

NEON USER GUIDE TO AQUATIC ZOOPLANKTON COLLECTION (DP1.20219.001)

PREPARED BY	ORGANIZATION
Stephanie Parker	AQU
Caren Scott	AQU

CHANGE RECORD

REVISION	DATE	DESCRIPTION OF CHANGE
А	09/25/2017	Initial Release
В	10/12/2020	Included general statement about usage of neonUtilities R package and statement about possible location changes. Updated taxonomy informa- tion. Updated littoral sampling locations and figures. Added information about standard taxonomic effort.
С	11/9/2021	Added new perSample table to capture subsampling and QC data.
D	04/08/2022	Added language in section 4 Taxonomy addressing RTE species obfusca- tion in the data. Updated section 5.3 Data Revision with latest informa- tion regarding data release
D.1	05/12/2023	Updated information about the zoo_identificationHistory table

TABLE OF CONTENTS

1	DESC	CRIPTION	1
	1.1	Purpose	1
	1.2	Scope	1
2	RELA	TED DOCUMENTS	2
	2.1	Associated Documents	2
3	DATA	A PRODUCT DESCRIPTION	3
	3.1	Spatial Sampling Design	3
	3.2	Temporal Sampling Design	4
	3.3	Sampling Design Changes	4
	3.4	Variables Reported	5
	3.5	Temporal Resolution and Extent	5
	3.6	Spatial Resolution and Extent	5
	3.7	Associated Data Streams	6
	3.8	Product Instances	6
	3.9	Data Relationships	6
	3.10	Special Considerations	7
4	тахс	DNOMY	8
	4.1	Identification History	9
5	DATA	QUALITY	9
	5.1	Data Entry Constraint and Validation	9
	5.2	Automated Data Processing Steps	9
	5.3	Data Revision	9
	5.4	Quality Flagging	11
	5.5	Analytical Facility Data Quality	11
6	REFE	RENCES	12

LIST OF TABLES AND FIGURES

Table 1	Descriptions of the dataQF codes for quality flagging	11
Figure 1	Generic aquatic site layout for lakes with zooplankton sampling locations in red	4
Figure 2 data	Schematic of the applications used by field technicians to enter zooplankton field	10

1 DESCRIPTION

1.1 Purpose

This document provides an overview of the data included in this NEON Level 1 data product, the quality controlled product generated from raw Level 0 data, and associated metadata. In the NEON data products framework, the raw data collected in the field, for example, the zooplankton samples collected in the field are considered the lowest level (Level 0). Raw data that have been quality checked via the steps detailed herein, as well as simple metrics that emerge from the raw data are considered Level 1 data products.

The text herein provides a discussion of measurement theory and implementation, data product provenance, quality assurance and control methods used, and approximations and/or assumptions made during L1 data creation.

1.2 Scope

This document describes the steps needed to generate the L1 data product Zooplankton collection and associated metadata from input data. This document also provides details relevant to the publication of the data products via the NEON data portal, with additional detail available in the file, NEON Data Variables for Aquatic Zooplankton Collection (DP1.20219.001) (AD[04]), provided in the download package for this data product.

This document describes the process for ingesting and performing automated quality assurance and control procedures on the data collected in the field pertaining to AOS Protocol and Procedure: Zooplankton Sampling in Lakes (AD[06]). The raw data that are processed in this document are detailed in the file, NEON Raw Data Validation for Aquatic Zooplankton Collection (DP0.20219.001) (AD[03]), provided in the download package for this data product. Please note that raw data products (denoted by 'DP0') may not always have the same numbers (e.g., '20120') as the corresponding L1 data product.

2 RELATED DOCUMENTS

2.1 Associated Documents

AD[01]	NEON.DOC.000001	NEON Observatory Design (NOD) Requirements
AD[02]	NEON.DOC.002652	NEON Data Products Catalog
AD[03]	Available with data download	Validation csv
AD[04]	Available with data download	Variables csv
AD[05]	NEON.DOC.001152	NEON Aquatic Sampling Strategy
AD[06]	NEON.DOC.001194	AOS Protocol and Procedure: Zooplankton Sampling in Lakes
AD[07]	NEON.DOC.000008	NEON Acronym List
AD[08]	NEON.DOC.000243	NEON Glossary of Terms
AD[09]	NEON.DOC.004825	NEON Algorithm Theoretical Basis Document: OS Generic Transi- tions
AD[10]	Available on NEON data portal	NEON Ingest Conversion Language Function Library
AD[11]	Available on NEON data portal	NEON Ingest Conversion Language
AD[12]	Available with data download	Categorical Codes csv

