Tower=000, DFIR=900.

VER = VERTICAL INDEX. Semi-controlled; AIS and TIS use different rules.

Examples: Ground level=000, second tower level=020.

TMI=TEMPORAL INDEX. Examples: 001=1 minute, 030=30 minute, 999=irregular intervals.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Figure 4. Diagram depicting the NEON HDF5 file structure following the NEON DP naming convention. Note that PRNUM is replaced by the DPName associated with that PRNUM.

One departure from the DP naming convention is the use of the data product name (DPName, i.e. irga) in place of PRNUM in the Data Product ID group level, this change was made to improve readability.

Title: NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

Figure 5. Diagram depicting the general EC LOp HDF5 file structure.

The HDF5 files generated will be comprised of the LOp preprocessed data following the previously discussed algorithmic processes in the structure described above, where one file is generated for each 24 hour period (Figure 5). The files will be generated with a file name describing the subsystem, data product level, 4-letter site code, and the date (ex. ECSE_dp0p_CPER_2016-10-26.h5). The LOp preprocessed data will be provided with the time regularized ISO 8601 timestamp for each data table produced. Under the dp0p, the data will be organized into three separate groups including data and qfqm. Under each of data and qfm, there are a list of all sensors and the data tables are generated for each of horizontal or vertical location of that sensor. In addition, metadata will be packaged with the data as attributes to either a group level or the data table for the LOp preprocessed product. A full list of the metadata to be attached as attributes to the HDF5 file is provided in the Appendix (section 21.1).

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

19.3 Algorithm Implementation

Figure 6. Diagram depicting the ECSE LOp HDF5 file structure.

<i>Title</i> : NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

	ynamic\IPT_EC_SES\L0prime_gold\ECSE_dp0p_CPER_2	017-09-25.h5 🔽 Clear Te
ECSE_dp0p_CPER_2017-09-25.h5	📲 asrpCo2 at /CPER/dp0p/data/irgaStor/000_010/ [ECSE 🗹 🗵
- 🗑 CPER	Table 🔟	
🕶 🗀 dp01	Taple	0 have d
•		0-based
e- 🚍 data		
🗝 🚰 crdCo2	5865 0.0202544	
🕶 🛄 crdCo2ValvLvl	5866 0.0204079	
🕶 🛀 crdH2o	5867 0.0206558	
🕶 🚰 crdH2oValvLvl	5868 0.0204325	
- Ci crdH2oValvVali	5869 0.0207711 5870 0.0205971	
	5871 0.0204967	
🗝 🛀 envHut	5872 0.0205092	
🗠 🛀 gasRefe	5873 0.0206755	
🗠 🛀 h2oRefe	<u>5874</u> 0.0203098 5875 0.0204720	
👇 📆 irgaStor	5875 0.0204720 5876 0.0204774	
v = 000_010	5877 0.0204864	
	5878 0.0204375	
- 🎆 asrpCo2	5879 0.0203030	
— 🎘 asrpH2o	5880 0.0207992 5881 0.0204902	
- 🎆 pres -	5882 0.0206331	
- 🗱 rtioMoleDryCo2	5883 0.0206229	
- tioMoleDryH2o	5884 0.0201781	
	5885 0.0205041	
- tioMoleWetCo2	5886 0.0205723 5887 0.0204945	
− ∰ rtioMoleWetH2o	5888 0.0203610	
— 🎘 temp	5889 0.0204008	
🗕 🖺 time	5890 0.0203671	
~ (_) 000_020	5891 NaN	•
► C 000_030		
► C 000_040		
🔶 🛀 co2Arch 📃		

Figure 7. Diagram to show ECSE LOp HDF5 data tables.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

									_
nt Files N:\Science\FIUDATA\ndurden\gi	t\data\CPER_E	CSE\out\HDF5	V02\Sep\EC	SE_dp04_CPE	R.2017-09-0	5.basic.h5		•	Cle
SE_dp04_CPER.2017-09-05.basic.t 🔺	tomp of	CRER/dp01/	data/temp\irl	vi/000_020_0	1m/ IECSE	dp04_CREP 20	17.00.05 basis b5 in NScion	ce\FIUDATA\ndurden\git\data\CPE	-1
CPER			datasternpstit		111% [EOOE_	apo4_01 E1020	11 05 05.basic.its in 14.locieti	cerrobArAndurdenigitidatator E	
	Table	M							
- 📹 dp01								()-b
🕈 🔚 data									_
- Ca co2Stor									
- 🖨 fluxHeatSoil		mean	min	max	vari	numSamp	timeBan	timeEnd	
_	0	22.8714	22.8468	22.9006	3.0E-4	60	2017-09-05T00:00:00.000Z	2017-09-05T00:00:59.000Z	1
🗢 🛄 h2oSoilVol	1	22.8401	22.8306	22.8483	0.0	60	2017-09-05T00:01:00.000Z	2017-09-05T00:01:59.000Z	1
🕶 🦳 h2oStor	2	22.8292	22.8231	22.8354	0.0	60	2017-09-05T00:02:00.000Z	2017-09-05T00:02:59.000Z	1
	3	22.7944	22.7638	22.822	3.0E-4	60	2017-09-05T00:03:00.000Z	2017-09-05T00:03:59.000Z	1
⊷ 🛀 isoCo2	4	22.7327	22.7052	22.7627	3.0E-4	60	2017-09-05T00:04:00.000Z	2017-09-05T00:04:59.000Z	1
🕶 🛀 isoH2o	5	22.6836	22.664	22.7052	1.0E-4	60	2017-09-05T00:05:00.000Z	2017-09-05T00:05:59.000Z	1
🕶 🛍 presBaro	6	22.643	22.6217	22.6621	1.0E-4	60	2017-09-05T00:06:00.000Z	2017-09-05T00:06:59.000Z	
	7	22.6038	22.5855	22.6209	1.0E-4	60	2017-09-05T00:07:00.000Z	2017-09-05T00:07:59.000Z	
🗠 🛍 radiNet	8	22.5678	22.5513	22.5857	1.0E-4	60	2017-09-05T00:08:00.000Z	2017-09-05T00:08:59.000Z	
🜪 🔄 tempAirLvl	9	22.5361	22.5215	22.5519	1.0E-4	60	2017-09-05T00:09:00.000Z	2017-09-05T00:09:59.000Z	
	10	22.5115	22.4986	22.5225	0.0	60	2017-09-05T00:10:00.000Z	2017-09-05T00:10:59.000Z	
⊷ 🕒 000_010_01m	11	22.4824	22.4698	22.499	1.0E-4	60	2017-09-05T00:11:00.000Z	2017-09-05T00:11:59.000Z	
🔶 🕒 000_010_30m	12	22.4648	22.4561	22.4724	0.0	60	2017-09-05T00:12:00.000Z	2017-09-05T00:12:59.000Z	
- 🚰 000_020_01m	13	22.4314	22.4061	22.4551	2.0E-4	60	2017-09-05T00:13:00.000Z	2017-09-05T00:13:59.000Z	
	14	22.3748	22.3461	22.4042	3.0E-4	60	2017-09-05T00:14:00.000Z	2017-09-05T00:14:59.000Z	
temp	15	22.3147	22.2842	22.3455	4.0E-4	60	2017-09-05T00:15:00.000Z	2017-09-05T00:15:59.000Z	
🕶 🗀 000 020 30m	16	22.2556	22.2284	22.2831	2.0E-4	60	2017-09-05T00:16:00.000Z	2017-09-05T00:16:59.000Z	-
∽ 🕒 000 030 01m	17	22.2013	22.1781	22.2276	2.0E-4	60	2017-09-05T00:17:00.000Z	2017-09-05T00:17:59.000Z	-
- 000_030_01m	18	22.1606	22.1465	22.1793	1.0E-4	60	2017-09-05T00:18:00.000Z	2017-09-05T00:18:59.000Z	-
∽ 🕒 000_030_30m	19	22.1345	22.1224	22.147	1.0E-4	60	2017-09-05T00:19:00.000Z	2017-09-05T00:19:59.000Z	-
🗢 😋 tempAirTop	20	22.1121	22.1003	22.122	0.0	60	2017-09-05T00:20:00.000Z	2017-09-05T00:20:59.000Z	
	21	22.0892	22.0776	22.1003 22.0774	0.0 1.0E-4	60	2017-09-05T00:21:00.000Z 2017-09-05T00:22:00.000Z	2017-09-05T00:21:59.000Z 2017-09-05T00:22:59.000Z	-
🔶 🦲 tempSoil		22.0625	22.044		1.0E-4 3.0E-4	60 60			
🕶 🛍 qfqm	23	22.0157 21.9493	21.9867	22.0432 21.9855	3.0E-4 4.0E-4	60	2017-09-05T00:23:00.000Z	2017-09-05T00:23:59.000Z	-
	24		21.9154			60	2017-09-05T00:24:00.000Z	2017-09-05T00:24:59.000Z 2017-09-05T00:25:59.000Z	-
🔶 🗀 ucrt	25	21.8859 21.8407	21.861 21.8231	21.9144 21.8594	3.0E-4 1.0E-4	60	2017-09-05T00:25:00.000Z 2017-09-05T00:26:00.000Z	2017-09-05T00:26:59.000Z	-
- 🗀 dp02		_	_	21.8594	1.0E-4	60			-
🖕 dp03	27	21.8024 21.7565	21.7814	21.8229	1.0E-4 2.0E-4	60	2017-09-05T00:27:00.000Z 2017-09-05T00:28:00.000Z	2017-09-05T00:27:59.000Z 2017-09-05T00:28:59.000Z	1
									-
🖕 🗀 dp04	29	21.7115 21.6699	21.691 21.6498	21.7344 21.691	2.0E-4 1.0E-4	60 60	2017-09-05T00:29:00.000Z 2017-09-05T00:30:00.000Z	2017-09-05T00:29:59.000Z 2017-09-05T00:30:59.000Z	-
🖕 dp0p		21.0099	21.0496	21.091	1.0E-4	00	2017-08-05100.30.00.000Z	2017-08-05100.50.58.000Z	-
- ahob	8. L								_