3 DATA PRODUCT DESCRIPTION

The zooplankton collection data product includes taxonomy, abundance and density, and morphometrics. These data inform the NEON Grand Challenge area of Biodiversity as well as provide specific information about the zooplankton community lakes. These data can be used to assess the health of aquatic ecosystems. The type of sampler used to collect zooplankton in the field is determined by the water depth at the sampling location. Locations deeper than 4 m are sampled using a vertical tow net, while locations shallower than 4 m are sampled using a Schindler-Patalas sampler (USEPA 2012a, 2012b). Typically, multiple (up to 3) tows or Schindler traps are collected and composited into a single sample.

Samplers used for zooplankton collection are designed to work by collecting a parcel of the water column at the sampling location. The volume collected with a vertical tow net is the area of the tow net opening multiplied by the depth of the tow, multiplied by the number of tows composited in one sample. The Schindler-Patalas trap is a clear Lexan box that contains 12 L of water, so the volume is 12 L times the number of traps composited in one sample. Samples are preserved in ethanol and sent to professional taxonomic laboratories for taxonomic identification and enumeration. For additional information see sampling design NEON Aquatic Sampling Strategy (AD[05]) and protocol AOS Protocol and Procedure: Zooplankton Sampling in Lakes (AD[06]).

Data are organized into tables for field data collected by NEON technicians and external lab data returned by the expert taxonomy lab(s). Field data contains metadata on sample time, location, and the type of sampler used, which determines the volume of water sampled. The lab data includes subsampling information, taxonomic analysis, count and size class data, and quality metrics. Lab data are corrected for subsampling, however the data user must use both the lab data and the field data to calculate counts per volume if a quantitative result is desired. See below for suggested calculations.

3.1 Spatial Sampling Design

Zooplankton at NEON lake sites (Figure 1) are sampled from the water column near the NEON sensor sets in lakes. Samples are collected near the two littoral sensors and the buoy (deepest) sampling location.

As much as possible, sampling occurs in the same locations over the lifetime of the Observatory. However, over time some sampling locations may become impossible to sample, due to disturbance or other local changes. When this occurs, the location and its location ID are retired. A location may also shift to slightly different coordinates. Refer to the locations endpoint of the NEON API for details about locations that have been moved or retired: https://data.neonscience.org/data-api/endpoints/locations/

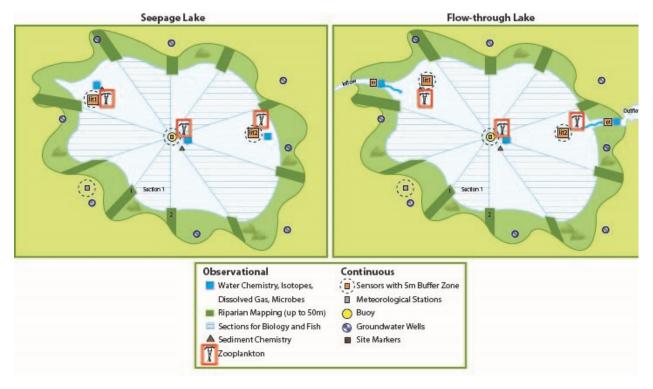


Figure 1: Generic aquatic site layout for lakes with zooplankton sampling locations in red.

3.2 Temporal Sampling Design

Zooplankton sampling occurs three times per year at each NEON lake site (AD[05]). Timing of sampling is site-specific and determined based on historical hydrological and meteorological data. Sample bout 1 is an early-season date, representing a period of rapid biomass accumulation after winter, typically prior to leaf out or after ice-off where applicable. Sample bout 2 targets mid-summer conditions and sample bout 3 represents the late growing season (typically autumn) during leaf-fall where applicable. These dates differ on a site-by-site basis, but should always occur at, or near, baseflow conditions within the watershed. Sampling does not occur directly following or during a rain or wind event that causes turbid-ity in the water column. Sampling at each site is completed within a single day for each bout. See NEON Aquatic Sampling Strategy (AD[05]), AOS Protocol and Procedure: Zooplankton Sampling in Lakes (AD[06]) for additional details.

3.3 Sampling Design Changes

Location names for the nearshore sensors in seepage lakes (lakes without a true inlet and outlet stream) were changed on January 1, 2021. The location previously known "inlet" changed to "littoral 1" ("lit2") and "outlet" changed to "littoral 2" ("lit2") to indicate that these locations are not near an inlet or outlet stream (Figure 1). Flow-through lakes (e.g., D18 TOOK) have sensors in the inflow and outflow streams, as well as the lit1 and lit2 locations in the lake.

3.4 Variables Reported

All variables reported from the field or laboratory technician (L0 data) are listed in the file, NEON Raw Data Validation for Aquatic Zooplankton Collection (DP0.20219.001) (AD[03]). All variables reported in the published data (L1 data) are also provided separately in the file, NEON Data Variables for Aquatic Zooplankton Collection (DP1.20219.001) (AD[04]).

Field names have been standardized with Darwin Core terms (http://rs.tdwg.org/dwc/; accessed 7 September 2017), the Global Biodiversity Information Facility vocabularies (http://rs.gbif.org/vocabulary/ gbif/; accessed 7 September 2017), the VegCore data dictionary (https://projects.nceas.ucsb.edu/nceas/ projects/bien/wiki/VegCore; accessed 7 September 2017), where applicable. NEON Aquatic Observation System (AOS) spatial data employs the World Geodetic System 1984 (WGS84) for its fundamental reference datum and Earth Gravitational Model 96 (EGM96) for its reference gravitational ellipsoid. Latitudes and longitudes are denoted in decimal notation to six decimal places, with longitudes indicated as negative west of the Greenwich meridian.

Some variables described in this document may be for NEON internal use only and will not appear in downloaded data.

3.5 Temporal Resolution and Extent

The finest temporal resolution that zooplankton data will be tracked is per sampling day. All 3 samples are collected within a single day at a particular site. A suite of other biological sampling occurs at the site during the same ~30 day bout. Three sampling bouts occur per site per year.

The finest resolution at which temporal data are reported is at **collectDate**, the date and time of day when the samples were collected in the field.

The NEON Data Portal provides data in monthly files for query and download efficiency. Queries including any part of a month will return data from the entire month. Code to stack files across months is available here: https://github.com/NEONScience/NEON-utilities.

3.6 Spatial Resolution and Extent

Each zooplankton sample represents a location in a lake near one of the NEON sensor installations (littoral 1, littoral 2, or buoy), and contains multiple individuals. The exact location (latitude and longitude) of each sample is not tracked as it is intended to represent the overall habitat. The **locationID** reported represents the location of the NEON sensor infrastructure near the sampling location, plus coordinate uncertainty surrounding that point. The protocol dictates that samples are collected approximate 5 m from the sensor infrastructure to minimize effects on the profiling data, so standard **coordinateUncertainty** is 10 m to represent the normal sampling distance from the sampling location. If, for some reason, sampling cannot occur within 10 m of the named location, technicians will enter **additionalCoordinate-Uncertainty**.

Up to two different habitats (littoral and pelagic) are sampled at each site to account for the variability or patchiness among habitats. Overall, this results in a spatial hierarchy of:

namedLocation (finest spatial resolution, ID of location within site) -> siteID (ID of NEON site) -> domainID (ID of a NEON domain)

3.7 Associated Data Streams

A subset of the zooplankton field collection data are related to Zooplankton metabarcoding (DP1.20221.001) samples collected at the same time and location. Related samples share the same **even-tID** and **namedLocation**.

Zooplankton collection data are also loosely related to Aquatic General Field Metadata (NEON.DOC.001646) and Secchi Disk and Depth Profile Sampling in Lakes and Non-wadeable Streams (NEON.DOC.002792) collected on the same sampling day. Data for Aquatic General Field Metadata are available in the NEON data product "Gauge Height" (DP1.20267.001). Depth profile and secchi data are available in Depth profile at specific depths (DP1.20254.001) and "Secchi Depth" (DP1.20252.001). These data products are linked through the **siteID** field and local date in the NEON Data Publication Workbook for AOS Zooplankton Collection (AD[04]).