Figure 8. Diagram to show ECSE L1 HDF5 data tables.

Organizing the LOp preprocessed data and generating the HDF5 file according to the file structure in Figure 6 and Figure 7 consist of the following sequence:

- 1. Organizing LOp preprocessed data for each sensor, details are provided in section 19.3.1 to 19.3.20.
- Generate the HDF5 file for 24 hour period following the structure detailed in Figure 6 and Figure
 7.
- 3. Attach metadata to either a group level or the data tables for the LOp preprocessed product, details are provided in the Appendix (section 21.1).

Organizing the existing L1 data and generating the HDF5 file according to the file structure in Figure 8 consist of the following sequence:

- 1. Organizing existing L1 data for each data product, details are provided in section 19.3.21 to 19.3.27.
- 2. Generate the HDF5 file for 24 hour period following the structure detailed in Figure 8.

3. Attach metadata to either a group level or the data tables for the existing L1 products, details are provided in the Appendix (section 21.1).

19.3.1 Organizing IRGA L0p preprocessed data

Under the irgaStor node, the data tables are generated for each of horizontal and vertical location of IRGA. In this case measurement location (000_010 to 000_0n0) and validation/calibration gas type (co2Zero, co2Low, co2Med, co2High, and co2Arch) are used to represent the vertical and horizontal location of IRGA, respectively. IRGA data and quality flags will be subset correspond to that measurement location and validation/calibration gas type as following steps:

- Combine all IRGA LOp preprocessed data and related quality flags (detailed in Table 3-1 in section 3), qfHeat (heater flag generated from section 12), IRGA measurement type (measTypeIrga in section 16), IRGA measurement location (lvIIrga in section 14), and validation gas type (typeGas in section 15).
- 2. IRGA LOp preprocessed data is subset into data table for each measurement location by:

$$000_{Idx0} =$$
 if lvIIrga = lvIIdx and measTypeIrga = samp (19.1)

where Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

- 3. Repeat the 2nd step to subset the IRGA quality flags.
- 4. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 5. Deposit the IRGA data tables and IRGA quality flag data tables which were generated in step 2 to 4 under data/irgaStor and qfqm/irgaStor, respectively.
- 6. Next, IRGA LOp preprocessed data is subset into data table for each validation gas by

$$X = \qquad if typeGas = X and measTypeIrga = vali or cal \qquad (19.2)$$

where X is co2Zero, co2Low, co2Med, co2High, or co2Arch

- 7. Repeat the 6th step to subset the IRGA quality flags. However, qfHeat will not include in this subset.
- 8. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 9. For the IRGA data tables, combine each data table lists below with gas concentration data table (generated in 19.3.19) by:

- a. combining data in co2Low data table with gas concentration 712_000 data table,
- b. combining data in co2Med data table with gas concentration 713 000 data table,
- c. combining data in co2High data table with gas concentration 714_000 data table,
- d. combining data in co2Arch data table with gas concentration 710_000 data table. The folder of co2Arch should be remained in HDF5 file to keep consistent file structure even there is no co2Arch data on that day. Fill the data with NaNs.
- e. combining data in co2Zero data table with gas concentration for co2Zero data table (see note below).

Note that in section 19.3.19, the gas concentration (709_000) data table for co2Zero is not specified. This is because this zero gas will not provide by CVAL and there will be no L0 data products generated for this gas. To be able to combine the IRGA data table during the validation period of zero gas with co2Zero gas concentration values, the 1 Hz values of dlta13CCo2Refe, rtioMoleDry12CCo2Refe, rtioMoleDry13CCo2Refe, and rtioMoleDryCo2Refe were manually generated as NaN, 0, 0, and 0, respectively for the co2Zero gas concentration values.

10. Deposit the IRGA data tables and IRGA quality flag data tables which were generated in step 6 to 10 under data/irgaStor and qfqm/irgaStor, respectively.

19.3.2 Organizing CRD CO₂ LOp preprocessed data

Under the crdCo2 node, the data tables are generated for each of horizontal and vertical location of CRD CO₂. In this case measurement location (000_010 to 000_0n0) and validation/calibration gas type (co2Low, co2Med, co2High, and co2Arch) are used to represent the vertical and horizontal location of CRD CO₂, respectively. CRD CO₂ data and quality flags will be subset correspond to that measurement location and validation/calibration gas type as following steps:

- Combine all CRD CO₂ LOp preprocessed data and related quality flags (detailed in Table 4-1 in section 4), qfHeat (heater flag generated from section 12), CRD CO₂ measurement type (measTypeCrdCo2 in section 13), CRD CO₂ measurement location (lvlCrdCo2 in section 14), and validation gas type (typeGas in section 15).
- 2. CRD CO₂ LOp preprocessed data is subset into data table for each measurement location by:

$$000_{Idx0} = if lvlCrdCo2 = lvlIdx and measTypeCrdCo2 = samp$$
(19.3)

where Idx is index for the location and equal to 01, 02, 03,.... n

1

n is the site-specific highest measurement level and can be vary from 04 to 08.

3. Repeat the 2^{nd} step to subset the CRD CO₂ quality flags.

- 4. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 5. Deposit the CRD CO₂ data tables and quality flags data tables which were generated in step 2 to 4 under data/crdCo2 and qfqm/crdCo2, respectively.
- 6. Next, CRD CO₂ LOp preprocessed data is subset into data table for each validation gas by:

$$X = \qquad if typeGas = X and measTypeCrdCo2 = vali and lvlCrdCo2 = vali$$
(19.4)

where X is co2Low, co2Med, co2High, or co2Arch

- 7. Repeat step 6 to subset the CRD CO₂ quality flags. However, qfHeat will not include in this subset.
- 8. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 9. For the CRD CO₂ data tables, combine each data table lists below with gas concentration data table (generated in 19.3.19) by:
 - a. combining data in co2Low data table with gas concentration 712_000 data table,
 - b. combining data in co2Med data table with gas concentration 713_000 data table,
 - c. combining data in co2High data table with gas concentration 714_000 data table, and
 - d. combining data in co2Arch data table with gas concentration 710_000 data table.
- 10. Deposit the CRD CO_2 data tables and quality flags data tables which were generated in step 6 to 9 under data/crdCo2 and qfqm/crdCo2, respectively.

19.3.3 Organizing CRD H2O L0p preprocessed data

Т

Under the crdH2o node, the data tables are generated for each of horizontal and vertical location of CRD H_2O . In this case measurement location (000_010 to 000_0n0) and validation period (h2oLow, h2oMed, and h2oHigh) are used to represent the vertical and horizontal location of CRD H_2O , respectively. CRD H_2O data and quality flags will be subset correspond to that measurement location and validation H_2O type as following steps:

- Combine all CRD H₂O LOp preprocessed data and related quality flags (detailed in Table 5-1 in section 5), qfHeat (heater flag generated from section 12), CRD H₂O measurement type (measTypeCrdH2o in section 13), CRD H₂O measurement location (lvlCrdH2o in section 14), and validation H₂O type (typeH2o in section 15).
- 2. CRD H₂O LOp preprocessed data is subset into data table for each measurement location by:

$$000_{Idx0} = |if lvlCrdH2o = lvlIdx and measTypeCrdH2o = samp$$
(19.5)

where Idx is index for the location and equal to 01, 02, 03,.... n

n is the site-specific highest measurement level and can be vary from 04 to 08.

- 3. Repeat the 2^{nd} step to subset the CRD H₂O quality flags.
- 4. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 5. Deposit the CRD H₂O data tables and quality flags data tables which were generated in step 2 to 4 under data/crdH2o and qfqm/crdH2o, respectively.
- 6. Next, CRD H₂O LOp preprocessed data is subset into data table during the validation period by:

$$X = if typeH2o = X and measTypeCrdH2o = vali and lvlCrdH2o (19.6) = vali$$

where $\,X$ is h2oLow, h2oMed, or h2oHigh

- 7. Repeat step 6 to subset the CRD H₂O quality flags. However, qfHeat will not include in this subset.
- 8. Inserted missing timestamps and the corresponding data values with NaN which following the procedures detailed in AD[04].
- 9. For CRD H_2O data table, combine each data table lists below with the water concentration 700_000 data table (generated in 19.3.20) by:
 - a. combining data in h2oLow data table with water concentration 712_000 data table (select only dlta2HH2oRefeLow and dlta18OH2oRefeLow),
 - b. combining data in h2oMed data table with gas concentration 713_000 data table (select only dlta2HH2oRefeMed and dlta18OH2oRefeMed), and
 - c. combining data in h2oHigh data table with gas concentration 714_000 data table (select only dlta2HH2oRefeHigh and dlta18OH2oRefeHigh).
- 10. Deposit the CRD H₂O data tables and quality flags data tables which were generated in step 6 to 9 under data/crdH2o and qfqm/crdH2o, respectively.

19.3.4 Organizing temperature sensor in the hut LOp preprocessed data

Under the envHut node, the data tables are generated for horizontal and vertical location (HOR_VER) of hut temperature which is 700_000.

- 1. Retrieve all hut temperature LOp preprocessed data and related quality flags (detailed in Table 6-1 in section 6)
- 2. Generate data table individually for hut temperature data and quality flags.
- 3. Deposit the Hut temperature data table and quality flags data table under data/envHut and qfqm/envHut, respectively.

19.3.5 Organizing gas cylinder pressure sensors preprocessed data

Under the presValiRegInStor node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of gas cylinder pressure sensor which is including of 709_000, 710_000, 711_000, 712_000, 713_000, and 714_000.

- 1. For each location, retrieve all gas cylinder pressure LOp preprocessed data and related quality flags (detailed in Table 7-1 in section 7).
- 2. Generate data table individually for gas cylinder pressure data and quality flags.
- 3. Deposit the gas cylinder pressure data tables and quality flags data tables will under data/presValiRegInStor and qfqm/presValiRegInStor, respectively.

19.3.6 Organizing delivery pressure sensors preprocessed data

Under the presValiRegOutStor node , the data tables are generated for each of horizontal and vertical location (HOR_VER) of delivery pressure sensor, including 709_000, 710_000, 711_000, 712_000, 713_000, and 714_000.

- 1. For each location, retrieve all delivery pressure LOp preprocessed data and related quality flags (detailed in Table 7-1 in section 7).
- 2. Generate data table individually for delivery pressure data and quality flags.
- 3. Deposit the delivery pressure data tables and quality flags data tables under data/presValiRegOutStor and qfqm/presValiRegOutStor, respectively.

19.3.7 Organizing inlet absolute pressure transducers preprocessed data

Under the presInlt node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of inlet pressure transducer, including 000_010, 000_020, 000_030,..., 000_0n0, where n is the site-specific highest measurement level and can be vary from 4 to 8.

- 1. For each location, retrieve all inlet pressure LOp preprocessed data and related quality flags (detailed in Table 8-1 in section 8).
- 2. Generate data table individually for inlet pressure data and quality flags.
- 3. Deposit inlet pressure data tables and quality flags data tables under data/presInlt and qfqm/presInlt, respectively.

19.3.8 Organizing mass flow meter LOp preprocessed data

Under the mfm node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of mass flow meter, including 700_010, 700_020, 700_030,..., 700_0n0, where n is the site-specific highest measurement level and can be vary from 4 to 8.

- 1. For each location, retrieve all mass flow meter LOp preprocessed data and related quality flags (detailed in Table 9-1 in section 9).
- 2. Generate data table individually for mass flow meter data and quality flags.
- 3. Deposit mass flow meter data tables and quality flags data tables under data/mfm and qfqm/mfm, respectively.