3.8 Product Instances

At each aquatic lake site, there will be up to 9 samples collected per year (3 samples per bout). Each sample generates multiple records from the external lab on a per taxon basis.

3.9 Data Relationships

For each record collected in zoo_fieldData a number of child records may be created. In the event that sampling is impractical (e.g., the location is dry, ice covered, etc.), there will be no child records. Each **sampleID** record in zoo_fieldData has 1 record in zoo_perSample and may have multiple child records in zoo_taxonomyRaw and zoo_taxonomyProcessed, one record for each **scientificName**. A record from zoo_fieldData may have multiple or no records in zoo_perVial, as that table represents individuals removed from the final archived sample and placed in the external lab's in-house reference collection, records in this table are opportunistic and are organized by **sampleID** and **scientificName**. Duplicates and/or missing data may exist where protocol and/or data entry aberrations have occurred; users should check data carefully for anomalies before joining tables.

zoo_fieldData.csv - > One record is created for each sample collected in the field, creating a **sampleID** which is linked to all subsequent tables. This table also indicates the field conditions, including **sampler-Type**, number of tows or traps collected (**towsTrapsNumber**), and sampling depth (**zooDepth1**, **zooDepth2**, **zooDepth3**).

zoo_perSample.csv - > One record is created for each sampleID to describe subsampling percent and quality metrics.

zoo_taxonomyRaw.csv - > One record is created for each taxonomic group identified in a sample created in zoo_fieldData. Taxonomic identifications are made to the lowest practical taxonomic level (typically

genus or species). The taxonomic nomenclature in this file reflects the verbatim identifications provided by the external taxonomist and may contain synonyms. Data are linked to the fieldData table through the **sampleID**s in each table. Records in this table are unique by the combination of **sampleID**, **scientific-Name**, and **morphospeciesID**.

zoo_taxonomyProcessed.csv - > One record is created for each taxonomic group identified in a sample created in zoo_fieldData. Taxonomic identifications are made to the lowest practical taxonomic level (typically genus or species). The taxonomic nomenclature in this file has been standardized and desyn-onymized according to NEON's master taxonomy for macroinvertebrates and zooplankton. Data are linked to the fieldData table through the **sampleID**s in each table. Records in this table are unique by the combination of **sampleID**, **scientificName**, and **morphospeciesID**.

zoo_perVial.csv - > One record is created for each taxonomic group removed from the final archive vial from the sample created in zoo_fieldData. Individuals are removed from the archived sample to be kept at the expert taxonomy lab as part of the reference collection. Data are linked to the fieldData and taxonomy tables through the **sampleID**s in each table. Records in this table are unique by the combination of **sampleID** and **scientificName** or **morphospeciesID**. Individual organisms documented in zoo_taxonomy are returned to a single container or slide per **sampleID** for archiving. Any individuals removed from that vial to be used by the external lab for the reference collection are documented in the zoo_perVial table. The reference collection is housed at the external facility for the life of the contract, and is organized by **domainID** and **scientificName**. The **referenceCount** field indicates the number of organisms that have been removed from the zoo_taxonomy vial to be archived. This table may be used infrequently.

zoo_identificationHistory.csv - > One or more records expected per identificationHistoryID. Records are only created when data corrections to taxonomic identifications are made. If errors in identification are detected through QAQC processes after data publication, then corrected taxonomy will be provided in the zoo_taxonomyRaw and zoo_taxonomyProcessed tables. The zoo_identificationHistory table is populated with all prior names used for specimen(s) in the data product. When data are populated in the zoo_identificationHistory table, **identificationHistoryID** is used as a linking variable between the zoo_identificationHistory table and all other ground beetle tables where updates were made.

Data downloaded from the NEON Data Portal are provided in separate data files for each site and month requested. The neonUtilities R package contains functions to merge these files across sites and months into a single file for each table described above. The neonUtilities package is available from the Comprehensive R Archive Network (CRAN; https://cran.r-project.org/web/packages/neonUtilities/index.html) and can be installed using the install.packages() function in R. For instructions on using neonUtilities to merge NEON data files, see the Download and Explore NEON Data tutorial on the NEON website: https://www.neonscience.org/download-explore-neon-data