19.3.9 Organizing mass flow controller for field validation gases L0p preprocessed data

Under the mfcValiStor node, the data tables are generated for horizontal and vertical location (HOR_VER) of mass flow controller which is 700_000.

- 1. Retrieve all field validation gases mass flow controller LOp preprocessed data and related quality flags (detailed in Table 10-1 in section 10).
- 2. Generate data table individually for mass flow controller data and quality flags.
- 3. Deposit mass flow controller data table and quality flags data table under data/mfcValiStor and qfqm/mfcValiStor, respectively.

19.3.10 Organizing mass flow controller for IRGA L0p preprocessed data

Under the mfcSampStor node, the data tables are generated for horizontal and vertical location (HOR_VER) of IRGA mass flow controller which is 700_000.

- 1. Retrieve all IRGA mass flow controller LOp preprocessed data and related quality flags (detailed in Table 10-1 in section 10).
- 2. Generate data table individually for mass flow controller data and quality flags.
- 3. Deposit mass flow controller data table and quality flags data table under data/ mfcSampStor and qfqm/ mfcSampStor, respectively.

19.3.11Organizing pumps L0p preprocessed data

Under the pumpStor node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of pump, including of 700_000, 700_010, 700_020, 700_030,..., 700_0n0, where n is the highest measurement level which is site specific and can be vary from 4 to 8.

- 1. For each location, retrieve all pump's LOp preprocessed data and related quality flags (detailed in Table 11-1 in section 11).
- 2. Generate data table individually for pump data and quality flags.
- 3. Deposit pump data tables and quality flags data tables under data/pumpStor and qfqm/pumpStor, respectively.

19.3.12 Organizing IRGA sample manifold L0p preprocessed data

Under the irgaValvLvl node, the data tables are generated for horizontal and vertical location (HOR_VER) of IRGA sample manifold which is 701_000.

- 1. Retrieve all IRGA sample manifold LOp preprocessed data (detailed in Table 14-1 in section 14).
- 2. Generate sample manifold data table.
- 3. Deposit the data table under data/irgaValvLvl.

19.3.13 Organizing CRD CO₂ sample manifold L0p preprocessed data

Under the crdCo2ValvLvl node, the data tables are generated for horizontal and vertical location (HOR_VER) of CRD CO₂ sample manifold which is 702_000.

- Retrieve all CRD CO₂ sample manifold LOp preprocessed data (detailed in Table 14-1 in section 14).
- 2. Generate sample manifold data table.
- 3. Deposit the data table under data/crdCo2ValvLvl.

19.3.14 Organizing CRD H₂O sample manifold L0p preprocessed data

Under the crdH2oValvLvl node, the data tables are generated for horizontal and vertical location (HOR_VER) of CRD H₂O sample manifold which is 704_000.

- Retrieve all CRD H₂O sample manifold LOp preprocessed data (detailed in Table 14-1 in section 14).
- 2. Generate sample manifold data table.
- 3. Deposit the data table under data/crdH2oValvLvl.

19.3.15 Organizing validation manifold L0p preprocessed data

Under the valvValiStor node, the data tables are generated for horizontal and vertical location (HOR_VER) of validation manifold which is 703_000.

- 1. Retrieve all validation manifold LOp preprocessed data (detailed in Table 15-1 in section 15).
- 2. Generate validation manifold data table.
- 3. Deposit the data table under data/valvValiStor.

19.3.16 Organizing auxiliary valves L0p preprocessed data

Under the valvAux node, the data tables are generated for horizontal and vertical location (HOR_VER) of auxiliary valves which is 700_000.

- 1. Retrieve all auxiliary valves LOp preprocessed data and related quality flags (detailed in Table 13-1 in section 13).
- 2. Generate data table individually for auxiliary valves data and quality flags.
- 3. Deposit auxiliary valves data table and quality flags data table under data/valvAux and qfqm/valvAux, respectively.

19.3.17 Organizing vaporizer 3-way valve L0p preprocessed data

Under the crdH2oValvVali node, the data tables are generated for horizontal and vertical location (HOR_VER) of validation manifold which is 700_000.

- 1. Retrieve all crdH2oValvVali L0p preprocessed data (detailed in Table 15-1 in section 15).
- 2. Generate crdH2oValvVali data table.
- 3. Deposit the data table under data/crdH2oValvVali.

19.3.18Organizing inlet heater L0p preprocessed data

Under the rhSens node, the data tables are generated for horizontal and vertical location (HOR_VER) of relative humidity sensor, including of 000_0n0, and 003_000, where n is the highest measurement level which is site specific and can be vary from 4 to 8.

- 1. For each location, retrieve all rhSens's LOp preprocessed data and qfSens (detailed in Table 12-1 in section 12).
- 2. Generate data table individually for rhSens data and qfSens.
- 3. Deposit rhSens data tables and quality flags data tables under data/rhSens and qfqm/rhSens, respectively.

19.3.19 Organizing gas cylinder concentration L0p preprocessed data

Under the gasRefe node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of gas concentration, including of 710_000, 712_000, 713_000, and 714_000.

- 1. For each location, retrieve all gas concentration LOp preprocessed data (detailed in Table 17-1 in section 17).
- 2. Generate gas concentration data tables.
- 3. Deposit the data table under data/gasRefe.

19.3.20 Organizing water standard L0p preprocessed data

Under the h2o90Refe node, the data tables are generated for horizontal and vertical location (HOR_VER) of water standard which is 700_000.

1. Retrieve all water standard LOp preprocessed data (detailed in Table 18-1 in section 18).

- 2. Generate water standard data table.
- 3. Deposit the data table under data/h2o90Refe.

19.3.21 Organizing single aspirated air temperature sensor (SAATS) existing L1 data

Under the "tempAirLvl" node in HDF5 file, the data tables are generated for each of horizontal and vertical location (HOR_VER) of SAATS, including of 000_010, 000_020, 000_030,..., 000_0n0, where n is the second-highest measurement level which is site specific and can be vary from 3 to 7. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following SAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
tempSingleMean	temp	mean
tempSingleMinimum	temp	min
tempSingleMaximum	temp	max
tempSingleVariance	temp	vari
tempSingleNumPts	temp	numSamp
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

Table 19-1: Mapping between fieldName for tempAirLvl existing L1 data stream and fieldname (column) in HDF5 data table.

- 2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team
- 3. For each location under "qfqm" folder, retrieve following SAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

 Table 19-2: Mapping between quality flag fieldName for tempAirLvl existing L1 data stream and fieldname (column) in hdf5 data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
finalQF	temp	qfFinl
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

4. For each location under "qfqm" folder, retrieve following SAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

Table 19-3: Mapping between quality flag fieldName for tempAirLvl existing L1 data stream and fieldname (column) in hdf5
data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
alphaQM	temp	qfAlph
betaQM	temp	qfBeta
	temp	qfSci
finalQF	temp	qfFinl
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

- 5. For each location under "ucrt" folder, retrieve following SAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.
- Table 19-4:
 Mapping between uncertainty fieldName for tempAirLvl existing L1 data stream and fieldname (column) in hdf5

data table.					
fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table			
tempSingleExpUncert	temp	ucrtCal95			

endDateTime

tempSingleStdErMean	temp	se
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

19.3.22 Organizing triple redundancy aspirated air temperature sensors (TRAATS) existing L1 data

Under the tempAirTop node, the data tables are generated for horizontal and vertical location (HOR_VER) of TRAATS which is 000_0n0, where n is the highest measurement level at a site, which is site specific and can vary from 4 to 8. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

1. For each location under "data" folder, retrieve following TRAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data	HDF5 data table	fieldName (column) in
stream		HDF5 data table
tempTripleMean	temp	mean
tempTripleMinimum	temp	min
tempTripleMaximum	temp	max
tempTripleVariance	temp	vari
tempTripleNumPts	temp	numSamp
startDateTime	temp	timeBgn

2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team

timeEnd

temp

3. For each location under "qfqm" folder, retrieve following TRAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

Table 19-6: Mapping between quality flag fieldName for tempAirTop existing L1 data stream and fieldname (column) in hdf5
data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
finalQF	temp	qfFinl
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

4. For each location under "qfqm" folder, retrieve following TRAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 is generated, fill qfSci as 0.

fieldName for existing L1 data	HDF5 data table	fieldName (column) in
stream		HDF5 data table
alphaQM	temp	qfAlph
betaQM	temp	qfBeta
	temp	qfSci
finalQF	temp	qfFinl
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

 Table 19-7: Mapping between quality flag fieldName for tempAirTop existing L1 data stream and fieldname (column) in hdf5 data table for generating expaned hdf5 file.

5. For each location under "ucrt" folder, retrieve following TRAATS existing L1 data from expanded data set and put them into corresponding columns of "temp" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-8: Mapping between uncertainty fieldName for tempAirTop existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data	HDF5 data table	fieldName ((column)	in
stream		HDF5 data table		

tempTripleExpUncert	temp	ucrtCal95
tempTripleStdErMean	temp	se
startDateTime	temp	timeBgn
endDateTime	temp	timeEnd

19.3.23 Organizing Shortwave and longwave radiation (net radiometer) existing L1 data

Under the radiNet node, the data tables are generated for horizontal and vertical location (HOR_VER) of net radiometer which is 000_0n0, where n is the highest measurement level at a site, which is site specific and can vary from 4 to 8. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following net radiometer existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file (see table below. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
inSWMean	radiSwIn	mean
inSWMinimum	radiSwIn	min
inSWMaximum	radiSwIn	max
inSWVariance	radiSwIn	vari
inSWNumPts	radiSwIn	numSamp
startDateTime	radiSwIn	timeBgn
endDateTime	radiSwIn	timeEnd
outSWMean	radiSwOut	mean
outSWMinimum	radiSwOut	min
outSWMaximum	radiSwOut	max

Table 19-9: Mapping between fieldName for radiNet existing L1 data stream and fieldname (column) in hdf5 data table.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

	radiSwOut	vari
outSWVariance	Tadiswout	Vali
outSWNumPts	radiSwOut	numSamp
startDateTime	radiSwOut	timeBgn
endDateTime	radiSwOut	timeEnd
inLWMean	radiLwIn	mean
inLWMinimum	radiLwIn	min
inLWMaximum	radiLwIn	max
inLWVariance	radiLwIn	vari
inLWNumPts	radiLwIn	numSamp
startDateTime	radiLwIn	timeBgn
endDateTime	radiLwIn	timeEnd
outLWMean	radiLwOut	mean
outLWMinimum	radiLwOut	min
outLWMaximum	radiLwOut	max
outLWVariance	radiLwOut	vari
outLWNumPts	radiLwOut	numSamp
startDateTime	radiLwOut	timeBgn
endDateTime	radiLwOut	timeEnd

- 2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team
- 3. For each location under "qfqm" folder, retrieve following net radiometer existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

 Table 19-10: Mapping between quality flag fieldName for radiNet existing L1 data stream and fieldname (column) in hdf5 data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
inSWfinalQF	radiSwIn	qfFinl
startDateTime	radiSwIn	timeBgn
endDateTime	radiSwIn	timeEnd
outSWfinalQF	radiSwOut	qfFinl
startDateTime	radiSwOut	timeBgn
endDateTime	radiSwOut	timeEnd
inLWfinalQF	radiLwIn	qfFinl
startDateTime	radiLwIn	timeBgn
endDateTime	radiLwIn	timeEnd
outLWfinalQF	radiLwOut	qfFinl
startDateTime	radiLwOut	timeBgn
endDateTime	radiLwOut	timeEnd

4. For each location under "qfqm" folder, retrieve following net radiometer existing L1 data from expanded data set and put them into corresponding columns of data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

 Table 19-11: Mapping between quality flag fieldName for radiNet existing L1 data stream and fieldname (column) in hdf5 data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
inSWAlphaQM	radiSwIn	qfAlph
inSWBetaQM	radiSwIn	qfBeta
	radiSwIn	qfSci
inSWfinalQF	radiSwIn	qfFinl

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

startDateTime	radiSwIn	timeBgn
endDateTime	radiSwIn	timeEnd
outSWAlphaQM	radiSwOut	qfAlph
outSWBetaQM	radiSwOut	qfBeta
	radiSwOut	qfSci
outSWfinalQF	radiSwOut	qfFinl
startDateTime	radiSwOut	timeBgn
endDateTime	radiSwOut	timeEnd
inLWAlphaQM	radiLwIn	qfAlph
inLWBetaQM	radiLwIn	qfBeta
	radiLwIn	qfSci
inLWfinalQF	radiLwIn	qfFinl
startDateTime	radiLwIn	timeBgn
endDateTime	radiLwIn	timeEnd
outLWAlphaQM	radiLwOut	qfAlph
outLWBetaQM	radiLwOut	qfBeta
	radiLwOut	qfSci
outLWfinalQF	radiLwOut	qfFinl
startDateTime	radiLwOut	timeBgn
endDateTime	radiLwOut	timeEnd

5. For each location under "ucrt" folder, retrieve following net radiometer existing L1 data from expanded data set and put them into corresponding columns of data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

Table 19-12: Mapping between uncertainty fieldName for radiNet existing L1 data stream and fieldname (column) in hdf5 data
table

fieldName for existing L1 data	HDF5 data table	fieldName (column) in
stream		HDF5 data table
inSWExpUncert	radiSwIn	ucrtCal95
inSWStdErMean	radiSwIn	se
startDateTime	radiSwIn	timeBgn
endDateTime	radiSwIn	timeEnd
outSWExpUncert	radiSwOut	ucrtCal95
outSWStdErMean	radiSwOut	se
startDateTime	radiSwOut	timeBgn
endDateTime	radiSwOut	timeEnd
inLWExpUncert	radiLwIn	ucrtCal95
inLWStdErMean	radiLwIn	se
startDateTime	radiLwIn	timeBgn
endDateTime	radiLwIn	timeEnd
outLWExpUncert	radiLwOut	ucrtCal95
outLWStdErMean	radiLwOut	se
startDateTime	radiLwOut	timeBgn
endDateTime	radiLwOut	timeEnd