3.10 Special Considerations

Data are organized into tables for field data collected by NEON technicians and external lab data returned by the expert taxonomy lab(s). Field data contains metadata on the type of sampler used, which determines the volume of lake water sampled. The lab data includes subsampling information, taxonomic analysis, count and size data. Lab data values in **adjCountPerBottle** are corrected for subsampling in the lab, but are NOT corrected field sample volume (i.e., the volume of water sampled by the

tow net or Schindler-Patalas trap). Data users will need to refer to the **towTrapsVolume** presented in the zoo_fieldData table and apply this correction to get the standardized density of organisms per liter. All taxon records from a sample should be summed and divided by the **towTrapsVolume** prior to reporting the total abundance per L.

$$zooplanktonAbundancePerL_{i} = \frac{\sum_{i=1}^{n} zoo_taxonomyProcessed.adjCountPerBottle_{i}}{zoo_fieldData.towTrapsVolume_{i}}$$
(1)

Where 'i' is a unique sampleID

See the external lab SOP (**testProtocolVersion**) in the zoo_taxonomy tables for calculations applied to the data by the external laboratory.

4 TAXONOMY

NEON manages taxonomic entries by maintaining a master taxonomy list based on the community standard, if one exists. Through the master taxonomy list, synonyms submitted in the data are converted to the appropriate name in use by the standard. The master taxonomy for macroinvertebrates and zooplankton was originally based on comprehensive taxonomy lists provided by expert taxonomy labs (Eco-Analysts, Inc. and GEI Consultants, Inc.) that were cross-referenced with taxonomic concepts from the Integrated Taxonomic Information System (ITIS, itis.gov) or Catalogue of Life (www.catalogueoflife.org) databases. Unique Taxon ID codes used to identify taxonomic concepts in the NEON master taxonomy list were generated for each taxon by concatenating the first three letters of the genus name together with the first three letters of the specific epithet to make a unique taxon ID for each scientific name. The list includes a variety of macroinvertebrate taxa, including mollusks, snails, worms, insects, mites, and crustaceans. NEON plans to keep the taxonomy updated in accordance with Merritt et al. (2019) and other current literature starting in 2020 and annually thereafter.

The master taxonomy list also indicates the expected geographic distribution for each species by NEON domain and whether it is known to be introduced or native in that part of the range. Given that the spatial distributions of many aquatic macroinvertebrate taxa are not well known, NEON assumes that all taxa are possible at all aquatic sites. As spatial resolution of distribution maps improves, NEON will update the taxon tables to generate errors if a species is reported at a location outside of its known range.

Prior to the 2022 data release, publication of species identifications were obfuscated to a higher taxonomic rank when the taxon was found to be listed as threatened, endangered, or sensitive at the state level where the observation was recorded. The state-level obfuscation routine was removed from the data publication process at all aquatic locations excluding sites located in D01, and data have been reprocessed to remove the obfuscation of state-listed taxa for all years. Federally listed threatened and endangered or sensitive species remain obfuscated at all sites and sensitive species remain redacted at National Park sites.

The full master taxonomy lists are available on the NEON Data Portal for browsing and download: http://data.neonscience.org/static/taxon.html.

4.1 Identification History

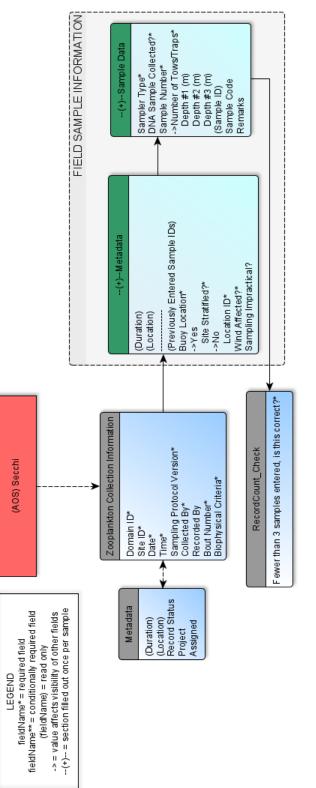
Beginning in 2023, the zoo_identificationHistory table was added to track any changes to taxonomic identifications that have been published in NEON data. Such taxonomic revisions may be necessary when errors are found in QAQC checks, or when evidence from genetic analysis of samples or re-analysis of archived samples indicate a revision is necessary. Requests for taxonomic changes are reviewed by NEON science staff. Proposed changes are evaluated based on evidence in the form of photographs, existing samples, genetic data, consultation with taxonomic experts, or range maps. Upon approval, the existing record in the zoo_taxonomyRaw and zoo_taxonomyProcessed tables are updated with the new taxonomic information and a unique identifier is added to the **identificationHistoryID** field. A record with the same identificationHistoryID is created in the zoo_identificationHistory table where the previous taxonomic information is archived along with the date the change was made.