19.3.24 Organizing soil heat flux plate existing L1 data

Under the "fluxHeatSoil" node in HDF5 file, the data tables are generated for each of horizontal and vertical location (HOR_VER) of soil heat flux plate, including of 001_501, 003_501, 005_501. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following soil heat flux plate existing L1 data from expanded data set and put them into corresponding columns of "fluxHeatSoil" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-13: Mapping between fieldName for fluxHeatSoil existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
SHFMean	fluxHeatSoil	mean
SHFMinimum	fluxHeatSoil	min
SHFMaximum	fluxHeatSoil	max
SHFVariance	fluxHeatSoil	vari
SHFNumPts	fluxHeatSoil	numSamp
SHFInSituCorFactor	fluxHeatSoil	calFld
startDateTime	fluxHeatSoil	timeBgn
endDateTime	fluxHeatSoil	timeEnd

- 2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team
- 3. For each location under "qfqm" folder, retrieve following soil heat flux plate existing L1 data from expanded data set and put them into corresponding columns of "fluxHeatSoil" data table in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

 Table 19-14: Mapping between quality flag fieldName for fluxHeatSoil existing L1 data stream and fieldname (column) in hdf5

 data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
finalQF	fluxHeatSoil	qfFinl
startDateTime	fluxHeatSoil	timeBgn
endDateTime	fluxHeatSoil	timeEnd

4. For each location under "qfqm" folder, retrieve following soil heat flux plate existing L1 data from expanded data set and put them into corresponding columns of "fluxHeatSoil" data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

 Table 19-15: Mapping between quality flag fieldName for fluxHeatSoil existing L1 data stream and fieldname (column) in hdf5 data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
alphaQM	fluxHeatSoil	qfAlph
betaQM	fluxHeatSoil	qfBeta
	fluxHeatSoil	qfSci
finalQF	fluxHeatSoil	qfFinl
startDateTime	fluxHeatSoil	timeBgn
endDateTime	fluxHeatSoil	timeEnd

5. For each location under "ucrt" folder, retrieve following soil heat flux plate existing L1 data from expanded data set and put them into corresponding columns of "fluxHeatSoil" data table in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-16: Mapping between uncertainty fieldName for fluxHeatSoil existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
SHFExpUncert	fluxHeatSoil	ucrtCal95
SHFStdErMean	fluxHeatSoil	se
startDateTime	fluxHeatSoil	timeBgn
endDateTime	fluxHeatSoil	timeEnd

19.3.25 Organizing soil temperature existing L1 data

Under the tempSoil node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of soil temperature, including of 00n_501, 00n_502, 00n_503,..., 00n_509, where n is the soil plot number, which varies from 1 to 5. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following soil temperature existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file (see table below. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data	HDF5 data table	fieldName (column) in HDF5	
stream		data table	
soilTempMean	tempSoil	mean	
soilTempMinimum	tempSoil	min	
soilTempMaximum	tempSoil	max	
soilTempVariance	tempSoil	vari	
soilTempNumPts	tempSoil	numSamp	
startDateTime	tempSoil	timeBgn	
endDateTime	tempSoil	timeEnd	

 Table 19-17: Mapping between fieldName for tempSoil existing L1 data stream and fieldname (column) in hdf5 data table.

- 2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team
- 3. For each location under "qfqm" folder, retrieve following soil temperature existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

 Table 19-18: Mapping between quality flag fieldName for tempSoil existing L1 data stream and fieldname (column) in hdf5 data table for generating basic hdf5 file.

fieldName for existing L1 data	HDF5 data table	fieldName (column)	
stream		HDF5 data table	

finalQF	qfFinl
startDateTime	timeBgn
endDateTime	timeEnd

4. For each location under "qfqm" folder, retrieve following soil temperature existing L1 data from expanded data set and put them into corresponding columns of data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

 Table 19-19: Mapping between quality flag fieldName for tempSoil existing L1 data stream and fieldname (column) in hdf5 data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table	
alphaQM	tempSoil	qfAlph	
betaQM	tempSoil	qfBeta	
	tempSoil	qfSci	
finalQF	tempSoil	qfFinl	
startDateTime	tempSoil	timeBgn	
endDateTime	tempSoil	timeEnd	

5. For each location under "ucrt" folder, retrieve following soil temperature existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-20: Mapping between uncertainty fieldName for tempSoil existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
soilTempExpUncert	tempSoil	ucrtCal95
soilTempStdErMean	tempSoil	se

startDateTime	tempSoil	timeBgn
endDateTime	tempSoil	timeEnd

19.3.26 Organizing soil water content and water salinity existing L1 data

Under the h2oSoilVol node, the data tables are generated for each of horizontal and vertical location (HOR_VER) of soil water content and water salinity, including of 00n_501, 00n_502, 00n_503,..., 00n_508, where n is the soil plot number, which varies from 1 to 5. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following soil water content and water salinity existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file (see table below. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data	HDF5 data table	fieldName (column) in HDF5
stream		data table
VSWCMean	h2oSoilVol	mean
VSWCMinimum	h2oSoilVol	min
VSWCMaximum	h2oSoilVol	max
VSWCVariance	h2oSoilVol	vari
VSWCNumPts	h2oSoilVol	numSamp
startDateTime	h2oSoilVol	timeBgn
endDateTime	h2oSoilVol	timeEnd
VSICMean	ionSoilVol	mean
VSICMinimum	ionSoilVol	min
VSICMaximum	ionSoilVol	max
VSICVariance	ionSoilVol	vari

Table 19-21: Mapping between fieldName for h2oSoilVol existing L1 data stream and fieldname (column) in hdf5 data table.

VSICNumPts	ionSoilVol	numSamp
startDateTime	ionSoilVol	timeBgn
endDateTime	ionSoilVol	timeEnd

- 2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team
- 3. For each location under "qfqm" folder, retrieve following soil water content and water salinity existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

Table 19-22: Mapping between quality flag fieldName for h2oSoilVol existing L1 data stream and fieldname (column) in hdf5data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
VSWCFinalQF	h2oSoilVol	qfFinl
startDateTime	h2oSoilVol	timeBgn
endDateTime	h2oSoilVol	timeEnd
VSICFinalQF	ionSoilVol	qfFinl
startDateTime	ionSoilVol	timeBgn
endDateTime	ionSoilVol	timeEnd

4. For each location under "qfqm" folder, retrieve following soil water content and water salinity existing L1 data from expanded data set and put them into corresponding columns of data table in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

Table 19-23: Mapping between quality flag fieldName for h2oSoilVol existing L1 data stream and fieldname (column) in hdf5
data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table
VSWCAlphaQM	h2oSoilVol	qfAlph

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

VSWCBetaQM	h2oSoilVol	qfBeta
	h2oSoilVol	qfSci
VSWCFinalQF	h2oSoilVol	qfFinl
startDateTime	h2oSoilVol	timeBgn
endDateTime	h2oSoilVol	timeEnd
VSICAlphaQM	ionSoilVol	qfAlph
VSICBetaQM	ionSoilVol	qfBeta
	ionSoilVol	qfSci
VSICFinalQF	ionSoilVol	qfFinl
startDateTime	ionSoilVol	timeBgn
endDateTime	ionSoilVol	timeEnd

5. For each location under "ucrt" folder, retrieve following soil water content and water salinity existing L1 data from expanded data set and put them into corresponding columns of data tables in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-24: Mapping between uncertainty fieldName for h2oSoilVol existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table		
VSWCExpUncert	h2oSoilVol	ucrtCal95		
VSWCStdErMean	h2oSoilVol	se		
startDateTime	h2oSoilVol	timeBgn		
endDateTime	h2oSoilVol	timeEnd		
VSICExpUncert	ionSoilVol	ucrtCal95		
VSICStdErMean	ionSoilVol	se		

startDateTime	ionSoilVol	timeBgn
endDateTime	ionSoilVol	timeEnd

19.3.27 Organizing barometric pressure existing L1 data

Under the "presBaro" node in HDF5 file, the data table is generated for site-specific horizontal and vertical location (HOR_VER) of barometric pressure, which is on the tower between ML1 and ML2 (HOR_VER will be 000_015) or between ML2 and ML3 (HOR_VER will be 000_025), or between ML3 and ML4 (HOR_VER will be 000_035). The vertical index varies from site to site. "_1m" or "_30m" indicates the aggregation over 1 min or 30 min time period.

 For each location under "data" folder, retrieve following barometric pressure existing L1 data from expanded data set and put them into corresponding columns of "presAtm" and "presCor" data tables in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

fieldName for existing L1 data	HDF5 data table	fieldName (column) in	
stream		HDF5 data table	
staPresMean	presAtm	mean	
staPresMinimum	presAtm	min	
staPresMaximum	presAtm	max	
staPresVariance	presAtm	vari	
staPresNumPts	presAtm	numSamp	
startDateTime	presAtm	timeBgn	
endDateTime	presAtm	timeEnd	
corPres	presCor	mean	
startDateTime	presCor	timeBgn	
endDateTime	presCor	timeEnd	

Table 19-25: Mapping between fieldName for presBaro existing L1 data stream and fieldname (column) in hdf5 data table.

2. Under "data" folder, add attributes to data product group and each data table group according to the info in the example HDF5 file provided by science team

3. For each location under "qfqm" folder, retrieve following barometric pressure existing L1 data from expanded data set and put them into corresponding columns of "presAtm" data table in the HDF5 file to generate **basic** HDF5 file. Do this for both 1 min and 30 min data.

 Table 19-26: Mapping between quality flag fieldName for presBaro existing L1 data stream and fieldname (column) in hdf5 data table for generating basic hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table	
staPresFinalQF	presAtm	qfFinl	
startDateTime	presAtm	timeBgn	
endDateTime	presAtm	timeEnd	

4. For each location under "qfqm" folder, retrieve following barometric pressure existing L1 data from expanded data set and put them into corresponding columns of "presAtm" and "presCor" data tables in the HDF5 file to generate **expanded** HDF5 file. Do this for both 1 min and 30 min data. For the qfSci, it is a science review flag. If it does not exist yet by the time the HDF5 file is generated, fill qfSci as 0.

 Table 19-27: Mapping between quality flag fieldName for presBaro existing L1 data stream and fieldname (column) in hdf5 data table for generating expaned hdf5 file.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table	
staPresAlphaQM	presAtm	qfAlph	
staPresBetaQM	presAtm	qfBeta	
	presAtm	qfSci	
staPresFinalQF	presAtm	qfFinl	
startDateTime	presAtm	timeBgn	
endDateTime	presAtm	timeEnd	
corPresTempQF	presCor	qfTemp	
corPresDewPtQF	presCor	qfDew	
	presCor	qfSci	

corPresFinalQF	presCor	qfFinl
startDateTime	presCor	timeBgn
endDateTime	presCor	timeEnd

5. For each location under "ucrt" folder, retrieve following barometric pressure existing L1 data from expanded data set and put them into corresponding columns of "presAtm" and "presCor" data tables in the HDF5 file. Do this for both 1 min and 30 min data. This step will be identical to generate basic HDF5 file or expanded HDF5 file.

 Table 19-28: Mapping between uncertainty fieldName for presBaro existing L1 data stream and fieldname (column) in hdf5 data table.

fieldName for existing L1 data stream	HDF5 data table	fieldName (column) in HDF5 data table	
staPresExpUncert	presAtm	ucrtCal95	
staPresStdErMean	presAtm	se	
startDateTime	presAtm	timeBgn	
endDateTime	presAtm	timeEnd	
corPresExpUncert	presCor	ucrtCal95	
startDateTime	presCor	timeBgn	
endDateTime	presCor	timeEnd	

19.3.28QA/QC Procedure

NA

19.4 Uncertainty

NA

20 FUTURE PLANS AND MODIFICATION

This ATBD will be version controlled, i.e. future developments might results in modifications to this ATBD, which will be documented accordingly.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

21 APENDIX

21.1 HDF5 metadata

fieldName	Field Description	HDF5 Site	HDF5 DP	Data table
		Group	Group	specific
	L0p (dp0p)			
LatTow	The Latitude of the tower	Х		
	Reference point			
LonTow	The Longitude of the tower	Х		
	Reference point			
LvIMeasTow	A list containing the identifier	Х		
	number associated with the			
	meaurement level heights			
DistZaxsLvlMeasTow	A list containing approximate tower	Х		
	measurement level heights (m)			
	associted with the tower			
	measurement levels (sensor			
	measurement heights should be			
	calculated using Z provided for each			
	sensor)			
ТуреЕсо	The ecosystem type as described by	Х		
	the National Land Cover Database			
	(NLCD)			
DistZaxsCnpy	The average height (m) of the	Х		
	canopy above the ground surface			
TimeTube	ECSE: transit time (s) for air parcel	Х		
	travels in gas tube at different			
	tower measurement levels			
Mfr	Name of the sensor manufacturer		Х	
Modl	Sensor model		Х	
VersFmw	Firmware version that the sensor is		Х	
	running.			
FreqSamp	The frequency the data is being		Х	
	collected in Hertz (Hz)			
Cal\$PrdFld	The time period interval for field		Х	
	calibration (i.e. daily calibration)			
Val\$PrdFld	The time period interval for sensor		Х	
	field validation			

Table 21-1: List of metadata to be compiled and packaged in the HDF5 files.

<i>Title</i> : NEON Algorithm Theoretical Basis Document (ATBD) – Eddy-Covariance Storage Exchange (Profile) Assembly Raw Data Processing		Date: 06/08/2018
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

PrdLvlSamp	ECSE: Time spent on each level for	Х	
	measurements (min)		
RtioMoleDryCo2	Calibration gas standard		X
	coefficients for CO2 concentration		
RtioMoleDry12CCo2	Calibration gas standard		X
	coefficients for 12CO2		
	concentration		
RtioMoleDry13CCo2	Calibration gas standard		X
	coefficients for 13CO2		
	concentration		
Dlta13CCo2	Calibration gas standard		X
	coefficients for isotope δ 13C		
مرابع عراقه المرابع	Ratio of stable isotopes 2H:1H in		X
dlta2HH2oLow	low H2O reference standard		
dite 190112 et eur	Ratio of stable isotopes 180:160 in		X
dlta18OH2oLow	low H2O reference standard		
	Ratio of stable isotopes 2H:1H in		Х
dlta2HH2oMed	intermediate H2O reference		
	standard		
	Ratio of stable isotopes 180:160 in		X
dlta18OH2oMed	intermediate H2O reference		
	standard		
dlta2UU2aUigh	Ratio of stable isotopes 2H:1H in		X
dlta2HH2oHigh	high H2O reference standard		
dlta18OH2oHigh	Ratio of stable isotopes 180:160 in		X
ultatoonzonigii	high H2O reference standard		
sd	Calibration standard coefficient for		X
	repeatability (Standard deviation)		
dfUcrtRaw	Degrees of Freedom for calculating		X
	combined uncertainty using raw		
	data		
ucrtRaw	Calibration standard coefficient for		X
	combined uncertainty using raw		
	data		
ucrtAve	Calibration standard coefficient for		X
	combined uncertainty using		
	averaged data		