5 DATA QUALITY

5.1 Data Entry Constraint and Validation

Many quality control measures are implemented at the point of data entry within a mobile data entry application or web user interface (UI). For example, data formats are constrained and data values controlled through the provision of dropdown options, which reduces the number of processing steps necessary to prepare the raw data for publication. The field data entry workflow for collecting zooplankton field data is diagrammed in Figure 2.

An additional set of constraints are implemented during the process of ingest into the NEON database. The product-specific data constraint and validation requirements built into data entry applications and database ingest are described in the document NEON Raw Data Validation for Aquatic Zooplankton Collection (DP0.20219.001) (AD[03]), provided with every download of this data product. Contained within this file is a field named 'entryValidationRulesForm', which describes syntactically the validation rules for each field built into the data entry application. Data entry constraints are described in Nicl syntax in the validation file provided with every data download, and the Nicl language is described in NEON's Ingest Conversion Language (NICL) specifications ([AD[10]).


5.2 Automated Data Processing Steps

Following data entry into a mobile application of web user interface, the steps used to process the data through to publication on the NEON Data Portal are detailed in the NEON Algorithm Theoretical Basis Document: OS Generic Transitions (AD[09]).

5.3 Data Revision

All data are provisional until a numbered version is released. Annually, NEON releases a static version of all or almost all data products, annotated with digital object identifiers (DOIs). The first data Release

was made in 2021. During the provisional period, QA/QC is an active process, as opposed to a discrete activity performed once, and records are updated on a rolling basis as a result of scheduled tests or feed-back from data users. The Issue Log section of the data product landing page contains a history of major known errors and revisions.

5.4 Quality Flagging

The **dataQF** field in each data record is a quality flag for known errors applying to the record. Please see the table below for an explanation of **dataQF** codes specific to this product.

fieldName	value	definition
dataQF	legacyData	Data recorded using a paper-based workflow that did not imple- ment the full suite of quality control features associated with the interactive digital workflow

Table 1: Descriptions of the dataQF codes for quality flagging

Records of land management activities, disturbances, and other incidents of ecological note that may have a potential impact are found in the Site Management and Event Reporting data product (DP1.10111.001)

5.5 Analytical Facility Data Quality

Data analyses conducted on zooplankton community data conform to the current data quality standards used by practitioners. Ten percent of all samples are quality checked for taxonomic difference between two taxonomists at the external facility. These records are indicated by the fields **qcChecked**, **qcEnumerationDifference**, and **qcTaxonomicDifference** indicating Percent Difference in Enumeration (PDE) and Percent Taxonomic Difference (PTD) (Stribling et al. 2008). Details on the calculations of these fields and can be found in the each external lab's SOP.

Standard taxonomic effort and measurement targets were defined by the contracted labs and used for data collected after October 2018. Taxonomists follow the most current nomenclature that is "accepted" in the literature for each taxon. The current list of standard taxonomic targets, references, and measurement guidelines can be found in the NEON document library:

https://data.neonscience.org/api/v0/documents/macroinvertebrate_standard_taxonomic_effort_vA

If errors in identification are detected through QAQC processes after data publication, then corrected taxonomy is provided in the zoo_taxonomyProcessed and zoo_taxonomyRaw tables and previous taxonomic information is preserved in the zoo_identificationHistory table (see Sections 3.9 Data Relationships and 4.1 Identification History above for more details).

6 REFERENCES

Merritt, R. W., K. W. Cummins, and M. B. Berg. 2019. An Introduction to the Aquatic Insects of North America, 5th Edition. Kendall Hunt Publishing Company, Dubuque, Iowa. 1480 pp.

Stribling, J. B., K. L. Pavlik, S. M. Holdsworth, and E. W. Leppo. 2008. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. Journal of the North American Benthological Society. 27: 906-919.

USEPA. 2012a. National Lakes Assessment Program, Field Operations Manual.

USEPA. 2012b. Sampling Procedures for the Great Lakes.