Title: NEON Algorithm Theoretical E Exchange (Profile) Assembly Raw Da	Date: 06/08/2018	
NEON Doc. #: NEON.DOC.004968	Author: N. Durden and H. Lou	Revision: A

dfUcrtAve	Degrees of Freedom for calculating			X
	combined uncertainty using			
	averaged data			
Dspk\$Br86\$MaxReso	Brock (1986) de-spiking resolution			X
	threshold; spike if deviation larger			
	than measurement resolution x			
	Dspk\$Br86\$MaxReso			
Dspk\$Br86\$NumBin	Brock (1986) de-spiking number of			x
	initial PDF bins			
Dspk\$Br86\$NumWndw	Brock (1986) de-spiking window			X
• • •	width of median filter in number of			
	data points; needs to be an odd			
	number			
Pers\$DiffMin	Value threshold for the persistence			X
	test, which indicates whether there			
	is a realistic fluctuation of values			
	over a designated period of time			
Pers\$TimeDiff	Time step for the persistence test,			X
	which indicates whether there is a			
	realistic fluctuation of values over a			
	designated period of time			
Rng\$Max	Upper threshold for the range test,			Х
	which indicates whether a datum			
	exceeds a realistic value			
Rng\$Min	Lower threshold for the range test,			Х
	which indicates whether a datum			
	exceeds a realistic value			
Step\$DiffMax	Threshold for the step test, which			Х
	indicates whether unusual jumps in			
	the data exist			
Name	Name of each reported variable			Х
Unit	The units of each reported variable			Х
	L1 (dp01)			
PrdIncrAgrDflt	Step-size by which period		Х	
	aggregation.			
PrdWndwAgrDflt	Defining the time-block resolution		Х	
	for which outputs are being			
	reported.			
Mfr*	Name of the sensor manufacturer		Х	
	•	•		

Modl*	Sensor model	Х	
VersFmw*	Firmware version that the sensor is running.	Х	
FreqSamp*	The frequency the data is being collected in Hertz (Hz)	Х	

*Apply only existing L1 DPs.

22 BIBLIOGRAPHY

- Balslev-Clausen, D. M. (2011) Application of cavity ring down spectroscopy to isotopic bio- geo- & climate-sciences & the development of a mid-infrared CRDS analyzer for continuous measurements of N₂O isotopomers (Doctoral dissertation), University of Copenhagen, Denmark.
- Bowling, D.R., Tans, P.P. & Monson R.K. (2011) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO₂. *Global Change Biology*, **7**, 127–145.
- Busch, K. W. & Busch, M. A. (1997) Cavity ringdown spectroscopy: an ultratrace absorption measurement technique. *ACS Symposium Series*, **720**, 20-33.
- Crosson, E. R. (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor. *Applied Physics*, **92**, 403-408.
- Gerald, C. F., and Wheatley, P. O. (1998) Applied numerical analysis. Addison-Wesley, New York. 6th ed. ISBN 10: 020187072X
- Griffis, T. J. (2013) Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. *Agricultural and Forest Meteorology*, **174–175**, 85-109.
- Hu, Z., Wen, X., Sun, X., Li, L., Yu, G., Lee, X., & Li, S. (2014) Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. *Journal of Geophysical Research - Biogeosciences*, **119**, 358–372.
- Iannone, R. Q., Romanini, D., Cattani, O., Meijer, H. A. J., & Kerstel, E. R. Th. (2010) Water isotope ratio (d2 H and d18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer. *Journal of Geophysical Research*, **115**, D10111, doi:10.1029/2009JD012895.
- Korkiakoski, M. (2014) Water vapor correction functions for CO₂ and CH₄ in cavity ring-down spectroscopy (Master's thesis). University of Helsinki, Finland.
- LI-COR, Inc. (2016) LI-840A CO2/H2O Gas Analyzer Instruction Manual. https://www.licor.com/documents/y10gor2jal2p3t8ev4hm

- Ohkubo, S., Kosugi, Y., Takanashi, S., Matsuo, N., Tani, M. & Nik, A. R. (2008) Vertical profiles and storage fluxes of CO2, heat and water in a tropical rainforest at Pasoh, Peninsular Malaysia. *Tellus B*, **60**, 569–582. DOI: 10.1111/j.1600-0889.2008.00367.x
- Randerson, J. T., Still, C. J., Balle[´], J. J., Fung, I. Y., Doney, S. C., Tans, P. P., Conway, T. J., White, J. W. C., Vaughn, B., Suits, N. & Denning, A. S. (2002a). Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. *Global Biogeochemistry Cycles*, **13**, doi; 10.1029/2001GB001435.
- Randerson, J. T., Collatz, G. J., Fessenden, J. E., Munoz, A. D., Still, C. J., Berry, J. A., Fung, I. Suits, N. & Denning, A.S. (2002b) A possible global covariance between terrestrial gross primary production and ¹³C discrimination: consequences for the atmospheric ¹³C budget and its response to ENSO. *Global Biogeochemistry Cycles*, **16**, doi:10.1029/2001GB001845.
- Wahl, E.H., Fidric, B., Rella, C.W., Koulikov, S., Kharlamov, B., Tan, S., Kachanov, A.A., Richman, B.A., Crosson, E.R., Paldus, B.A., Kalaskar, S. & Bowling, D.R. (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of ¹³C/¹²C in carbon dioxide. *Isotopes Environ Health Studies*, **42**, 21-35.
- Werner, C. & Gessler, A. (2011) Diel variations in the carbon isotope composition of respired CO₂ and associated carbon sources: a review of dynamics and mechanisms. *Biogeosciences*, **8**, 2437-2459, doi:10.5194/bg-8-2437-2011.
- Wheeler, M., Newman, S., Orr-Ewing, A. & Ashfold, M. (1998) Cavity ring-down spectroscopy. *Journal of the Chemical Society, Faraday Transactions*, **94**, 337-351.
- Yakir, D. & Wang, X.F. (1996) Fluxes of CO₂ and water fluxes between terrestrial vegetation and the atmosphere estimated from isotope measurements. *Nature*, **380**, 515–517.
- Yepez, E. A., Williams, D. G., Scott, R. L. & Lin, G. (2003) Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. *Agricultural and forest meteorology*, **119**, 53-68.
- Zare, R. N., Kuramoto, D. S., Haase, C., Tan, S. M., Crosson, E. R. & Saad, N. M. R. (2009) High-precision optical measurements of ¹³C/¹²C isotope ratios in organic compounds at natural abundance.
 Proceeding of the National Academy of Sciences of the United States of America, **106**, 10928-10932, doi:10.1073/pnas.0904230106.